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Research and development in the field of micro/nano-robots have made
significant progress in the past, especially in the field of clinical medicine,
where further research may lead to many revolutionary achievements.
Through the research and experiment of microrobots, a controllable drug
delivery system will be realized, which will solve many problems in drug
treatment. In this work, we design and study the ability of magnetic-driven
hydrogel microrobots to carry Lycorine hydrochloride (LH) to inhibit
colorectal cancer (CRC) cells. We have successfully designed a magnetic field
driven, biocompatible drug carrying hydrogel microsphere robot with Fe3O4

particles inside, which can achieve magnetic field response, and confirmed that it
can transport drug through fluorescence microscope. We have successfully
demonstrated the motion mode of hydrogel microrobots driven by a rotating
external magnetic field. This driving method allows the microrobots to move in a
precise and controllable manner, providing tremendous potential for their use in
various applications. Finally, we selected drug LH and loaded it into the hydrogel
microrobot for a series of experiments. LH significantly inhibited CRC cells
proliferation in a dose- and time-dependent manner. LH inhibited the
proliferation, mobility of CRC cells and induced apoptosis. This delivery
system can significantly improve the therapeutic effect of drugs on tumors.
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1 Introduction

Colorectal cancer (CRC) has always been a public health problem due to its high
incidence rate and mortality. The data in the GLOBOCAN 2020 global report shows that
CRC ranks third in terms of new cases (193,159,0 10%), and second in terms of cancer-
related deaths (935,173 cases, 9.4%) (Ionescu et al., 2023). Currently, the treatment of
patients with metastatic colorectal cancer (mCRC) mainly focuses on chemotherapy,

OPEN ACCESS

EDITED BY

Tianlong Li,
Harbin Institute of Technology, China

REVIEWED BY

Haoran Mu,
Shanghai General Hospital, China
Aihui Wang,
University of California, Los Angeles,
United States

*CORRESPONDENCE

Conghui Han,
hanchdoctor@st.btbu.edu.cn

Xiaoke Wu,
xiaokewu2002@vip.sina.com

†These authors have contributed equally to this
work and share first authorship

RECEIVED 26 December 2023
ACCEPTED 23 January 2024
PUBLISHED 21 February 2024

CITATION

Jiang F, ZhengQ, ZhaoQ,Qi Z,WuD, LiW,Wu X
and Han C (2024), Magnetic propelled hydrogel
microrobots for actively enhancing the
efficiency of lycorine hydrochloride to suppress
colorectal cancer.
Front. Bioeng. Biotechnol. 12:1361617.
doi: 10.3389/fbioe.2024.1361617

COPYRIGHT

© 2024 Jiang, Zheng, Zhao, Qi, Wu, Li, Wu and
Han. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioengineering and Biotechnology frontiersin.org01

TYPE Original Research
PUBLISHED 21 February 2024
DOI 10.3389/fbioe.2024.1361617

https://www.frontiersin.org/articles/10.3389/fbioe.2024.1361617/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1361617/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1361617/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1361617/full
https://www.frontiersin.org/articles/10.3389/fbioe.2024.1361617/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbioe.2024.1361617&domain=pdf&date_stamp=2024-02-21
mailto:hanchdoctor@st.btbu.edu.cn
mailto:hanchdoctor@st.btbu.edu.cn
mailto:xiaokewu2002@vip.sina.com
mailto:xiaokewu2002@vip.sina.com
https://doi.org/10.3389/fbioe.2024.1361617
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#editorial-board
https://doi.org/10.3389/fbioe.2024.1361617


supplemented by surgery and radiotherapy. With the development
of therapeutic approaches, the survival period and quality of life of
patients have been significantly improved (Sunakawa et al., 2016).
However, overall, the 5-year survival rate of mCRC patients with
mCRC remains low, at approximately 15% (Ohishi et al., 2023).
Genetic mutations often lead to increased drug resistance in tumor
cells, making existing treatment methods ineffective in controlling
tumor growth and spread (Qunaj et al., 2023). Therefore, researchers
have been searching for new treatment strategies to overcome this
challenge (Cruz-Martins, 2023).

Compounds from plant sources have the advantages of low cost,
high stability, high safety, and multi-targeting, which make them
highly valuable in clinical applications (Avila-Carrasco et al., 2019).
Lycorine hydrochloride (LH), as an active alkaloid, is extracted from
the medicinal plant Lycoris radiate (Shi et al., 2021). In recent years,
the research on the anti-tumor effect and mechanism of LH has been
increasing. It has been found that LH can exert anti-tumor activity
through multiple pathways and multiple signaling pathways, which
is specifically reflected in the regulation of the occurrence and
development of multiple tumors through one pathway, or the
regulation of the same tumor through different signaling
pathways (Ji et at., 2017; Li et al., 2020; Li et al., 2021). Although
there have been many reports on the anti-tumor effects of LH, there
have been relatively few studies on its role in CRC.

When normal cells are affected by synthetic lethal drugs and lead
to serious side effects, synthetic lethality shows its limitations and
shortcomings. As a result, patients may be forced to interrupt
treatment due to strong side effects during treatment (Chen et al.,
2020). In contrast, the precision drug delivery systemmay enhance the
synthesis of lethal drugs in the tumor site while reducing side effects
(Li et al., 2023). Micro/nano-robots have been innovatively adopted to
solve problems related to Brownian motion and viscous forces, and to
utilize different power sources formovement (Chen et al., 2018;Wang
et al., 2021; Zhao et al., 2022). The magnetic-driven microrobots that
achieves precise manipulation by changing the strength and direction
of themagnetic field has great potential for clinical application in drug
treatment of tumors, which has aroused great interest among
researchers (Li et al., 2017; Wang et al., 2020; Ji et al., 2021; Zhang
et al., 2023; Li et al., 2023). By precisely controlling the magnetic field,
microrobots can be guided to the tumor site and release drugs, which
not only greatly improves the therapeutic effect of drugs, but also
significantly reduces a series of problems such as drug cytotoxicity and
serious complications (Chen et al., 2018; Mu et al., 2022; Wang et al.,
2022). This technology is expected to provide new solutions for tumor
treatment in the future (Wang et al., 2021).

2 Materials and methods

2.1 Preparation of microfluidic chip

The microfluidic chip device is consisted of PDMS construction,
capillary tubes, dispensing needles, and rubber tubes. The rubber
tubes are used as microchannels for the dispersed phase and
continuous phase. One end of the capillary tube is inserted into
the PDMS body, and the other end is connected to the rubber tubes.
In experiment, the fluid flows into the PDMS construction through
the rubber tubes and capillary tube in sequence, where the micro

droplets are sheared, and then flows out collectively through the
rubber tube at the other end. All openings on the device surface are
sealed with leak-proof oil sealant and left to stand for 15 min for the
sealant to cure. The device is then stored in a cool and dry place.

2.2 Preparation of continuous phase and
dispersed phase

2.2.1 Continuous phase (oil phase):
20 μL of Tween 20 (surfactant) was dropped into 20 mL of

vegetable oil and stir to mix thoroughly. Then the mixed liquid was
placed in a vacuum drying box, evacuate to 1,000 Pa for 30 min to
remove bubbles in the mixed solution to obtain the continuous
phase fluid required for the experiment.

2.2.2 Dispersed phase (water phase):
(1) 300 mg of gelatin (glue strength: ~250 g Bloom, Aladdin,

China) was added into 7 mL of deionized (DI) water and
then was stirred for 30 min at 40°C using magnetic stirrer
until the gelatin was dissolved.

(2) 20 mg of photoinitiator (2-hydroxy-4′-(2-hydroxyethoxy)-2-
methylpropiophenone) (Macklin, Shanghai, China) was
added into 3 mL of DI water. Then mixed liquid was
stirred for 10 min at 30°C using magnetic stirrer to obtain
photoinitiator aqueous solution.

(3) The gelatin aqueous solution and the photoinitiator aqueous
solution were mixed, and 0.1 mL of acid-base buffer
was added.

(4) The Fe3O4 particles (20 nm) and LH were added into the
mixed solution, and adjust the concentrations to 2.5% and
20 μM, respectively.

2.3 External magnetic field device

A three-degree-of-freedom Helmholtz coil, a multi-function data
acquisition device, and three single-channel output power amplifiers
jointly constitute the external rotating uniform magnetic field. By
controlling the current and voltage of the Helmholtz coil, a circular
external rotating uniform magnetic field can be generated on any
plane in three-dimensional space to drive the microrobots to move in
different ways (Wang et al., 2023). In the experiment, the cell-culture
dish was placed in the center of the three-dimensional Helmholtz coil,
where themagnetic field intensity was evenly distributed. After adding
the drug-loaded microrobot, turning on the magnetic field can drive
the microrobot to move towards the cells.

2.4 Cells and reagents

CRC cell lines DLD-1 and LoVo, as well as human intestinal
epithelial cell line NCM460, are provided by Fuheng Cell Centre
(Shanghai, China). LoVo cells were cultured in RPMI 1640 medium
(Gibco; Thermo Fisher Scientific, Inc.), while DLD-1 and
NCM460 cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; Thermo Fisher Scientific, Inc., Waltham, MA,
United States). Both media were supplemented with 10% fetal
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bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc.) and 1%
antibiotic (Sigma-Aldrich, United States). All cells were cultured in a
standard humidified incubator at 37°C under an atmosphere with 5%
CO2. LH (cat. no. L101559) was purchased from Aladdin Industrial
Corporation (Shanghai, China) and was dissolved in dimethyl
sulfoxide (DMSO) to prepare a stock solution of 77.16umol/L.

2.5 MTT assay

The cytotoxicity of LH was conducted by MTT assay. Cells were
incubated in 96-well plate (5×103 per/well) for 24 h, then treated
with different concentrations of LH (0–100 μM) for 48 h. After
staining with MTT solution (5 mg/mL, 20 μL/well, 4 h) (Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany), 150 μL of DMSO was
added to each well to solubilize the formazan crystals. A microplate
reader (ELx808, BioTek Instruments, Winooski, VT, United States)
was employed to detect the plate at the wavelength of 490 nm. Three
biological experiments were performed.

2.6 Plate colony-forming assay

CRC cells (0.5 × 103) were cultured in 6-well plates for 24 h. Three
groups were set up, including a negative control group (NC), LH-alone
(20 μM), and a magnetic microrobot drug-loading group (LH-robot)

(20 μM). Treatments were conducted on days 2, 4. After 10 days, the
cells were fixed with methanol and stained with a 0.5% crystal violet
solution. Three biological experiments were performed.

2.7 Wound healing assay

DLD-1 and LoVo cells (90% confluence) were scratched with a
sterile 200-µL pipette tip and then treated with LH and LH-robots
(20 μM) separately. After 48 h, the width of the scratch was
observed. The scratch was imaged under a microscope
(magnification, ×100). The widths of the scratches were analysed
with ImageJ V1.8.0 (NIH, Bethesda, MD, United States). Three
biological experiments were performed.

2.8 Transwell assay

The invasion experiment was conducted using a Transwell
chamber. Before cells seeding, 50 μL of Matrigel was added to the
upper chamber to coat the polycarbonate membrane. DLD-1 and
LoVo cells were treated with LH alone and LH-robots (20 μM)
separately and then cultured for 24 h. After resuspension in FBS-free
medium, they were inoculated into the upper chamber (1×104 cells/
200 µL medium per well). Then, the lower chamber containing 700 µL
of medium with 10% FBS was used as a hemoattractant. After 48 h of

FIGURE 1
Targeted drug release in intestine using magnetic-driven hydrogel microrobots. (A) Schematic overview of magnetic-driven hydrogel microrobots
for drug release in intestine. (B) The fabrication of magnetic-driven hydrogel microrobots using microfluidic chip. (C) The optical microscopy image of
magnetic-driven hydrogel microrobots. (D) Fluorescence microscopic images of magnetic-driven hydrogel microrobots. (E) Particle size distribution of
magnetic-driven hydrogel microrobots.
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incubation, cells on the polycarbonate membrane were wiped off, and
then methanol was used to fix the cells penetrating to the dorsal side,
followed by staining with a 0.5% crystal violet solution. Under a
microscope (magnification, ×100), 5 randomly selected fields were
quantitatively analysed. Three biological experiments were performed.

2.9 Apoptosis assay

DLD-1 and LoVo cells were seeded in 6-well plates (2.5×105 per/
well) and allowed to adhere overnight. Then, LH alone and LH-
robots (20 μM) were added separately, and the cells were incubated

FIGURE 2
Magnetically actuated motility of magnetic-driven hydrogel microrobots. (A)Tracking lines illustrating the traveled distances of microrobots of
different sizes over a 14 s period in a rotating uniform magnetic field of 15 mT and 5 Hz. (B) The velocity of microrobots of different sizes varied with the
drive frequency from 2 to 40 Hz.

FIGURE 3
Controllable and flexible motility performance of magnetic-driven hydrogel microrobots. (A) Change of the direction of movement of the
microrobots caused by changing the magnetic field. (B) Controllable motion of microdimer swimmer.
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for 48 h before being harvested and stained with an Annexin
V-FITC/PI Apoptosis Detection kit (catalog no. FXP018; 4A
Biotech). FACS DiVa 6.1.3 (BD Biosciences, Franklin Lakes, NJ,
United States) was used to analyze apoptosis. Three biological
experiments were performed.

2.10 Statistical analysis

All data were shown asmeans ± SD via at least triplicate samples.
A two-tailed, Student’s t test was used for testing the significance
between two groups. Statistical analyses were performed using
GraphPad PRISM 9 (GraphPad Software, Inc.) A one-way
analysis of variance (ANOVA) with Dunnett’s test was

performed to test the significance for multiple comparisons. A
statistical significance was assumed at p < 0.05.

3 Results

3.1 Preparation of magnetic drive
microrobot delivery system

Autonomous micro/nano-robots can propel and navigate in
various liquid media, and are expected to provide revolutionary
technological advancements for drug delivery, microsurgery, and
micro/nano-engineering (Xiao et al., 2022; Yang et al., 2022; Wang
et al., 2021; Gao et al., 2021; Zhang et al., 2023). Magnetic

FIGURE 4
Effect of LH and LH-robot on CRC cell proliferation. (A) Chemical and three-dimensional structures of LH. (B) An MTT assay was performed to
measure CRC cell viability following LH (0–100 µM) treatment. (C) The influence of LH alone and LH-robot on the colony formation of CRC cells. *p <
0.05 and **p < 0.01 and ***p < 0.001 vs. NC group.
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nanorobots show great potential in practical biomedical applications
due to their wireless fuel-free actuation, strong propulsion, precise
motion control, and high biocompatibility (Wang and Zhang, 2021;
Xie et al., 2020; Zhou et al., 2021; Yang et al., 2023). This study
describes the preparation of magnetic-driven hydrogel microrobots.
It has the capability to transport drug LH through the digestive
channel and into the intestine. Subsequently, the microrobot, driven
by an external magnetic field, precisely maneuvers to the target
lesion location for drug release and treatment (Figure 1A). This
application demands that the microrobot is capable of loading drugs,
exhibiting magnetic responsiveness, and possessing a biocompatible
structure. Additionally, the microrobot should have a disintegrable
body structure for drug release. Figure 1B illustrates the fabrication
process of the magnetic-driven hydrogel microrobot. The hydrogel
microrobot is fabricated using a microfluidic chip based on the
principle of flow focusing. In the flow convergence device, the
dispersed phase fluid and continuous phase fluid pass through a
narrow region under pressure. At the micro-droplet generation site,
there are three fluid streams, with the continuous phase fluid
symmetrically distributed on both sides. The dispersed phase
fluid in the middle is focused and sheared by the continuous
phase fluids on both sides, forming micro-droplets. The micro-

droplets are subsequently cured and solidified on the surface under
UV light exposure, thus transforming into magnetic-driven
hydrogel microrobots. In this process, the continuous phase is
plant oil, and the dispersed phase is a gelatin aqueous solution
containing photoinitiator, along with Fe3O4 particles and the LH.

The optical microscopy image shown in Figure 1C displays the
spherical geometry of the microrobots. The clearly visible yellow
microparticles inside the microrobot indicate the successful
loading of Fe3O4 particles. The fluorescent microscope image
(Figure 1D) illustrates that the desired drug loading has been
achieved. The loading of drugs and Fe3O4 particles decreased in the
homogeneity of the gelatin solution as the dispersed phase, leading
to a lack of strict uniformity in the size of the generated
microrobots. Figure 1E presents the statistical analysis of the
size distribution of the prepared microrobots, indicating that
the size distribution follows a generally normal distribution.
The average diameter is approximately 90 μm, predominantly
distributed within the range of 30~120 μm, exhibiting a high
degree of monodispersity. In the microfluidic chip, the
generation rate and size of microrobots can be modulated by
altering the flow rate ratio, viscosity, and channel dimensions of
the continuous and dispersed phase fluids.

FIGURE 5
Effect of LH and LH-robot on CRC cell mobility. (A)Wound healing assay of LH alone and LH-robot on CRC cells at non-toxic concentrations (20µM,
24 h). Magnification, ×100. (B) Invasion assays of CRC cells pretreated with LH and LH-robot at non-toxic concentrations (20µM, 24 h).
Magnification, ×100. *p < 0.05 and **p < 0.01 and ***p < 0.001 vs. NC group.
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Then the effect of frequency of the rotating magnetic field on the
velocity of magnetic-driven hydrogel microrobot was investigated
experimentally as well. Figure 2A shows the trajectories of different-
sized microrobots over a period of 14 s under the conditions of a
magnetic force of 15 mT and a driving frequency of 5 Hz. It can be
seen that larger microrobots exhibit smaller movement speeds. To
further reveal the magnetic field-driven motion performance of
microrobots, we explore the variation of microrobots’ velocity
with the magnetic frequency increased from 2 to 40 Hz and
shown in Figure 2B, for a 30 μm microrobots, the speed
increased linearly with the driving frequency and reached a
maximum velocity of 8.4 μm/s at 5 Hz, further increasing the
frequency reduced the velocity. Such a maximum synchronized
frequency is called step-out frequency (Xie et al., 2019; Yu et al.,
2019). The occurrence of the out-of-step phenomenon and the
increase in drag caused by the increasing speed are the reasons
we speculate for this variation. After the step-out phenomenon
occurred, the speed of the microrobot fluctuates within a certain
range as the frequency of the magnetic frequency increase.
Furthermore, the 60 and 90 μm microrobots showed the same
movement performance and obtained the highest velocities of
6 μm/s and 3.7 μm/s, respectively. This magnetically actuated
motility of magnetic-driven hydrogel microrobots of different
sizes can provide guidance for the customization of microrobots
for different working conditions.

For the application of micro/nano-scale robots in precision
medical procedures, the ability of remote driving has very
attractive characteristics (Chirarattananon et al., 2014; Xie et al.,
2019; Aram et al., 2022; Zhang et al., 2022). Here, we demonstrate
the remote locomotion of Janus magnetic-driven hydrogel
microrobots. Figure 3A illustrates the control strategy of three-
dimensional rotating magnetic field generated by the three degrees

of freedom Helmholtz coil and corresponding movement of
microrobots. First, a circularly polarized rotating magnetic field
applied in the X-Z plane excited the microrobot rolled along X-axis.
When the rotating magnetic field was changed and applied in the
Y-Z plane, the locomotion direction of microrobot changed to the
Y-axis. The propulsion direction of the microrobot could be altered
by changing the direction of rotating magnetic field manually. Based
on this rule, we realized the controllable trajectory movement of
microrobot by modulating the magnetic field. As shown in
Figure 3B, the microrobot walked along letter “H”-, “P”-, and
“H”-shaped trajectory. The microrobot realized flexible direction
switching under the drive of magnetic field of 15 mT and 5 Hz. This
remote controllable movement capability provides support for
targeted locomotion of magnetic-driven hydrogel microrobots on
the complex surface of the intestine.

3.2 Magnetic-driven microrobots
significantly enhances the ability of LH to
inhibit CRC cells

• The chemical structure formula and 3D structure of LH are
shown in respectively. Cell proliferation was assessed using
MTT and colony formation assays (Chan et al., 2023). CRC
cells were exposed to multiple concentrations (0–100 µM) of
LH for 24 and 48 h. MTT assay results showed that LH
significantly inhibited CRC cells proliferation in a dose and
time-dependent manner (Figure 4B). Notably, LH showed
minimal cytotoxicity towards NCM460 cells (Supplementary
Figure S1). We chose a non-lethal concentration of 20 µM of
LH and compared the effects of single drug administration
with microrobot-based drug delivery on CRC cells. A large

FIGURE 6
The apoptosis of CRC cells after treatment of LH and LH-robot separately. *p < 0.01 and ***p < 0.001 vs. NC group.
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number of previous studies (Zhang et al., 2021; Zhou et al.,
2021) have shown that Fe3O4 as a component of magnetic
drive micro-nano robot will not cause biological tissue and
cell damage, so the blank control group in this study
containing a small dose of Fe3O4 will not cause additional
effects. The colony formation experiment showed that the
drug under the control system of magnetic microrobots had a
more significant ability to inhibit the proliferation of CRC
cells (Figure 4C).

Metastasis is the process by which cancer cells grow in organs far
away from their primary organ, and is the deadliest manifestation of
cancer (Xia et al., 2023). The vast majority of cancer patients die
from metastatic disease, rather than primary tumors (Chen et al.,
2019). Tumour cell mobility is essential for metastasis and is
typically assessed by wound healing and Transwell assays (Jin
et al., 2019). As shown in Figure 5A the wound healing speed in
the cells treated with LH-robot was significantly slower. The
Transwell assay results showed a significant decrease in the
invasion ability of the experimental group cells, especially in the
magnetic microrobot-based drug delivery group (Figure 5B).

Apoptosis is a programmed cell death that balances the ratio of
cell survival and death. Cancer cells have the ability to escape
apoptosis, so aimed at inducing cancer apoptosis is a very
important direction for treating cancers (Elbanna et al., 2021).
Cytotoxic chemotherapy and radiotherapy attempt to trigger
apoptosis through endogenous pathways by acting on cell
division and/or directly damaging DNA, and are currently the
main methods for treating cancer through the induction of
apoptosis mechanisms (Wanner et al., 2020; Barroso et al., 2023).
In our experiments, we observed that LH has the ability to induce
apoptosis in CRC cells, and the magnetic propelled hydrogel
microrobots significantly enhance this ability (Figure 6).

4 Conclusion

We have fabricated a magnetic driven, biocompatible
hydrogel microrobot loaded with Fe3O4 particles. Through the
regulation of external magnetic fields, the movement of
microrobots can be precisely controlled, enhancing the
anticancer ability of LH on CRC cells. This technology can
achieve precise delivery and efficient utilization of drugs,
thereby reducing the toxic side effects and improving the
therapeutic effect. Therefore, microrobot technology has broad
prospects in cancer treatment.
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