Skip to main content
. 2024 Feb 21;17:1244336. doi: 10.3389/fninf.2023.1244336

Table 9.

Comparison of the best performing probes.

cg04692870-Probe 1, best R2 cg04692870-Probe 1, best RMSE cg09322432-Probe 3 cg10840135-Probe 4, best R2 cg10840135-Probe 4, best RMSE cg15597984-Probe 5 cg20046859-Probe 7 Mean of best performance/ RMSE (SD)
Model and feature set Elastic net Ind GWAS after B-H genetics only XGBoost Ind GWAS after B-H genetics only Elastic net Ind GWAS uncorrected genetics + environmental Elastic net GTEx XGBoost 2 MB genetic only Elastic net Ind GWAS uncorrected genetics + environmental Elastic net Ind GWAS uncorrected genetics only
No. of Features 2 SNPs (after 10% MAF filtering) + CpG probe 2 SNPs (after 10% MAF filtering) + CpG probe 190 SNPs (after 10% MAF filtering) + 5 PCs + 8 non-genetic factors 548 SNPs (after 10% MAF filtering) + CpG probe 2,406 SNPs (after 10% MAF filtering) + CpG probe 170 SNPs (after 10% MAF filtering) + 5 PCs + 8 non-genetic factors 153 SNPs (after 10% MAF filtering) + CpG probe
No. trained 300 300 300 302 305 301 304
Hyper parameters alpha: 0 lambda: 0 objective: reg:squared error eta: 0.003009989 max_depth: 10 colsample_ bytree: 0.5493245 subsample: 0.8383967 nround: 1000 alpha: 0 lambda: 0 alpha: 0 lambda: 1 objective: reg:squared error eta: 0.006558051 max_depth: 1 colsample_ bytree: 0.7361971 subsample: 0.7592239 nround: 924 alpha: 0 lambda: 0 alpha: 0 lambda: 0
RMSE train set 0.0646 0.0639 0.0185 0.0249 0.0221 0.0279 0.0152
R2 train set 0.104 0.099 0.390 0.109 0.286 0.340 0.327
No. tested 101 102 101 102 100 100 102
RMSE test set 0.0582 0.0580 0.0176 0.0237 0.0237 0.0256 0.0161 0.0282 (0.017)
R2 test set 0.206 0.179 0.107 0.187 0.155 0.302 0.119 0.184 (0.078)