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Abstract

Cardiovascular tissue constructs provide unique design requirements due to their functional 

responses to the substrate mechanical properties and cyclic stretching behavior of the tissue 

that requires the use of durable yet elastic materials. Given the diversity in polyester synthesis 

approaches, an opportunity exists to develop a new class of biocompatible, elastic, and 

immunomodulatory cardiovascular polymers. Furthermore, the elastomeric polyester materials 

have the capability to provide tailored biomechanical synergy with native tissue and hence reduce 

inflammatory response in vivo and better support tissue maturation in vitro. In this review, 

we highlight underlying chemistry and design strategies of polyester elastomers optimized for 

cardiac tissue scaffolds. Major advantages of these materials such as their tunable elasticity, 

desirable biodegradation, and potential for incorporation of bioactive compounds are further 

expanded. Their unique fabrication methods such as micromolding, 3D stamping, electrospinning, 

laser ablation and 3D printing are discussed. Moreover, application of these biomaterials in 

cardiovascular organ-on-a-chip devices and patches are analyzed. Finally, we outline unaddressed 

challenges in the field that need further study to enable impactful translation of soft polyesters to 

clinical applications.
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1. Introduction

Biomaterial based technologies have played an indispensable role in the development of 

cardiovascular devices, tissue regeneration, acellular therapies, drug delivery, and in vitro 
scaffolds for tissue engineering. 1 The evolution of biomaterials has been a journey of 

continuous learning and innovation, marked by significant milestones that have shaped the 

field. In the early days, biomedical devices faced poor patient integration due to the lack 

of sterilization techniques and unadvanced knowledge of human biology. 2 Observations of 

healing of foreign bodies upon injuries during World War II inspired surgeons such as Sir 

Harold Ridley3, Sir John Charnley4, Dr. Charles Stent5 and many other surgeons to implant 

biomaterials into human body in many forms such as contact lenses, hip replacements, 

vascular stents and grafts. At the time, materials were deemed to be “biocompatible” if they 

did not provoke significant immune rejection within the host body. 6 Some of the commonly 

utilized materials at this era were silk, silicones, metals, poly(methyl methacrylates) and 

Teflon. 7

In 1960’s and 1970’s, biodegradability, the ability of the material to be broken down 

and removed from implant site became the major criteria for biocompatibility. 7 Polymers 

such as poly (lactic acid) (PLA), poly(glycolic) acid (PGA) or poly (lactic-co-glycolic) 

acid (PLGA) were developed. 8 Recent advances in understanding of concepts such as 

cell-surface receptors, cellular phenotypes, and cell-biomaterial crosstalk, the field has 

evolved to develop biomaterials that enhance the polymer-host tissue crosstalk. Novel 

techniques involving host immune response modulation, increased porosity to enhance 

vascularization, controlled drug release, biomaterials modified with bioactive molecules, 

nonfouling materials, thermoresponsive compounds and materials enhancing healing process 

have been realized. 9

Cardiovascular tissue engineering and biomaterials has recently focused on new approaches 

for regeneration of cardiac muscle, the myocardium, given promise to provide solutions 

for the failing heart. Given the low elasticity range of human myocardium during the 

diastole and systole cycles (10-300 kPa), an ideal biomaterial for cardiac tissue engineering 

should possess a low Young’s modulus to match the physiological range, as well as high 

elongation and tensile strength to support cyclic contractile behavior of cardiac tissue.40-43 

Polyesters have drawn great attention toward this goal due to their notable potential to 

mimic physiological and biochemical properties of native tissues, and match the elasticity of 

cardiac tissue. 10

Polyesters are typically synthesized through esterification, which involves a reaction 

between an alcohol (or diol) and a carboxylic acid or (or diacid) group forming an ester 

linkages. 11 The ester linkage and control over crosslinking extent offers flexibility and 

mobility to the polymeric structure. Biodegradable polyesters are structurally and chemically 

stable for short- and medium-term applications and can provid mechanical cues to drive 

cellular behaviour12. They can also degrade over time via several mechanisms including 

hydrolysis, oxidation or enzymaticly. 13 The mechanical properties, degradation rate and 

biocompatibility of polyesters can be tuned by the choice of monomers and their molecular 

weights as well as the processing conditions (e.g., temperature, pressure, and reaction 
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time). 14 Elastomeric polyesters have been frequently used in cardiovascular applications 

as artificial heart valves15, vascular prosthesis16, conduits17-18, and patches for repair of 

damaged myocardium or congenital malformations18. Biofunctionalization of these scaffold 

materials with natural materials such as laminin, fibronectin, collagen, and alginate can 

further promote cell attachment by modifying surface elasticity or hydrophobicity. 19-20

Mechanical properties, cytocompatibility, immunomodulation and fabrication of precise 

micron-scale structures are some of the major challenges that should be addressed during 

biomaterial design process. Building on the previous successes with polyester elastomers 

and given the diversity in polyester synthesis approaches, it is possible to develop a 

new class of biocompatible, elastic, and immunomodulatory cardiovascular polymers. This 

review compares the biological and mechanical properties of currently developed polyesters 

and evaluates their advantages and shortcomings in cardiac tissue engineering and organ-on-

a-chip applications. We describe the challenges associated with fabricating scaffolds from 

polyesters, as well as innovative approaches that have been developed to overcome some 

of these limitations. This review also provides a comprehensive explanation of various 

in vitro and in vivo applications of polyesters in the field of cardiovascular research and 

foresees the clinical transition of such applications. Commonly used polyesters for soft 

tissue engineering developed in the last 20 years are highlighted in Figure 1.

2. Novel polyesters utilized in tissue engineering and organs-on-a-chip

Polyesters have been widely used as the material of choice for fabrication of tissue 

engineering scaffolds due to their degradation properties in vivo, cytocompatibility and 

ease of fabrication. 11, 26-28 Clinically used polyesters such as poly-L-lactic acid (PLLA) 

or polycaprolactone (PCL) often have a significantly higher elasticity compared to soft 

tissues. 29-30 Mechanical mismatch with the properties of native tissues can trigger a variety 

of adverse response including fibrosis31, and inflammation32 and reduce the fidelity and 

impaired cell maturation of in vitro models. 33 To address these shortcomings, polyesters 

with lower Young moduli (i.e. less than 1 MPa) have been of great interest in cardiac 

scaffold applications. 34 Several variations of polyester chemistries have been explored 

for scaffold development, including polyhydroxyalkanoates (PHAs), poly(ε-caprolactones) 

(PCL), poly(poly sebacate)s and poly(diol citrate)s (Figure 2). In this review, our emphasis 

is on soft polyesters suitable for engineering cardiac and vascular tissues, while a 

comprehensive overview of polyester biomaterials has been addressed elsewhere. 26

2.1. Polyhydroxyalkanoate (PHA)

PHAs are biodegradable polyesters, naturally produced by both gram-positive35 and gram-

negative bacteria36, in the presence of excess carbon sources and lack of alternative 

resources such as nitrogen, phosphorous, potassium and magnesium. They are often 

classified into short- (4 to 5 carbons), medium- (6 to 14 carbons), and long-chained (14 

or more carbons) PHAs. 37 (Figure 2a) These polyesters provide multiple opportunities 

to adjust their utility by functionalization of unsaturated side chains. 38 For example, 

their hydrophobicity can be adjusted to control cell attachment and drug absorption to the 

scaffold. 39-40 Another advantage of PHA is their non-toxicity and hydrolytic degradation to 
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carbon dioxide and water. 41 Commonly used PHAs are: poly(3-hydroxybutyrate) (PHB) 
42, poly(4-hydroxybutyrate) (P4HB) 43, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) 

(P34HB) 44 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) 45. Their organic 

origins and biodegradability make them a great candidate for drug delivery46, biomedical 

device fabrication47 and tissue engineering48. Degradation of PHAs results in R-3HA 

groups which can be transformed to 2-alkylated 3HB or β-lactones, giving rise to antibiotic 

compounds such as carbapenem or macrolide. 49 Hemoembolizing agents such as rifampicin 

have also been encapsulated in PHB or PHVB microspheres for controlled drug delivery. 50 

Tepha FLEX®, a PHB-based suture, has recently been approved by FDA for transplantation. 
51 Non-porous PHAs exhibit a significantly higher elasticity (i.e., 3.7 MPa to 739.7 MPa) 

than myocardium; hence, highly porous cardiac patches from PHAs have been created 

to mimic properties of the native tissue. 42 Control over degradation52 , elasticity53 and 

batch-to-batch variability54 are the main challenges to be addressed when using this family 

of materials. Moreover, challenges with purification of PHAs should be considered for its 

application in tissue engineered platforms. 55

2.2. Poly (ε-caprolactone) (PCL)

PCL is widely used to its cytocompatibility56, ease of processing57 and viscoelastic 

properties58. This polyester, can be either derived directly from cyclic ester, ε-caprolactone 

or indirectly through decomposition of ε-caprolactone to 6-hydroxyhexanoic acid and its 

polycondensation59 or ring opening of ε-caprolactone60. (Figure 2b, 2c) PCL is soluble in 

various organic solvents such as chloroform, toluene, benzene, and dichloromethane and 

immiscible with alcohol and water. 61 As a result, PCL is one of the most common materials 

used within electrospinning or solvent casting methods. 62 Despite the fact that elasticity 

of pure PCL is high (i.e., 210-440 MPa) 61, by using different fabrication techniques and 

manipulating its molecular weight, its mechanical properties can be tuned. 63 PCL has 

been the frequent material of choice for construction of 3D cardiac64-65 or vascular66 

scaffolds. PCL monomers have been frequently combined with other polymers to generate 

co-polymers, such as poly (lactic-co– ε-caprolactone) (PLCL) 67 or poly(glycolide-co- ε-

caprolactone) (PGCL) 68, with modified properties. PCL is highly hydrophobic69, limiting 

cell adhesion and proliferation on its surface. As a result, the methodologies for fabrication 

of PCL-based cardiac substrates should overcome their high elastic modulus and surface 

hydrophobicity.

2.3. Poly (glycerol sebacate) (PGS)

PGS is developed by polycondensation of glycerol, the natural building block of lipids, 

and sebacic acid, a metabolic intermediate of fatty acid synthesis. 70 (Figure 1a, Figure 2d) 

Physical properties of PGS can be altered by manipulating monomer feed ratio or degree 

of esterification. 71 PGS spontaneously crosslinks after exposure to 120°C for a minimum 

duration of 72 hours; however, crosslinking agents such as methylene diphenyl diisocyanate 

(DMI) or hexamethylene diisocyanate (HDI) can be added to accelerate this synthesis 

process. 72-73 Acylating prepolymer to poly (glycerol sebacate) acrylate (PGSA) can provide 

a UV cross-linkable elastomer for uses such as an on-site surgical sealant. 74 Co-polymers of 

PGS family have also demonstrated great potential in soft tissue engineering. For instance, 

bonding of PGSA with hydroxyethyl methacrylate (HEMA) resulted in polyesters with 
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tunable characteristics and shape-memory properties. 75 Although PGS has not yet been 

approved by FDA in a specific device, both of its monomers as well as similar polyester 

surgical sealants such as SETALUM™ (Gecko) have received FDA and CE Mark approvals. 

PGS and its composites were also used in fabrication of cardiac patches to enhance the 

cardiac function in vivo. 76-78

2.4. Poly (diol citrates)

Poly(diol citrates) are formed from a reaction of a diol- group and citrate group. 

Depending on the degree of crosslinking, these polyesters can have more physiological 

relevant mechanical properties for cardiac utility. Poly (1,8-octanediol citrate) (POC), poly 

(octanediol citrate-co-sebacate) (POCS), poly (octamethylene maleate anhydride) (POMaC), 

poly (octamethylene maleate anhydride 1,2,4-butanetricarboxylate) (1,2,4 polymer), poly 

(itaconate-co-citrate-co-octanediol) (PICO) and adhesive polyesters are some of the 

poly(diol citrates) currently utilized for cardiac or vascular tissue engineering.

2.4.1. Poly (1,8-octanediol citrate) (POC)—POC is a biodegradable and 

antimicrobial polyester for soft tissue engineering applications. 79 (Figure 1b, Figure 2e) 

POC has gained significant attention due to its high tensile strength and low elastic modulus. 
80-81 POC has been shown to support growth of endothelial cells82 and differentiation 

of bone-marrow derived mesenchymal stem cells83. This polymer was also used to make 

composites with PCL, and electrospun to create aligned fibrous sheets for cardiac tissue 

culture. 84-85 POC/PCL composite is soluble in non-toxic solvents such as acetic acid 

and formic acid, reducing potential solvent toxicity issues in electrospinning process. 
85 Furthermore, therapeutic agents such as lidocaine have been incorporated within the 

microstructure of POC to obtain tunable drug release kinetics. 86 Under physiological 

conditions, POC degrades into non-toxic products, citric acid and 1,8-octanediol, which can 

both be metabolized and eliminated by the body. 87-88 The two POC-based bone implants 

of CITRESPLINE® and CITRELOCK® (Accutive technologies) have been recently FDA-

approved for surgical implantation.

2.4.2. Poly (octanediol citrate-co-sebacate) (POCS)—POCS is a tunable polymer 

formed from one-pot polycondensation of 1,8-octanediol, citric acid and sebacic acid. 89 

(Figure 2f) Viscoelastic properties and degradation kinetics of POCS could be manipulated 

by changing the monomer ratio of citric acid to sebacate ratio. 89-90 Other groups have 

created conductive POCS by incorporating up to 5% carbon nanotubes using a novel screw-

coating of the material with carbon nanotubes. 91 Pendant carboxyl groups on the surface of 

crosslinked POCS can regulate cellular attachment95 and covalently bond with extracellular 

matrix (ECM) molecules to enhance cell attachment. 92 POCS has been electrospun along 

with fibrinogen to enhance cell attachment and proliferation. 93

2.4.3. Poly (octamethylene maleate (anhydride) (POMaC)—POMaC is a 

biodegradable elastomer, synthesized through one-pot polycondensation reaction of citric 

acid, maleic anhydride and 1,8-octanediol. 94(Figure 1c, Figure 2g) Liquid pre-polymer 

generated through this synthesis, contains several vinyl and ester groups. Vinyl groups 

enable free radical polymerization with the addition of a photoinitiator and use of an 
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appropriate wavelength of light. 94 In addition to the vinyl groups, POMaC structure 

is comprised of pendant carboxylic acid and alcohol groups undergoing esterification 

reactions, a post-polymerization process that is accelerated at higher temperatures. 94 

Vinyl groups formed from UV crosslinking are non-polar and hence contribute to 

hydrophobic behaviour of the products, while ester bonds are highly susceptible to 

hydrolytic degradation. 95-96 The unique dual-crosslinking mechanism of POMaC creates an 

opportunity to tune degradation of the final biomaterial by altering monomer feed ratios. 94, 

97 Moreover, pendant functional groups of POMaC are binding sites for bioactive molecules 

such as peptides or protein conjugates. 98

POMaC is a soft elastomer, with tunable properties that can match physiological properties 

of native myocardium and negligible changes upon cyclic stretching. This makes POMaC 

a good material for support of contractile behaviour of cardiac tissue both in vivo and in 
vitro. 18, 23, 99-102 Additionality, the ability to perfuse POMaC within polydimethylsiloxane 

(PDMS)-based microchannels facilitates microfabrication of a wide variety of micro-scaled 

geometries. 18, 23, 99 The anisotropic properties of POMaC-based micropatterned scaffolds 

are used to control cardiac tissue compaction, resulting in better cardiomyocyte elongation 

and maturation. 18, 23 Anisotropic patches fabricated with POMaC are not only well 

functional in vitro, but they have shown to significantly improve cardiac functional 

properties post myocardial infarction (MI) compared to other polymers such as poly(ethyl 

glycol) (PEG). 18 Other favorable properties of POMaC such as the ability to be partially 

UV-crosslinked and 3D stamped have resulted in AngioChip, a thick perfusable structure 

with the capability of forming 3D vascular networks. 99

2.4.4. Poly (octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) 
(1,2,4 polymer)—To further increase the elasticity of polymers for cardiovascular 

applications, we previously synthesized 1,2,4 polymer using a similar polycondensation 

reaction. 12 (Figure 1d, Figure 2h) One of the major advantages of 1,2,4 polymer is its 

elasticity variation with monomer composition, porosity and the degree of crosslinking. 12 

The relatively lower Young’s modulus of 1,2,4 polymer (44 ± 7 kPa12) falls within the 

lower limits of mechanical properties of myocardium, while still enabling a reasonable 

ultimate tensile strength, thereby making this material a great candidate for cardiac tissue 

engineering. The polymer also degrades both hydrolytically and enzymatically under 

aqueous conditions and upon culture with cells, suitable for in vitro and in vivo applications. 

Finally, when compared to POMaC and the FDA approved PLLA, 1,2,4 polymer has 

demonstrated higher T cell recruitment and similar inflammatory response (with less overall 

macrophage response compared to POMaC). 12

2.4.5. Poly(itaconate-co-citrate-co-octanediol) (PICO)—PICO is a recently 

developed biodegradable elastomer, synthesized by a multi-step polycondensation reaction 

of triethyl citrate (TEC), 1,8-octanediol and dimethyl itaconate. 12 (Figure 1e, Figure 2i) 

Like POMaC, liquid PICO prepolymer can be injected into PDMS molds with small 

microchannels to create customizable scaffold designs. 12 Another recent design has looked 

into modification of patterns and porosity to obtain desirable elasticity matching that of the 

cardiac tissue. 25 Due to its tunable mechanical properties, ability to be micromolded to 
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various 3D patterns and degradation into immunomodulatory monomers (i.e., citric acid103 

and itaconate104), PICO has a great potential for application in scaffolds for various soft 

tissues and in vivo implantation. PICO degradation releases itaconate (ITA), which has 

demonstrated capacity as a small molecule to regulate inflammation105 but has been limited 

in efficacy through oral delivery due to rapid removal from circulation. 106 Synthesis of 

polyester materials containing itaconate, and subsequent degradation enables slower release 

of ITA. While yet to be investigated, PICO materials may offer intrinsic capacity to regulate 

inflammation upon implantation, providing utility in graft adoption of a tissue engineered 

construct.

2.4.6. Adhesive polyesters—Traditionally, sutures107, bioabsorbable wires108 and 

staples109-111 were used in surgical applications for holding tissues together, stopping 

body fluids and enabling healing mechanisms. These methods, not only require an expert 

surgeon to apply them, but they also promote chronic inflammation112, involve a risk of 

infection113, and are hard to apply depending on the mechanics of the tissue of interest. 
114-115 Inspired by adhesion mechanistic of mussels, dopamine, a protein member of 

catecholamine family, has been of interest to scientists for creation of novel adhesive 

biomaterials as a surgical glue. 116-117 Dopamine undergoes a self-polymerization reaction 

and creates a thin layer of polydopamine which can enhance protein attachment and cell 

adhesion. 118 Embedding dopamine within the microstructure of many polymers have been 

shown to increase the adhesion properties of the polymer in the short term. 119-121 Injectable 

citrate-based mussel-inspired bioadhesives (iCMBAs) were developed by reaction of PEG, 

citric acid and catechol-containing molecules such as dopamine. 122 This material was 

applied as a wound dressing in vivo and resulted in the reduction of pro-inflammatory and 

the promotion of anti-inflammatory response within rodent models. It also led to a more 

physiological relevant mechanical properties of the skin compared to conventional suturing 

methods. 122 Later on, they developed an enhanced iCMBA, with reacting 10-undecylenic 

acid (UA), conjugated to citric acid, dopamine and PEG. 122-123 UA is a natural fatty acid 

with antimicrobial properties against several strands of bacteria, fungi and viruses, that acts 

by disrupting membrane integrity within these microbial cultures. 124-125 More recently, we 

created an adhesive material by one-pot synthesis of citric acid, PEG, maleic anhydride and 

dopamine for 28 to 72 hours. 126 (Figure 2j) The adhesive patch was demonstrated to have a 

superior adhesion to the heart tissue in vivo compared to POMaC or fibrin glue. 126 Further 

research is warranted to explore other adhesive molecules and optimize their properties for 

potential therapeutic applications such as minimization of inflammatory response and use of 

3D human in vitro models for material evaluation.

3. Interplay between polyester chemistry and cardiovascular tissue 

physiology

Enhanced cell-biomaterial crosstalk25, cytocompatibility 130 and ease of chemical 

modification make polyesters an optimal choice for designing cellular microenvironments 

and deriving the desired cell response. In this section, we describe these unique advantages 

of polyester elastomers and highlight opportunities they provide to the engineered tissues. 
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Table 1 summarizes some of the most important properties of commonly used soft 

polyesters in comparison to in vivo tissue properties.

3.1. Cell adhesion mechanisms and surface modification

Cellular adhesion and tissue formation can be affected by surface chemistry or bulk material 

properties. Cell adhesion is a complex process involving surface receptors and their ligands. 

Integrin receptors are the key receptors for cell adhesion to ECM or scaffold materials and 

are heterodimers composed of two subunits: α and β. 131 In the extracellular domain, 

integrin receptors bind to the binding sites of ECM proteins derived from fibronectin 

(RGD, REDV, KQAGDV, and PHSRN),laminin (LRE, IKLLI, PDGSR, IKVAV, LRGDN, 

LGTIPG, and YIGSR), collagen (DGEA and GFOGER) (from collagen) or elastin (VAPG). 
132 Upon binding of the extracellular domain, cytoplasmic protein talin binds to the β 
subunit of integrin and links it to actin cytoskeleton, initiating cytoskeletal remodeling. 
133 Various surface modification techniques have been leveraged to enhance cell binding 

to the surface using reactions such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-

hydroxysuccinimide (EDC/NHS). 134 Many of the polyesters contain carboxylic group 

(-COOH) can be functionalized using EDC/NHS chemistry to immobilize biomolecules and 

crosslink integrin binding domains in order to improve cell adhesion. 135 For instance, PCL/ 

poly(m-anthranilic acid) (P3ANA) copolymer was functionalized by RGD-group to enhance 

cell attachment and proliferation on the scaffold. 136 Other groups have incorporated 

bioactive components within POC polyester and observed an enhanced vascularization of 

the in vivo model. 137

Given the wide choice of these building monomers, polyesters also have a unique 

ability to incorporate bioactive molecules like lidocaine86, itaconate138 or dopamine123, 126 

within their backbone structure. These bioactive components will drive application-specific 

mechanical and physical properties. For instance, dopamine-embedded polymers had an 

enhanced ability to attach to surfaces123, 126 and consequently could be used as a surgical 

glue to hold cardiac patches in place. 77 Furthermore, highly polar groups in polyesters 

and their entanglement allow the physical incorporation of nano-scaled materials within 

polyester lattice. For example, Ahadian et al. incorporated carbon nanotubes (CNT) within 

1,2,4 polymer and showed electrical conduction within the resultant polyester composite. 
139 This nanocomposite was later used as a substrate for cardiac tissue engineering to 

enhance excitation threshold and induce cardiac fiber alignment. As soft polyesters are 

further explored in tissue engineering applications, modification of these materials with 

bioactive components would provide researchers a greater ability to model native tissue 

environment.

Bulk material properties such as porosity, hydrophobicity, surface energy, topography 

and elasticity can affect cellular attachment. 135 Porosity is another important factor as 

it can influence tissue integration and vascularization. 102, 140 Highly porous materials 

are generally less stiff compared to their pure solid counterparts, thus facilitating cell 

infiltration, neovascularization, and improved transport of nutrients and waste removal. 141 

As an example, AngioChip platform, a POMaC-based blood vessel network on a chip, 

has incorporated both macro- and micro- porosity to enable cell extravasation and small 
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molecule infiltration from the engineered micron-sized vessels. 99 Creation of patterned 

superhydrophilic and superhydrophobic surfaces can also engineer cellular attachment into 

desired shaped142. Cardiomyocytes attachment can also be achieved through topographical 

patterning of the surface. For instance, Au et al. have unidirectionally abraded surfaces to 

achieve parallel microgrooves and induce cellular alignment in cardiomyocytes. 143

3.2. Mechanotransduction and polyester mechanical properties

Engineered scaffolds provide a unique ability to design 3D mechanical cues and 

hence drive cellular responses resembling the native tissue. 144 Material elasticity145, 

porosity146 and topography147-148 are often optimized in tissue engineering to match the 

mechanical properties of the targeted tissue or the disease microenvironment. Mechanical 

properties of the cellular environment can activate different pathways related to cell 

migration 149, differentiation150, ECM deposition and degradation151-152, cytoskeletal 

arrangement149, muscle contraction153-154 and cellular maturity155 could be affected. For in 
vivo applications, implantation of stiffer materials has demonstrated impact on macrophage 

driven inflammation, ultimately leading to fibrosis. 156

In general cells can sense and respond to mechanical properties of their surrounding 

materials via intracellular factors such as talin and vinculin in processes known as 

mechanotransduction. 157 In the case of cardiac tissue, activation of these pathways causes 

rearrangement of actin and myosin fibers in cardiomyocytes, and hence affects cardiac 

contraction, alignment, and maturation. Mechanosensing is not limited to cardiomyocytes; 

cell subpopulations in cardiac tissue such as stromal cells, e.g. fibroblasts, undergo 

phenotypical changes when subjected to stiff substrates. 158 Topography or surface features, 

can be another driver of cellular behaviour. It has been shown that both micrometer25 

and nanometer159 scaled topography can drive cardiac alignment and assist in formation 

of highly organized functional cardiac tissues. 143 Thus, when designing a biomaterial for 

cardiac tissue engineering, it is critical to biomimetically design these factors to minimize 

the impact on functionality of the cardiac tissue.

Polylactide and polylactone family (such as PCL, poly(D-lactide) (PDLA) and PLLA), 

despite their FDA approval in several medical devices, have a considerably high elasticity 

(~0.65-2.7 GPa160-161) compared to the cardiac tissue, which hinders their ability to 

recapitulate native tissue properties. 94, 162-163 Despite the fact that stiffer tissues such 

as trabecular and cortical bone (elasticity of ~10.4-20.7 GPa) 164 or human articular 

hip cartilage (elastic modulus of ~0.67-1.8 MPa) 165, have relatively similar mechanical 

properties, elasticity of many soft tissues are considerably lower. For instance, the elastic 

modulus is ~40-180 kPa for skin 166, ~280-300 for thoracic and abdominal aortas167, 

~64-112 kPa for the bovine spinal cord 168 and ~200-500 kPa for the human myocardium 

in diastolic and systolic state. 169-172 Matched elasticity with the target tissue could prevent 

tissue deformation and significant irritation within the microenvironment. 173-174

Several biodegradable polyester materials such as POMaC and PICO offer the flexibility to 

tune their mechanical properties to closely resemble the native tissue. This can be achieved 

by adjusting the nano- and micro-scaled porosity of the materials as well as modifying the 

synthesis conditions and monomer ratios. 18, 94, 99, 129
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3.3. Biodegradation

Depending on the chemical structure and surface area of polyester scaffolds, water can 

penetrate the scaffolds to different degrees, leading to hydrolysis of the polymers over 

time. 13 Controlled polymer degradation during integration with host is a critical factor for 

cardiovascular patches. Polyesters have attracted a lot of attention due to their moderate 

biodegradation enabling temporary implants175 and drug delivery systems176. Polyester 

degradation involves the breakage of ester bond to carboxylic acid and alcohol groups. 
177-178 The increase of solution acidity will further autocatalyze degradation with raising 

the nucleophilic properties of water. 179 Degradation studies have been also conducted 

in basic conditions to accelerate hydrolysis process and predict long-time degradation 

capacity of polymers. 94, 129, 180 In other attempts, cells have been cultured adjacent to the 

material to capture crosstalk between the polymer and a specific cell type. Porous polyester 

structures have shown enhanced water absorption and hence an accelerated biodegradation. 
12 Davenport Huyer et al. showed a greater mass loss in 1,2,4 polymer and POMaC in 

porous structures compared to the non-porous conditions. 12 The degradation process was 

further accelerated when scaffolds were further cultured with neonatal rat cardiomyocytes. 
12 Degradation dynamics differs in vivo according to specific body conditions such as the 

local acidity of host tissue, mechanical loads181 and the cellular response to the implant182. 

The ideal kinetics of polymer degradation is also both species- and tissue- dependant. 

For instance, an ideal degradation of polymers for myocardial regeneration applications 

would happen between 1 week to 6 months in rodent cardiac patches aiming to restore 

tissue functionality post-MI. 183 This will allow sufficient time for cell remodelling whilst 

minimizing immune response to invasive materials, and matches the period needed for a 

complete remodelling post infarction. This timeframe would be at least 3 months in humans 

given the slower pace of remodelling and the larger surface area of human heart. 184

Polyesters degradation would ideally result in monomers that are naturally occurring in 

the body like citric acid94, glycolic acid76, and sebacate90. Citric acid, for instance is a 

crucial compound in the citric acid cycle (Kerb cycle), a fundamental cellular respiratory 

pathway. 185 Similarly, glycolic acid is part of glycolysis pathway, a metabolic pathway 

for glucose uptake. 186 Other polyesters, also degrade into molecules that can be easily 

metabolized by the body. For instance, sebacic acid and octanediol can be enzymatically 

digested in the body. 187 PCL can also degrade into caprolactones, further hydrolyzed into 

6-hydroxyhexanoic acid, a naturally occurring carboxylic acid. 188 In conclusion, ideally 

the degradation of polyesters would result in chemicals that are recognized and metabolized 

by the body, hence reducing the risk of adverse reactions and improving biomaterial-host 

tissue integration. Polymer degradation also increases the porosity of the scaffold and hence 

promote the crosstalk between the tissue and biomaterial. For instance, several groups 

have attempted to drive tissue remodelling in situ after myocardial infarction (MI). Further 

work is needed to study the effect of monomer ratios on degradation properties, enabling 

engineers to fine-tune degradation kinetics upon translation into clinical applications.

3.4. Inflammation, proliferation, and tissue remodeling

The response of host tissue to implanted biomaterial has three main stages: inflammatory, 

proliferative, and remodelling phase. During the inflammatory phase, monocytes are 
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activated to pro-inflammatory macrophages (M1 macrophages) after exposure to growth 

factors such as transforming growth factor beta (TGF-β) or monocyte chemoattractant 

protein (MCP)-1 and preliminary matrix layer is deposited on the biomaterial. 189 This 

is followed by the proliferative phase, in which anti-inflammatory macrophages (M2 

macrophages) are activated by exposure to cytokines such as interleukin (IL)-4, IL-10, 

IL-14. 190 In this stage, other cell types such as fibroblasts, mesenchymal stem cells, smooth 

muscle progenitor cells and endothelial progenitor cells are summoned to the surface to 

deposit ECM proteins such as collagen and laminin and promote vascularization. 191 In the 

tissue remodelling phase, proteins from matrix metalloproteinase (MMP) family are secreted 

to facilitate ECM remodelling and rearrangement and resolution of inflammatory response. 
192

Polyesters can be designed to modulate the regenerative capacity of the host tissue. 193 

These materials also provide a unique opportunity for surface modification by incorporating 

different biologically active components such as peptides or growth factors, creating a 

selective environment for cell attachment. 194 For instance, ITA is a well-established 

molecule that plays a critical role in metabolic reprogramming of macrophages. 195 

Metabolism of M1 macrophages is characterized by a broken tricarboxylic acid (TCA) 

cycle (Kerb cycle). 196 This leads to an accumulation of citrate and succinate through 

inhibition of isocitrate dehydrogenase (IDH). 196 Upon accumulation of citrate over time, 

citrate is metabolized to ITA, inhibiting succinate dehydrogenase (SDH) and activating 

anti-inflammatory pathways by engagement with cysteine-reactive protein residues to reduce 

macrophage inflammation. 197 Incorporation of ITA in the polyester backbone allows 

controlled release of the molecule and anti-inflammatory activity within the host. 138

Degradation of citrate-based polyesters provides similar bioactivity; the released citric acid 

can be absorbed by the adjacent cells as a metabolic fuel thereby creating better tissue 

integration and enhanced angiogenesis. 198 While there have been limited attempts as 

using polyesters as regenerative therapy, further work can be done on incorporation of the 

compounds targeting different phases of inflammatory cascade to drive tissue regeneration. 

Additionally, current polyesters need to be further studied for long-term safety and other 

regulatory requirement approvals.

4. Tailoring structure of polyester elastomers via microfabrication and 3D 

printing

Elastomeric polyesters discussed above can be crosslinked through different mechanisms 

such as UV23, 99, 102, 227-228 or heat17, 229-230 treatment, laying the foundation of several 

innovative techniques for fabrication of soft polyester-based scaffolds. 231-232 Methods 

such as electrospinning, laser ablation, micro-molding, 3D stamping and 3D printing have 

have emerged as effective approaches for achieving such scaffolds with high-resolution and 

accuracy at the microscale.

Electrospinning is a process where electrically charged streams of dissolved polymers 

are subjected to a high-voltage electric field, resulting in the production of elongated 

nanofibers as the solvents evaporate. Various polymers have been electrospun to create 
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scaffolds with tunable mechanical properties and high porosity. 233-239 However, for soft 

tissue engineering, only a few candidates such as PGS, have been shown to be adaptable 

to the electrospinning process. 17, 238-241 The fabrication of PGS via electrospinning is 

challenging due to its low molecular weight and limited number of organic solvents that 

can dissolve cured PGS. 238 The addition of spinnable polymers such as PCL239-240, 

poly(methyl methacrylate) (PMMA) 241, polyvinyl chloride (PVA) 17, 242, or PLLA238 have 

been explored to overcome these challenges. (Figure 3a) Electrospinning of POC/PLCL84 

or POC/PCL85 composites as well as soft polyester-urethane236-237 have also shown a 

potential in the fabrication of soft scaffolds. Laser ablation involves using brief laser bursts 

in the ultraviolet spectrum to rupture polymer chains, creating photo-ablated cavities. 243 

This technique is commonly used for processing hard polyesters. 16, 244-246 Nevertheless, 

researchers have implemented laser ablation in the fabrication of PGS-based scaffolds with 

diamond-shaped holes for soft tissue engineering. 15, 21, 247 Laser ablation can also be 

used to create microholes on PICO or POMaC microtubes to enhance permeability and 

cell communication. 232 (Figure 3b) While laser ablation is a rapid and flexible approach, 

the surface finish quality, however, is poor and bulge formation along the scan route is a 

common problem in this technique.

Molding via microfabricated PDMS structures allows the development of injectable 

scaffolds with micron-scaled features. 18, 25, 129, 139 The process involves creating a mold 

using photolithography, adding PDMS to the mold to create the required indentations, 

and placing the PDMS mold onto a substrate to create microchannels/cavities. 97, 248 

The polyester of interest is then added to the PDMS channels, and UV light or heat 

is used to crosslink the polymer. (Figure 3c) This technique has been used to create 

scaffolds with various lattice designs and pore sizes. 12, 18, 25, 126, 129, 139 3D stamping 

integrates soft polyesters into the fabrication of vascularized myocardium and multi-organs 

connected through endothelialized vasculature. 24, 99, 227, 249-250 The fabrication process 

involves creating polyester layers using PDMS molds followed by aligning and bonding the 

individual layers through UV or heat crosslinking.

3D stamping enables producing a perfusable and permeable tube, known as AngioTube, 

vascularized with endothelial cells. 249-252 (Figure 3d) Similarly, multiple polyester layers 

with microchannel cavities can be 3D stamped to create AngioChips, which offer branching 

vascular lumens for tissue engineering and organ-on-a-chip applications. 99, 248 (Figure 

3e) The resulting AngioTubes or AngioChips can be incorporated into well plate-typed 

bioreactors, where the tubes extend over multiple wells to form an integrated vasculature 

for studying dynamic events (InVADE). 24 Control of lattice shape in such platforms allows 

matching apparent elasticity and scaffold anisotropy to those of the native tissues. (Figure 

3f) Despite their potential, PDMS micro-molding and 3D stamping methods face challenges 

in scalability, requiring complex equipment, manual skill, and time-consuming fabrication 

processes. Additionally, the rectangular cross-sections of the produced tubes and channels 

limit their ability to mimic native vascular tissue accurately.

3D printing of polyesters is challenging due to their low elastic modulus and long gelation 

time. Secondary hydrogels, such as gelatin or Carbomer, are used as supporting materials 

during the printing process and can be removed later. 232, 253-254 Techniques like extrusion-
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based 3D printing254 and the freeform reversible embedding of suspended hydrogels 

(FRESH) method232 have been employed to print polyester structures and vascular tubes. 

(Figure 3b) Stiffer UV crosslinkable polyesters such as poly(propylene fumarate) (PPF) 255, 

PCL256-257 and POMaC/poly(ethylene glycol) diacrylate (PEGDA700) composite258 were 

also printed using stereolithography (SLA) techniques.

5. In vitro and in vivo applications of soft polyesters

Soft polyesters have a great potential for fabrication of in vitro cardiovascular models, 

as well as scaffolds that can be implanted in vivo. In this section, we will review 

recent advances in using polyesters in cardiovascular tissue engineering models and their 

advantages. Although these models can properly recapitulate native environment, their 

translation into clinical use and pharmaceutical applications requires further studies on the 

application-specific optimizations of scaffold properties.

5.1. In vitro

In vitro models aim to recapitulate the functionality of native tissues in the format of 

organ-on-a-chip devices or larger-scaled 3D tissues. Cardiac-on-a-chip models should be 

able to produce a contraction force of 2-4mN/mm2 in a cyclic manner and transmit electrical 

signals at a ~25cm/s. 259 Although natural polymers such as gelatin, fibrin, alginate, and 

hyaluronic acid can provide ECM-like microenvironments for different cell types, they 

are often lack mechanical stability and the elastic modulus of the cardiovascular tissue. 
74 Synthetic polyesters, on the other hand, offer several advantages such as mechanical 

strengths, tunable elasticity, controllable degradation and ease of fabrication. 139, 259

5.1.1. Organ-on -a-chip—Conventionally, organ-on-a-chip platforms are fabricated 

with PDMS due to its biocompatibility, optical transparency, gas permeability and high 

elastic modulus. 260-262 However, PDMS can non-specifically adsorb biomolecules due to 

the hydrophobic interactions, resulting in variations in the concentrations of culture media 

compounds and the introduced drugs/reagents. 263 Polyester scaffolds have been carefully 

designed to provide structural support, imitate native ECM, and promote cell adhesion, 

proliferation and differentiation139, 263 and provide the capability of tuning their mechanical 

properties, degradation profile, tissue culture conditions, fabrication technique and porosity. 
99

Given the low elastic moduli of POMaC and its mechanical stability, this polymer can be 

cast into microscale wires and assembled into miniature cardiac tissue culture wells with 

two microwires spaced apart, giving rise to Biowire platform. Autofluoresent properties 

of POMaC allows tracking of wire displacement and correlating it to cardiac force, 

hence warrants a non-invasive in situ method for tracking cardiomyocyte contraction and 

electrophysiology. 264 Long term electrical stimulation of the obtained tissues would result 

in cardiomyocyte maturation101-102, 264, modelling of complex diseases such as cardiac 

fibrosis100, 265 and more physiological relevant drug testing results101-102, 264. (Figure 4a) 

Biowire platform, acquired by Valo Health, is currently being used in industry for drug 

discovery and development.
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Vascularization of the engineered microtissues plays a crucial role in their functionality 

when studied on a chip, since the cell metabolism is highly susceptible to exchange rate 

of nutrients, metabolite, and oxygen in such organs. AngioChip platform, developed by our 

group, is capable of creating permeable vascular lumens for organ-on-a-chip engineering. 
99 This technology combines two unique features: (1) a polymer-based 3D branched 

microchannel network with thin and permeable, yet mechanically stable walls to support 

the built-in vasculature coated with endothelial cells, and (2) a hydrogel embedding the cells 

which is cast into the polymer mesh around the network such that the parenchymal cells 

remodel the matrix and compact around the built-in vasculature to form a functional tissue. 

POMaC-based polymer lumens of AngioChip, with intricate pore structures are controlled 

from the nanometer to millimeter scale to model transfer of molecules and cells between 

vasculature and parenchymal space. 99 The lumen could be confluently endothelialized, 

and vessels are able to sprout in response to an angiogenic stimulus. AngioChip was 

utilized to recapitulate vascularized cardiac tissue and synchronized beating that could 

macroscopically compress the chip without damaging the vascularized network during the 

perfusion. Application of AngioChip with HEPG2 liver cell lines also allowed investigations 

of urea secretion and terfenadine metabolism in vitro. 99

As an alternative approach, a single porous microchannel, AngioTube, could be fabricated 

by combining micromolding and 3D stamping techniques. AngioTube was embedded in 96-

well plates to create InVADE system. 24, 227, 266 A programmed rocking system facilitated 

fluid circulation in the wells, relying on gravity-driven flow. The channel permeability, cell 

migration, and vessel sprouting is enabled in AngioTubes through nano and micro scaled 

designed porosity. 227. Lai et al. recapitulated liver, cardiac tissue, and cancer invasion 

cascade via InVADE platform. 227 The open 96-well plate concept enables ease of tissue 

extraction and seeding. In later studies, InVADE system was utilized to investigate the 

effect of CuO and SiO2 nanoparticles on cardiovascular system under perfusion. 249 The 

platform demonstrated that the release of reactive oxygen species (ROS) and secretion of 

pro-inflammatory cytokines under the influence of nanoparticles brought about electrical 

and contractile dysfunction of cardiac tissue. 249 InVADE platform has also been utilized 

for the evaluation of chemotherapeutic medication, gemcitabine, on pancreatic ductal 

adenocarcinoma (PDAC) co-cultured with stromal fibroblast. 266 The result demonstrated 

an enhanced tumor viability and higher dose requirement for PDACs in perfused conditions, 

compared to stationary tissue culture. 266 In another study, InVADE was employed to assess 

the impact of SARS-CoV-2 on the endothelialized AngioTubes and therapeutic efficacy 

of an antiopoietin-1 derived QHREDGS peptide. 250, 267 By circulation of immune cells 

in the engineered vasculature, cytokine storm was induced, where vascular dysfunction 

is advanced due to the over-secretion of cytokines from activated endothelial cells and 

monocytes.135 Three-dimensional printing of polyester microtubes has also been shown 

effective in organ-on-a-chip applications, enabling cardiomyocytes and endothelial cell 

attachment, upon placement of the tubes into customized 96 well plates. 232, 254 (Figure 

4b)

5.1.2. In vitro cardiac tissue models—Three-dimensional printing of CMs embedded 

in polyester-based scaffolds 268-269 has resulted in successful cm-scaled heart models. 
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268-269 However, many of these models are still incapable of recapitulating spatial changes 

and physiological phenomena such as ejection fraction and MI. Zhang et al. developed 

a 3D scaffold made of multiple 2D POMaC scaffold meshes assembled together through 

a hook and loop system, termed as Tissue-Velcro. 23 The design provided anisotropic 

mechanical properties and allowed for culture of multiple cell types. Moreover, the 

disassembly of the layers with preserved structure for further analysis of the cells was 

quite straightforward. 23 Other studies demonstrated that up to 0.5wt% carbon nanotubes 

(CNTs) could be embedded in 1,2,4 polymer to increase the electrical conductivity of the 

fabricated patches and hence improve cardiac electrical excitability. 139. Similarly, in a 

model demonstrated by Mohammadi et al., the myocardial architecture of left ventricle and 

its various myofiber anisotropic angles were recapitulated in vitro. 25 (Figure 4c) The model 

comprised multi-stacked 2D CMs coated sheets assembled as a conical cardiac ventricle. 

The design incorporated both elastic PICO as a backbone and a collagen/Matrigel hydrogel 

for encapsulating CMs and enhancing cell attachment. The embedded holes in each sheet 

enhanced the delivery of oxygen and nutrients and promoted cellular crosstalk. 25 Despite 

the significant work in 3D tissue models, further work needs to be done to create better 

physiologically relevant cardiac models with the ability to reconstruct the complexities of 

native organs.

5.2. In vivo applications

Poor biological integration, low biocompatibility, and high chance of fibrosis often hinder 

application of engineered scaffolds in vivo. 270-274 Given the low elastic modulus of human 

myocardium during the diastole and systole cycles (10-300 kPa), an ideal elastomer for 

implantable patches should possess similar Young’s modulus, as well as high elongation 

and tensile strength in order to support contractile behavior of cardiac tissue. 12, 97, 275-276 

Implementation of cardiac patches with better physiological integration has raised a great 

interest towards restoring the functionality of the heart upon injury. 277 Patches could be 

made of a combination of synthetic polymers and natural hydrogels278-279 280 259, 281-285 A 

landmark study by Zimmermann et al. demonstrated that the use of cardiac patches, made 

of heart cells incorporated in collagen I and Matrigel, on the epicardial surface of the heart 

can result in functional improvement post-MI. 286 One issue with the current cardiac patches 

is the invasiveness of open-heart surgery for placement of the patch on the cardiac surface, 

limiting their applicability and posing risks such as chest wound infection. Montgomery et 
al. have developed a shape-memory scaffold constructed of POMaC which could enable 

precise injection of fully functional tissues to the heart, noninvasively. 18 The scaffold with 

mechanical anisotropy could be delivered through a 1mm I.D. needle, recovering its initial 

shape upon injection without affecting cardiomyocyte viability or function. The patches 

could significantly improve the cardiac function in post-MI rats, and demonstrated similar 

vascularization, macrophage recruitment and cell survival compared with open heart surgery. 
287 POMaC-based AngioChips, cultured with neonatal rat cardiomyocytes, were also shown 

to enable direct surgical anastomosis with different setups, artery-to-artery or artery-to-vein 

and support cardiomyocytes elongation and mural cell penetration after a week. 99 (Figure 

4d)
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One important issue with cardiovascular grafts and catheters is contamination and bacterial 

infection. 288 Integration of ITA, an anti-microbial compound, into the backbone of 

polyesters could potentially reduce the chance of infection in the implants made of such 

materials. 129, 138 289 In PICO and ITA polymer, a stable release of ITA was observed 

through degradation of the polyester backbone in neutral hydrolytic or slightly alkaline 

conditions (pH=8) mimicking the body environment. 129, 138

6. Conclusions and Future Perspectives

Soft polyesters often exhibit desirable properties including low elastic moduli97, versatile 

methods of crosslinkability 291, short term stability, long-term biodegradation101 and ability 

to crosslink bioactive chemicals to the polymeric backbone97. These properties enable tissue 

engineers to design higher fidelity models using these polymers. 21, 28, 102, 264 Although 

many soft polyesters such as PGS220, POC22, POMaC94, 124 polymer12 and PICO129 have 

been developed in the past 20 years with superior biodegradability and tissue mimicking 

elasticity, their long-term response in the host needs to be further studied prior to clinical 

translation. On the other hand, some of these materials have recently been FDA-approved in 

specific devices, further emphasizing the potential of these materials in implantation. They 

have also been incorporated into organ-on-a-chip devices such as Biowire264, AngioChip99 

or AngioTube227 some of which are currently used in the market for drug development and 

assessment. Yet, mainstream applications require scalable fabrication techniques. Figure 5 

summarizes some of advantages and constraints of commonly utilized polyesters for cardiac 

engineering.

Biofabrication techniques also provide a distinctive opportunity to fabricate unique 

bioengineered designs for in vivo and in vitro models. Currently, electrospinning, laser 

ablation, micromolding, 3D stamping and 3D printing are some of the most common 

methods of scaffold fabrication. However, due to relatively long crosslinking time of 

polyesters12, 22, 94, 129, 220 additional methods of high throughput fabrication such as 

droplet-based bioprinting, extrusion bioprinting and stereolithographical bioprinting could 

be applied to obtain higher resolution features, in a more reproducible manner. Delivery 

of the biomaterials into affected tissue could also be improved by enhancing the shape-

memory properties of the designed scaffold. Currently an open-heart surgery is required 

for application of cardiac patches in vivo, which requires a longer recovery time and 

could result in in-patient post-surgical complications. Shape-memory properties of designed 

scaffold will enables application of cardiac patches with minimal invasiveness. 18 Finally, 

more thorough understanding of long-term effects of these constructs in vivo is vital to 

enable transition into clinical trials.

In summary, recently developed polyesters have demonstrated a great potential for 

fabrication of in vitro cardiovascular models102, 232, 264, as well as implantable patches 

and grafts18, 23, 99, 248, 293. Given their potential, more research in this area is needed to 

explore novel chemistries, fabricate the models in higher throughput and functionalize them 

with application-specific bioactive compounds for regenerative medicine or drug delivery 

purposes.
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Figure 1. Timeline of recent developments of soft polyester elastomers suitable for cardiovascular 
applications.
a. F-actin filament of cells attached on a poly(glycerol sebacate(PGS)-based patches seeded 

with cardiomyocytes. 21 Scale bar, 200 mm. Copyright 2008, Nature publication Group. 
21 b. H&E staining of Poly(1,8-octanediol citrate) (POC) samples implanted in vivo. 
Copyright 2004, John Wiley & Sons. 22 Scale bar, 100 mm. c. Immunostaining of α-actinin 

and F-actin on cardiac patch made from poly(octamethylene maleate (anhydride) citrate 

(POMaC) and seeded with cardiomyocytes. Copyright 2015, Science publications. 23 Scale 

bar, 30 mm. d. 1,2,4 polymer developed in Radisic lab. 12 Engineered poly(octamethylene 

maleate (anhydride) 1,2,4-butanetricarboxylate) 1,2,4 polymer-based micro-scaled tube, 

AngioTube, seeded with endothelial cells and stained for CD31 to illustrate lumen sprouting. 
12 Copyright 2021, Nature Publication Group. 24 Scale bar, 100 mm. Inset scale bar, 20 

mm. e. Poly(itaconate-co-citrate-co-octanediol) (PICO)-based cardiac patch seeded with 

cardiomyocytes and stained for cardiac marker α-actinin and general filament marker, 

F-actin. 25 Copyright 2022, John Wiley & Sons. 25

Okhovatian et al. Page 33

Biomacromolecules. Author manuscript; available in PMC 2024 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. General polycondensation synthesis scheme of common polyesters for soft tissue 
engineering.
Polyesters are the product of condensation of an alcohol group (shown in black) and 

a carboxylic containing monomer (shown in blue) along with other organic monomers 

(shown in pink) a. Chemical structure of polyhydroxyalkanoates (PHA) groups. Given 

their natural source, length of carbon chains might be variable in different PHAs. 127 

Poly(ε-caprolactone) can be fabricated by different chemistries such as b. polycondensation, 

or c. ring-opening via anionic, cationic or other catalytic agents. 61 d. Polyglycerol sebacate 

(PGS) polymer is synthesized from one-pot synthesis of glycerol and sebacic acid. 128 Other 

commonly used polyesters such as e. POC, f. p(OCS) g. POMaC, h. 1,2,4 polymer, and i. 
PICO are made from the reaction of 1,8-octanediol and e. citric acid79, f. citric acid and 

sebacic acid g. citric acid and maleic anhydride94, h. 1,2,4-butanetricarboxylic acid and 

maleic anhydride12, and i. triethyl citrate and dimethyl itaconate129, respectively. j. A type 

of adhesive polyester made from polycondensation of polyethylglycol (PEG), dopamine, 

citric acid and maleic anhydride. 126
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Figure 3. Microfabrication approaches to tune micro-scale structure of polyester elastomers;
a. Electrospinning of PGS/PCL composite to create random or aligned fibers. Copyright 

2014, Wiley Publication Group. 239 b. Creation of PICO/POMaC-based microtubes by 

(i) coaxial 3D printing in a Pluronic bath, followed by (ii) laser ablation to create micro-

holes and provide higher permeability. Copyright 2022, Wiley Publication Group. 232 c. 
AngioChip assembly through (i) soft-lithography of SU-8 positive molds to create PDMS 

negative mold, (ii) reversible bonding of PDMS to PDMS or PDMS to glass, and injection 

of POMaC prepolymer into microchannels, (iii) UV treatment of for partial cross-linking 

and solidification. Copyright 2018, Nature Publication Group. 248 d. 3D stamping of 

AngioChip by (i) uncapping the top PDMS from both platforms, aligning the channels 

and stacking them up, and gently pressing under UV light to bond the layers, (ii) detaching 

the top PDMS mold and repeating the process to get multilayers. Copyright 2018, Nature 

Publication Group. 248 e. SEM image of a microchannel in (i) multi-layered AngioChip and 
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(ii) features of each layer. Scale bar represents (i) 500μm and (ii) 200μm. Copyright 2018, 

Nature Publication Group. 248 f. SEM images of an AngioChip containing micro-holes with 

different sizes. The scaffold has shown different mechanical elasticity and anisotropy based 

on the size of the macro-porosity. Scale bars represent 1mm and 200μm (inset) for design A, 

1mm and 200μm (inset) for design B and 1mm and 300μm (inset) for design C. Copyright 

2016, Nature Publication Group. 99
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Figure 4. Applications of polyester elastomers in cardiovascular tissue engineering and organs-
on-a-chip
a. Biowire is a cardiac-on-a-chip model that (i) enables studying complex disease 

mechanisms such as fibrosis. Copyright 2019, ACS Publication Group. 100 (ii) This model 

allows for a formation of a dense cardiac tissue in between parallel POMaC wires. Scale 

bar represents 1mm. Copyright 2019, Elsevier. 264 (iii) Comparison of electrical propagation 

patterns in healthy and fibrotic tissue. Scale bar represents 500μm. Copyright 2019, ACS 

Publication Group. 100 (iv) Collagen deposition was observed in the control sample (left) 

vs fibrotic Biowire model (right). Scale bar represents 100μm. Copyright 2020, Nature 

Publication Group. 290 (v) Different sides of the Biowire could be seeded with atrial and 

ventricular cardiomyocytes to study their crosstalk. Scale bar represents 0.5mm. Copyright 

2019, Elsevier. 264 b. AngioTube is a polyester-based microtube. (i) fabricated by 3D 

stamping of a hollow bottom and flat top structures (Copyright 2021, Nature Publication 
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Group24) to give rise to (ii) micro-scaled porosity. Scale bar represents 200μm Copyright 

2021, Nature Publication Group. 24 (iii) AngioTube is assembled on a polystyrene sheet 

and capped with a bottom-less 96-well plate to create gravity-driven flow. Copyright 2021, 

Nature Publication Group. 24 (iv) seeding of parenchymal tissue around the AngioTube. 

Scale bar represents 200μm. Copyright 2017, John Wiley & Sons. 227 (v) Immunostaining 

for cardiomyocyte marker, sarcomeric alpha-actinin (Scale bar represents 200μm. Copyright 

2017, John Wiley & Sons. 227 (vi) Cardiac marker, Troponin-T, and nuclei marker, DAPI, 

staining of AngioTube after exposure to 50μgml−1 of SiO2 nanoparticles for 24hr. Scale 

bar represents 50μm. Copyright 2017, John Wiley & Sons. 249 c. mm-scaled 3D left 

ventricle model (i) fabricated by rolling a flat seeded patch around a central mandrel 

to create (ii) a 3D model capable of containing fluid within its cavity. Scale bar 1cm. 

(iii) Computer aided (CAD) model of the fabricated in vitro left ventricle. (iv) staining 

of alpha-sarcomeric actinin and F-actin filaments on the scaffold and (v) cardiomyocyte 

crosstalk between different microgrooves due to the unique design of the patch. Scalebar 

(iv)100μm and (v)50μm. Copyright 2022, ACS Publication Group. 25 d. Flexible shape-

memory scaffold that can be (i) rolled within a 1 mm diameter opening needle and (ii) 
injected in situ, while maintaining its original shape. Scale bar (i) and (ii) 5mm.(iii) 
CFDA (live/green) and propidium iodide (PI)(dead/red) staining of the patch seeded with 

cardiomyocytes after injection. Scale bar 2.5mm. (iv) implantation of stem-cell derived 

cardiomyocytes on porcine heart. (v)SEM images of seeded patch with after implantation 

on porcine epicardium. Scale bar 1mm (main) and 100μm (inset) (vi) comparison of 

myocardial thickness of rodent model with (left) and without (right) implantation of the 

patch. Copyright 2017, Nature Publication Group. 18

Okhovatian et al. Page 38

Biomacromolecules. Author manuscript; available in PMC 2024 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Comparison of advantages and shortcomings of each polyester group for fabrication of 
engineered cardiac tissues.
To overcome these challenges, several strategies can be explored for development of 

novel chemical or fabrication techniques. Current polyesters seem to have a mechanical 

mismatch in terms of the visco-elastic properties with the myocardium, resulting in 

poor integration between the fabricated scaffolds and native myocardium. (Figure 5) The 

ability to fine-tune mechanical properties of polyesters using different molecular weights 

of monomers, degree of crosslinking and incorporation of porosity can be leveraged 

to achieve more cardiac-friendly constructs. Additionally, techniques such as surface 

modification can be applied to better mimic factors present in native ECM and establish 

cellular adhesion and communication with the biomaterial. Degradation kinetics along 

with the ability to incorporate a wide range of monomers in polymeric backbone allows 

for controlled release of different biochemical agents such as immunomodulatory129, 138, 

193, conductive139, or adhesive compounds126. Incorporating other factors important in 
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mediating the inflammatory response of the body and tissue remodeling in the material will 

be beneficial for scaffolds designed to be implanted. For instance, following a myocardial 

infarction, spatiotemporal release of anti-inflammatory and proangiogenetic factors in the 

myocardium could enhance regeneration process and potentially restore the native tissue. 292 

Other strategies such as co-polymerization of different polyester monomers could also be 

beneficial in such applications.
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Table 1.

Summary of common soft polyester materials, their mechanical properties and degradation kinetics of pure 

polymer material (prior to fabrication). Below-mentioned values may be modified depending on porosity and 

design of engineered scaffolds in different applications.

Name Young's
Modulus

Tensile
Strength

Elongation Degradation Reference

PHB* 74.45-554 MPa 1.3-87 MPa 3.8-26% In vitro: less than 10% in 6 weeks 199-205

P4HB* 14.5-670 MPa 2.3-70 MPa 1000-1450% In vitro: less than 1% in 28 days In vivo: 6 to 12 
months

43, 178, 206-207

P34HB* 13.9-902 MPa 1.23-24.3 MPa 7-17% In vivo: no observed degradation over 8 moths 208-209

PHBV* 67.7-106.7 MPa 4.01-5.84 50.2-56.3% In vitro: up to 16% in 6 weeks. 210-213

PCL 30-241 MPa 25.1-29.4 MPa 450-772% In vitro: less than 1% in 6 months 206, 214-215

PLCL 8.4±0.9kPa 4.7±2.1 kPa 960±270% In vitro: ~40% in 50 weeks In vivo: 61% after 24 
weeks

216-217

PGCL 292.98-263.26 MPa 288.5-380 kPa 43.7-59.2% In vitro: 20-40% in 40 days 218-219

PGS 0.282±0.0250 MPa >0.5 MPa 267±59.4% In vitro:17 ± 6% after 60 days In vivo: 100 after 60 
days

220-221

PGSA 0.05-1.38 MPa 0.05-0.5 MPa 42-189% In vitro: 15% after 10 weeks In vivo: fully 
degraded after 6 weeks

74 

POC 0.49-3.92 MPa 6.1 ± 1.4 MPa 40-50% In vitro 100% after 15-68 week In vivo: 20% after 
28 days

22, 81

POCS 0.19-1.1 MPa 0.2-0.6 MPa 160-230% In vitro: 9-70% in 4 weeks 11, 90

POMaC 0.04 - 0.29 MPa 245-611 kPa 48 - 534% In NaOH: 100% after 4 to 12 hours In vitro: 100% 
after 12 weeks

94 

1,2,4 polymer 44±7 kPa 34 ±13 99±32% In vitro 60% (porous) and 40% (pure polymer) 
after 14 days Co-culture with cells: 60% (porous) 

and 30% (pure polymer) after 14 days

12 

PICO 36–1476 kPa 50 -320 kPa 10-45% In NaOH: 25 to 80% (tunable) after 4 to 12 hours 129, 222

ITA polymer N/A (liquid) N/A N/A Enzymatic environment: 30-40% within 28 days. 138 

Human left 
ventricle

60–800 kPa 2.51± 0.21 MPa 34.9±1.1% N/A 223-224

Rat Left 
ventricle

20–54 kPa 200-400 kPa 100-175% N/A 21 

Rat aorta 0.17-0.98 MPa 0.40-1.88 MPa 318±27% N/A 225-226

*
These values might vary as natural sourced PHA polyesters have batch-to-batch variations.
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