Table 9.
Comparison of the best performing probes.
| cg04692870-Probe 1, best R2 | cg04692870-Probe 1, best RMSE | cg09322432-Probe 3 | cg10840135-Probe 4, best R2 | cg10840135-Probe 4, best RMSE | cg15597984-Probe 5 | cg20046859-Probe 7 | Mean of best performance/ RMSE (SD) | |
|---|---|---|---|---|---|---|---|---|
| Model and feature set | Elastic net Ind GWAS after B-H genetics only | XGBoost Ind GWAS after B-H genetics only | Elastic net Ind GWAS uncorrected genetics + environmental | Elastic net GTEx | XGBoost 2 MB genetic only | Elastic net Ind GWAS uncorrected genetics + environmental | Elastic net Ind GWAS uncorrected genetics only | – |
| No. of Features | 2 SNPs (after 10% MAF filtering) + CpG probe | 2 SNPs (after 10% MAF filtering) + CpG probe | 190 SNPs (after 10% MAF filtering) + 5 PCs + 8 non-genetic factors | 548 SNPs (after 10% MAF filtering) + CpG probe | 2,406 SNPs (after 10% MAF filtering) + CpG probe | 170 SNPs (after 10% MAF filtering) + 5 PCs + 8 non-genetic factors | 153 SNPs (after 10% MAF filtering) + CpG probe | – |
| No. trained | 300 | 300 | 300 | 302 | 305 | 301 | 304 | – |
| Hyper parameters | alpha: 0 lambda: 0 | objective: reg:squared error eta: 0.003009989 max_depth: 10 colsample_ bytree: 0.5493245 subsample: 0.8383967 nround: 1000 | alpha: 0 lambda: 0 | alpha: 0 lambda: 1 | objective: reg:squared error eta: 0.006558051 max_depth: 1 colsample_ bytree: 0.7361971 subsample: 0.7592239 nround: 924 | alpha: 0 lambda: 0 | alpha: 0 lambda: 0 | – |
| RMSE train set | 0.0646 | 0.0639 | 0.0185 | 0.0249 | 0.0221 | 0.0279 | 0.0152 | – |
| R2 train set | 0.104 | 0.099 | 0.390 | 0.109 | 0.286 | 0.340 | 0.327 | – |
| No. tested | 101 | 102 | 101 | 102 | 100 | 100 | 102 | – |
| RMSE test set | 0.0582 | 0.0580 | 0.0176 | 0.0237 | 0.0237 | 0.0256 | 0.0161 | 0.0282 (0.017) |
| R2 test set | 0.206 | 0.179 | 0.107 | 0.187 | 0.155 | 0.302 | 0.119 | 0.184 (0.078) |