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Integrated analysis reveals FLI1 regulates 
the tumor immune microenvironment via its 
cell‑type‑specific expression and transcriptional 
regulation of distinct target genes of immune 
cells in breast cancer
Jianying Pei1,2,3, Ying Peng4, Kexin Ma1,2, Chunyan Lan1,2, Tingting Zhang5, Yan Li5, Xiaofang Chen6* and 
Huafang Gao1,2* 

Abstract 

Background  Immunotherapy is a practical therapeutic approach in breast cancer (BRCA), and the role of FLI1 
in immune regulation has gradually been unveiled. However, the specific role of FLI1 in BRCA was conflicted; thus, 
additional convincing evidence is needed.

Methods  We explored the upstream regulation of FLI1 expression via summary data-based Mendelian randomiza-
tion (SMR) analysis and ncRNA network construction centering on FLI1 using BRCA genome-wide association study 
(GWAS) summary data with expression quantitative trait loci (eQTLs) and DNA methylation quantitative trait loci 
(mQTLs) from the blood and a series of in silico analyses, respectively. We illuminated the downstream function of FLI1 
in immune regulation by integrating a series of analyses of single-cell RNA sequence data (scRNA-seq).

Results  We verified a causal pathway from FLI1 methylation to FLI1 gene expression to BRCA onset and demon-
strated that FLI1 was downregulated in BRCA. FLI1, a transcription factor, served as myeloid and T cells’ communi-
cation regulator by targeting immune-related ligands and receptor transcription in BRCA tissues. We constructed 
a ceRNA network centering on FLI1 that consisted of three LncRNAs (CKMT2-AS1, PSMA3-AS1, and DIO3OS) 
and a miRNA (hsa-miR-324-5p), and the expression of FLI1 was positively related to a series of immune-related mark-
ers, including immune cell infiltration, biomarkers of immune cells, and immune checkpoints.

Conclusion  Low-methylation-induced or ncRNA-mediated downregulation of FLI1 is associated with poor prognosis, 
and FLI1 might regulate the tumor immune microenvironment via a cell-type-specific target genes manner in BRCA.
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Background
As the most frequently diagnosed malignancy, breast 
cancer (BRCA) heavily threatens the wellness and 
health of women worldwide. As recently reported, 
BRCA alone accounts for 31% of the total diagnosed 
cancers in women, and BRCA is the second leading 
cause of cancer death in women [1]. Due to its high het-
erogeneity, BRCA harbors many molecular subtypes, 
leading to various treatment options for this disease [2, 
3]. The prognosis of BRCA patients is primarily related 
to the molecular subtypes, and almost all patients who 
develop the metastatic disease succumb to it. Thus, 
identifying the molecular mechanism contributing to 
BRCA progression or prognosis prediction is urgently 
needed.

Friend leukemia virus integration 1 (FLI1) is a tran-
scription factor containing an ETS DNA-binding domain 
[4, 5]. FLI1 undergoes translocation with the Ewing sar-
coma gene, thus leading to a fusion gene driving Ewing 
sarcoma by either transcriptionally inducing or repress-
ing specific target genes, such as the RAS antagonist 
Sprouty 1 [6], E2F [7], and NOTCH-activated p53 [8]. 
The role of FLI1 in cancer has been increasingly reported, 
and FLI1 is a predictor of poor prognosis in patients with 
BRCA and promotes the metastasis and cancer stem cell 
properties of BRCA cells [9]. Conversely, FLI1 was also 
reported to be associated with shorter survival, and FLI1 
downregulation in BRCA might promote tumor progres-
sion [10]. Several circRNAs consisting of FLI1 exons were 
identified as aberrantly expressed and are closely corre-
lated with malignant phenotypes in small cell lung can-
cer and BRCA [11, 12]. Hence, the specific role of FLI1 
in BRCA is conflicted, and we need more convincing evi-
dence based on high-through data.

Immunotherapy is proving to be a practical therapeutic 
approach for various cancers. Tumor infiltration lympho-
cytes (TILs) have recently been acknowledged as a pre-
dictor or sensor for immunotherapy response prediction 
and monitoring to some extent in many tumors [13, 14]. 
For example, as measured by T-cell and myeloid cell infil-
tration, they convey inferior outcomes to conventional 
therapy compared with high immune infiltration [15]. 
The role of FLI1 in immune regulation and its potential 
as an immune target have gradually been revealed; for 
instance, CXCL13, a chemokine for B cells and regula-
tory T cells, is upregulated by FLI1 deficiency in mac-
rophages, potentially contributing to the development 
of tissue fibrosis, vasculopathy and immune activation in 
system sclerosis [16]; FLI1 haploinsufficiency increases 
the proportions of Th2- and Th17-like Tregs in bleomy-
cin-induced profibrotic skin conditions [17]; FLI1 was 
further reported to be related to many immune cell types 
and immune system processes in BRCA [18]. Thus, we 

speculated that FLI1 might play a crucial role in BRCA, 
especially in the immune regulation of BRCA.

In this study, we investigated the characteristics of 
FLI1 and possible regulatory mechanisms in BRCA via a 
combination of Mendelian random analysis and a series 
of bioinformatics analyses integrating BRCA GWAS, 
eQTLs/mQTLs data, scRNA-seq, and bulk-RNA-seq 
data. Our results implied that low-methylation-induced 
or ncRNA-mediated downregulation of FLI1 was corre-
lated with poor prognosis, and that FLI1 might regulate 
the tumor immune microenvironment, primarily by tar-
geting immune cells interactions, including myeloid cells 
and T cells, via cell-type-specific target genes in BRCA.

Results
The putative causal relationship of FLI1 in BRCA 
by integrating GWAS and eQTL/mQTL data
To explore the roles of FLI1 in tumorigenesis, we 
designed a series of analyses, as illustrated in Fig. 1. First, 
we explored the potential upstream epigenetic mecha-
nism of FLI1 regulation in BRCA at the DNA level by 
using Mendelian randomization, which offers an alterna-
tive way to probe the issue of causality by using genetic 
variants [19] and combined with GWAS data and eQTL/
mQTL data integrating gene expression and methylation 
omics data. Then, we applied scRNA-seq data of BRCA 
to investigate the role of FLI1 on the tumor microenvi-
ronment via integrating a series of single-cell analyses. 
Meanwhile, the bulk RNA-seq data of BRCA from the 
TCGA database was employed to unravel the correla-
tion between FLI1 and immune-related markers, such 
as immune cell infiltration and immune genes. Besides 
the upstream regulation mechanism of FLI1 at the DNA 
level, we employed the bulk RNA-seq data and a series 
of ncRNA databases to construct a ceRNA network cen-
tered on FLI1 at the mRNA level. Finally, the expression 
of FLI1 in BRCA samples and its effect on the prognosis 
of BRCA patients were verified using TCGA data.

To ascertain the causal relationship between FLI1 and 
BRCA, we utilized a three-step SMR analysis method, 
and FLI1-related cis-eQTLs and its cis-mQTLs were 
integrated with BRCA GWAS summary statistics. A 
total of 96 genetic proxies for the FLI1 gene (P < 5E-8) 
were obtained from eQTLGen (Supplementary Table 1), 
and we selected the top SNP, rs531106, for the first 
SMR analysis between FLI1 expression and the BRCA 
GWAS. The results demonstrated that FLI1 was indeed 
a BRCA-related gene (p_SMR < 0.05, p_HEIDI > 0.05, 
Supplementary Table  2). We then identified four-
teen DNAm probes (within ± 1  Mb of the FLI1 gene) 
and corresponding SNPs by integrating mQTL sum-
mary statistics from a meta-analysis of two European 
cohorts, including the Brisbane Systems Genetics Study 
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(BSGS, n = 614) and the Lothian Birth Cohorts (LBC, 
n = 1366). The second step SMR analysis results revealed 
that six DNA methylation probes were BRCA related 

(p_SMR < 0.05, p_HEIDI > 0.05, Fig. 2A & Supplementary 
Table 3). Finally, the last SMR step analysis revealed that 
all these six DNA methylation sites displayed a strong 

Fig. 1  The workflow shows the strategy of this study
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Fig. 2  Three-step SMR analysis prioritized FLI1 and mechanisms in BRCA using blood tissue. A Locus zoom plots show the consistent genetic 
effects from the BRCA GWAS, cis-mQTLs, and cis-eQTLs near FLI1. The plot shows 14 chromatin state annotations (indicated by colors) of 127 
samples from REMC for different primary cells and tissue types (rows). B SMR between FLI1 expression and BRCA GWAS (the first graph), SMR 
between FLI1 methylation (six methylation sites) and BRCA GWAS (the second to seventh graphs). REMC, Roadmap Epigenomics Mapping 
Consortium
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causal relation to FLI1 gene expression (p_SMR < 0.05, 
p_HEIDI > 0.05, Supplementary Table  4). Hence, our 
three-step SMR, determined by genetic variable instru-
ment analysis, portraited an upstream mechanism from 
methylation to FLI1 expression further to BRCA. Specifi-
cally, the expression of FLI1 was negatively correlated to 
BRCA (Fig. 2B & Supplementary Fig. 1A), all six methyla-
tion sites of FLI1 were negatively correlated with BRCA, 
and all six methylation sites of FLI1 were positively corre-
lated with FLI1 expression (Supplementary Table 4). We 
found that all six DNAm probes, including cg13019868, 
cg16777618, cg09813060, cg20933297, cg09971562, and 
cg03898448, were located in the same UTR region, 10 kb 
downstream of FLI1 (Supplementary Table  5 & Supple-
mentary Fig.  1B). The methylation level of these sites 
had a positive effect on FLI1 expression (b_SMR > 0, 
Supplementary Table  4) and a negative effect on BRCA 
onset (b_SMR < 0, Supplementary Table 3); moreover, the 
expression of FLI1 was negatively associated with BRCA 
(b_SMR = -0.39, Supplementary Table 2).

The cell‑type‑specific transcriptional regulatory role of FLI1 
in BRCA​
To further analyze the detailed function of FLI1 in 
BRCA. We took part of the scRNA-seq data consisting 
of thirteen normal breast samples, seven pairs of breast 
tumor samples, and corresponding lymph node samples 
from a previous study (GSE161529) [20]. We downloaded 
the raw scRNA-seq data, processed the data as described 
in the Methods section, and ultimately acquired 99,532 
cells, which were subjected to subsequent unsupervised 
graph-based clustering and visualized using uniform 
manifold approximation and projection (UMAPs). All 
21 clusters were then manually annotated as six specific 
cell types using the expression of canonical lineage mark-
ers defined in previous literature (Fig. 3A & Supplemen-
tary Fig. 2A) [21, 22]. These cell populations consisted of 
endothelial cells (expressing PECAM1 and VWF), epithe-
lial cells (expressing EPCAM, KRT18, and KRT8), B cells 
(expressing CD19, CD79A, and MS4A1), T cells (express-
ing CD2, CD3D, and CD3E), myeloid cells (expressing 
CD14 and CD68) and mesenchymal cells (expressing 
PDGFRB). All six cell types were dispersed in the normal, 

tumor, and tumor-involved axillary lymph node samples, 
but the specific ratio of each cell type differed among 
the groups. Among the normal samples, three major cell 
types were epithelial cells, endothelial cells, and mesen-
chymal cells, while among the tumor and tumor-involved 
axillary lymph node samples, the three major cell types 
were epithelial cells, myeloid cells and T cells (Fig. 3B).

We evaluated the expression of the FLI1 gene in a cell-
type-specific manner and revealed that the expression 
of FLI1 varied among the different cell types (Fig.  3C). 
The FLI1 gene is strongly expressed in endothelial and 
immune cells, including myeloid cells and T cells, but is 
almost completely not expressed in epithelial cells and 
mesenchymal cells (Supplementary Fig.  2B). Addition-
ally, we found an apparent trend that, regardless of cell 
type, the expression of FLI1 was largely augmented in 
tumor-involved axillary lymph node samples compared 
with normal breast tissues and BRCA tissues except 
mesenchymal cells (Supplementary Fig.  2C). As a typi-
cal transcription factor containing an ETS DNA-binding 
domain, FLI1 might regulate cell activity by targeting 
various downstream genes in a cell-type-specific manner. 
Hereafter, we utilized SECNIC, a computational method 
for cis-regulatory analysis and gene regulatory network 
reconstruction of transcription factors, using scRNA-seq 
data to determine whether FLI1 has distinctive down-
stream effects on different types of cells. The following 
analyses compared BRCA and normal tissues at the sin-
gle-cell level. A total of 468 genes targeted by FLI1 were 
primarily activated in myeloid cells and endothelial cells 
in normal tissues but only in myeloid cells in tumor tis-
sues (Fig. 3D). The regulons activity of FLI1 and most of 
its cofactors (ELF1, ELK1, ELK3, ELK4, ERF, ERG, ETS1, 
ETS2, ETV1, ETV2, ETV3, ETV4, FEV, ELF4, ETV3L, 
ETV7, SPDEF) indicated obvious enrichment in endothe-
lial cells and immune cells (B cells, T cells, and myeloid 
cells) in normal tissues; however, those regulons activities 
of FLI1 and some cofactors (ELF1, ELK1, ELK3, ELK4, 
ETS2) was lost in tumor tissues (Fig. 3E & Supplementary 
Fig. 2D). The regulon activity of FLI1 was consistent with 
the cell-type expression pattern of FLI1, which exhib-
ited high regulon activity in cells with high FLI1 expres-
sion (Supplementary Fig. 2E). In addition, we found that 

(See figure on next page.)
Fig. 3  Single-cell transcription analysis and regulatory network centered on FLI1 in BRCA. A UMAP visualization of 99,532 cells analyzed 
by scRNA-seq and integrated across thirteen normal breast tissues, seven pairs of breast tumors, and corresponding lymph node samples, 
categorized into six major cell types. B UMAP visualization of all cells split by sample group. C The dot plot shows the expression of FLI1 in each 
cell type split by sample group. D UMAP visualization of the activity of FLI1 regulons in each cell type. E The heatmap shows the activities 
of the regulons of FLI1 and other cofactors in each cell type split by sample group. Colors from blue to red indicate low to high regulon activity (F). 
The ratio of each cell type in the normal and tumor groups. G Ridgeline plots and violin plots show the AUC values of the FLI1 regulatory network 
in each normal and tumor group cell type. N, normal. T, tumor. L, lymph node
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Fig. 3  (See legend on previous page.)
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although the ratio of endothelial cells in tumor samples 
decreased compared with that in normal tissues, the reg-
ulon activity of FLI1 in endothelial cells in tumor samples 
was greater, and myeloid cells in tumors also displayed an 
apparent increase in the regulon activity of FLI1 (Fig. 3F, 
G). Accordingly, we speculated that myeloid cells is a tar-
geted cell population via which FLI1 mainly exerted its 
regulatory effect on BRCA.

The effect of FLI1 on cell–cell crosstalk by targeting 
immune‑related ligands and receptors
High heterogeneity in BRCA is always accompanied by 
sufficient intercell communication in the tumor microen-
vironment. Based on the above results that FLI1 exposed 
a high transcriptional regulation activity in myeloid cells, 
we further analyzed intercellular communication using 
CellChat, a tool that is able to quantitatively infer and 
analyze intercellular crosstalk networks from scRNA-seq 
data [23]. The results revealed that the number of global 
intercellular interactions decreased from normal sam-
ples to tumor samples and tumor-derived lymph node 
samples, while the interaction strength in tumor sam-
ples slightly increased (Fig.  4A, B). We compared the 
major sources and targets of intercellular communication 
signals in the different sample groups, and the results 
showed that the primary incoming signaling cell popula-
tion changed from T cells in the normal group to mye-
loid cells in the tumor group; meanwhile, the position 
of epithelial cells in the global interaction network was 
greatly altered (Fig.  4C). We also discovered that in the 
tumor-derived lymph node samples, the signals of T cells 
restored the same position as those in the normal group. 
The myeloid cells, T cells, and epithelial cells displayed 
a relatively large degree of abnormal signal positions in 
the tumor compared to those in the normal group. The 
overall signaling pattern presented the major differential 
signal pathways, such as MHC-I, SELE, ANGPTL, IL6, 
CDH1, EGF, MHC-II, and SELL (Fig. 4D & Supplemen-
tary Fig. 3A, B). The main signaling pathways mediating 
intercellular communication in the normal and tumor 
groups are displayed in Supplementary Fig. 3C, and the 
specific signaling pathways of T cells and myeloid cells 
are shown in Supplementary Fig.  3D. A differentiation 

comparison between the normal and tumor groups 
revealed that crosstalks from myeloid cells to other cells 
increased regardless of the number or strength of inter-
actions. In contrast, crosstalks from T cells to other cells 
decreased (Fig.  4E, F). The intercellular interactions of 
three major FLI1 target cell populations, myeloid cells, T 
cells, and endothelial cells, decreased (Fig. 4G). As a com-
munication signal source or target cell population, mye-
loid cells exhibited upregulated signaling of MIF, SPP1, 
FN1, and HLA pathways in tumors and downregulated 
signaling of THBS1 and ANGPTL4 pathways in tumors 
(Fig. 5A, B). The changed signaling pathways of T cells as 
the communication signal source or target cell popula-
tion were CD99, SELE, and HLA pathways in the tumor 
group compared with the normal group (Supplemen-
tary Fig.  4A, B). In tumors, the global cell communica-
tion activities of myeloid cells and T cells were manifestly 
upregulated and downregulated, respectively. The com-
munication probability analysis of each cell type disclosed 
dysregulated ligand-receptor pairs of each cell type in the 
tumor tissues compared with those in the normal group. 
The most dysregulated ligand-receptor pair of myeloid 
cells was CD74-CD44/CXCR4, which might mediate 
stronger contact within myeloid cells, such as dendritic 
cells or macrophages. However, in T cells, loss of con-
tact within T cells was observed, and most interactions 
were mediated by HLA-CD8 (Fig.  5C). Other dysregu-
lated ligand-receptor pairs of endothelial, epithelial, or 
B cells also differed (Supplementary Fig. 4C). From these 
cell-type-specific effects of FLI1 on cellular function, as 
a typical transcription factor, FLI1 likely has special tar-
get genes in different types of cells. Several examples of 
genes belonging to the above-dysregulated cell commu-
nication pathways were identified as cell-type-specific 
target genes of FLI1. For instance, the expression of MIF, 
CD74, and CXCR4 were predominantly upregulated 
in myeloid cells, but CD44 was predominantly down-
regulated in myeloid cells (Fig.  5D); the expression of 
MHC-II molecules, including HLA-DRA, HLA-DPA1, 
HLA-DPB1, HLA-DQA1, HLA-DMA, HLA-DMB, HLA-
DQB1, HLA-DRB5 and HLA-DRB were all activated 
mainly in myeloid cells of the tumor group (Fig.  5E); 
CXCL was most downregulated in cells except T cells 

Fig. 4  Global intercellular communication in BRCA. A Circle plots show the interaction numbers among all six cell types across different 
groups. B Bar plots show the total interaction number and interaction strength in different groups. C Scatter plots show the interaction strength 
of the incoming and outgoing of each cell type across different groups. D Heatmaps summarize the overall signal pathways of each cell group 
among all samples. E Differential number or strength of interactions in the tumor and normal groups. The red and blue lines indicate a signal 
increase and decrease in the tumor compared to the normal group. F Heatmaps show the differential number or strength of tumor interactions 
compared with the normal group. G The specific interaction numbers among myeloid cells, T cells, and endothelial cells in normal and tumor 
groups. N, normal. T, tumor. L, lymph node

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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(Supplementary Fig.  4D); CD8A was most downregu-
lated in T cells (Supplementary Fig. 4E). We intersected 
the 468 target genes of FLI1 and 1002 ligand-receptor 
pairs genes and found 69 FLI1-target genes that were 
ligand-receptor genes (Fig. 5F & Supplementary Table 6). 
KEGG and GO analyses of these 69 genes revealed their 
roles in immune-related functions, for example, the IL-17 
signaling pathway, primary immunodeficiency, the T cell 
receptor signaling pathway, PD-L1 expression, and the 
PD-1 checkpoint pathway in cancer, MHC-II protein 
complex binding, MHC-II receptor activity, and cytokine 
activity (Fig. 5G & Supplementary Fig. 4F). The potential 
mechanism of the effect of FLI1 on cell–cell crosstalk by 
targeting immune-related ligands and receptors is shown 
in Fig.  5H. The FLI1 is mainly expressed in endothelial 
cells, T cells, and myeloid cells in BRCA tissues and cor-
responding normal tissues. We deduced its cell-type spe-
cific expression manner might lead to a lower expression 
level in tumor tissues rather than normal tissues, which 
resulted from a dramatic decrease in the ratio of endothe-
lial cells in tumor tissues compared with adjacent normal 
tissues. Moreover, FLI1, as a typical transcription fac-
tor, harbors different target genes in different cell types. 
Although FLI1 might be downregulated in tumor mass, 
it is exerted as an immune regulator by targeting immune 
cells’ receptors or ligands expression in tumor mass, fur-
ther affecting the communication of cells infiltrated in 
the tumor. For instance, FLI1 in myeloid cells activated 
MHC-II molecules’ expression, which mainly improved 
the tumor antigen presentation, but in the T cells, FLI1 
inhibited CD8A expressions, which might harm T cell 
activation. Collectively, we proposed that FLI1 could act 
as an immune regulator via its cell-type-specific expres-
sion and target genes; as for the specific roles of each cell 
type, we thought further research was needed.

The relationship between FLI1 and immune‑related 
functional markers in BRCA​
FLI1 was reported to participate in immune dysregula-
tion in various diseases, including scleroderma and the 
tumor immune microenvironment in BRCA. Our study 
analyzed the relationship between the infiltration levels 
of various immune cells and the different copy numbers 

of FLI1 in BRCA. As shown in Fig.  6A, we found a 
strong correlation between deep deletion copy num-
ber or arm-level deletion copy number of FLI1 and the 
infiltration of almost all kinds of immune cells, namely 
B cells, CD8+ cells, CD4 + cells, macrophages, neutro-
phils, and dendritic cells. Moreover, we examined the 
association between the infiltration of immune cells and 
the expression of FLI1. The consequences stated that 
FLI1 expression was significantly positively associated 
with the infiltration levels of all the analyzed immune 
cells, including B cells, CD8+ cells, CD4 + cells, mac-
rophages, neutrophils, and dendritic cells in BRCA, and 
most of these associations had relatively high correla-
tion coefficients, which is greater than 0.5 (Fig. 6B). In 
addition, we analyzed the correlation of FLI1 expres-
sion with immune cell biomarkers using the GEPIA 
database. As shown in Supplementary Table  7, the 
expression of FLI1 was almost positively correlated 
with biomarkers of all types of immune cells. Some of 
them presented a relatively high correlation coefficient 
(> 0.5), such as biomarkers of B cells (CD19, CD79A), 
CD8+ T cells (CD8A, CD8B), CD4+ T cells (CD4), M2 
macrophages (CD163, MS4A4A), Neutrophils (CCR7) 
and dendritic cells (HLA-DBP1, HLA-DQB1, HLA-
DRA, HLA-DPA1, CD1C, NRP1, and ITGAX). We 
subsequently assessed the relationship between FLI1 
and three typical immune checkpoint proteins, includ-
ing PD-1, PD-L1, and CTLA-4. Considering the tumor 
purity of TGCA samples, we also performed the purity 
correction before correlation analysis, and the results 
revealed that FLI1 was also positively correlated with 
these three checkpoint molecules in BRCA in both the 
TGCA and TIMER databases (Fig. 6C). We further per-
formed a gene set enrichment analysis of FLI1 expres-
sion in BRCA, and the results displayed that several 
immune-related pathways, such as cytokine receptor 
interaction, the intestinal immune network for IgA 
production, and primary immunodeficiency, were acti-
vated in patients with high FLI1 expression (Fig.  6D). 
Biological process analysis also found the activation of 
the NF-kappa signaling process, the regulation of B cell 
activation, and the immune effector process (Fig.  6E). 
Hence, FLI1 was hypothesized to be an indispensable 

(See figure on next page.)
Fig. 5  Crosstalk between myeloid cells or T cells and other cells in BRCA. A, B Circle plots show the up- or downregulated pathway of myeloid cells 
(A) or T cells (B) as source cells in communication with other cells in the tumor group compared with those in the normal group. C Bubble plots 
display the main signaling pathways mediating the cellular interaction from myeloid cells (left) or T cells (right) to other cells. D, E Violin plots show 
the detailed expression of the genes related to the MIF pathway (D) and the MHC II pathway (E) in each cell type in the different groups. F Venn plot 
of the intersection genes of FLI1 target genes and ligand-receptor genes in cellular communication. G Bubble plots presenting the KEGG analysis 
results of the intersection genes of FLI1 target genes and ligand-receptor genes. H A graph shows the potential mechanism by which FLI1 regulates 
immune cell interactions in BRCA​
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Fig. 5  (See legend on previous page.)
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key regulator of immune-related biological processes in 
BRCA.

Prediction and construction of the upstream ncRNA 
network of FLI1
Concerning the regulatory role of FLI1 in immune cell 
activity in the BRCA microenvironment, we found that 
FLI1 was significantly downregulated in BRCA tissues 
analyzed using bulk RNA-seq data derived from tumor 
tissues containing various cells (Fig. 7A). Meanwhile, we 
detected the relationship between the expression levels of 
FLI1 and patients’ prognosis and found that patients with 
higher expression of FLI1 in BRCA displayed better over-
all survival probability (Fig.  7B). These results indicated 
that FLI1 might be a protective factor in BRCA. Given 
that diverse upstream pathways might regulate FLI1, 
besides the methylation mechanism, we also focused on 
the potential regulatory network at the transcriptional 
level of FLI1. It has been broadly acknowledged that 
ncRNAs, as products of gene expression, regulate gene 
expression by affecting mRNA stability through direct or 
indirect binding. First, we predicted the upstream miR-
NAs that could bind to FLI1 mRNA using several tar-
get gene prediction databases. As shown in Fig.  7C, we 
constructed a network between FLI1 and its 103 poten-
tial upstream miRNAs (Supplementary Table  8). We 
found six miRNAs, including hsa-miR-141-3p, hsa-miR-
200a-3p, hsa-miR-33b-5p, hsa-miR-193b-3p, hsa-miR-
33a-5p and hsa-miR-324-5p, which were significantly 
negatively correlated with FLI1 in BRCA (Supplementary 
Fig.  5A, Supplementary Table  9). We further detected 
the expression of the six miRNAs in BRCA, and only 
hsa-miR-193b-3p presented non-differential expression 
between BRCA and normal tissues; the rest of the miR-
NAs exhibited significantly higher expression in BRCA 
than in normal tissues (Supplementary Fig.  5B). The 
prognostic values of these candidates reflected that only 
hsa-miR-324-5p was significantly correlated with prog-
nosis prediction. A higher expression of hsa-miR-324-5p 
prophesied a poorer prognosis in BRCA patients, com-
pletely contrasting with the prognostic prediction ability 
of FLI1 (Fig. 7D & Supplementary Fig. 5C). Systematical 
combining the above results, we conjectured that hsa-
miR-324-5p might be the most likely upstream miRNAs 
regulating the expression of FLI1 in BRCA.

In addition to miRNAs, LncRNAs are also crucial 
components of the competing endogenous RNA regu-
latory network, which can positively regulate targeted 
mRNA expression by competing for the same miR-
NAs with the targeted mRNAs. To establish the ceRNA 
regulatory network of FLI1, we primarily predicted the 
potential upstream LncRNAs of hsa-miR-324-5p using 
the starBase database. A total of 77 LncRNAs were 
identified, and expression correlation analysis between 
these candidate LncRNAs and hsa-miR-324-5p or FLI1 
in BRCA were performed, respectively. Among all 77 
LncRNAs candidates (Supplementary Table 10), we dis-
covered three LncRNAs, CKMT2-AS1, PSMA3-AS1, 
and DIO3OS, which presented negative correlation and 
positive correlation with hsa-miR-324-5p expression and 
FLI1 expression, respectively (Fig.  7E, Supplementary 
Table  11). The expression levels of the three LncRNAs 
in BRCA were determined using GEPIA, and all of them 
were significantly downregulated compared with those in 
normal tissues, with the same expression trend observed 
for FLI1 (Supplementary Fig. 5D). Furthermore, all three 
LncRNAs could predict the prognosis of patients with 
BRCA (Fig.  7F). As shown in Fig.  7G, we proposed a 
potential upstream mechanism to regulate FLI1 tran-
scription activity and FLI1 mRNA stability in BRCA. On 
the one hand, the methylation in the UTR CpG region of 
the FLI1 gene leads to its transcription activation. On the 
other hand, there is a ceRNA network centering on FLI1 
mRNA stability, a miRNA termed has-miR-324 could 
bind to FLI1 mRNA to induce its degradation while three 
LncRNA, CKMT2-AS1, PSMA3-AS1 and DIO3OS, 
could compete with has-miR-324.

Methods
SMR data resources
The GWAS summary statistics of malignant neoplasms 
of the breast (controls excluding all cancers, ICD-O-
3) were downloaded from the latest release R9 version 
database of the FinnGen research project (https://​www.​
finng​en.​fi/​en/​access_​resul​ts), which encompassed 15,680 
cases and 167,189 controls [24]. Blood eQTL summary 
data of the FLI1 gene were SMR-formatted cis-eQTLs 
derived from the eQTLGen consortium (http://​www.​
eqtlg​en.​org), which consists of 31,684 blood and PBMC 
samples from 37 individual cohorts [25]. Blood mQTLs 

Fig. 6  Correlation of FLI1 expression with immune-related markers in BRCA. A The infiltration levels of various immune cells with different copy 
numbers of FLI1 in BRCA. B The correlation of FLI1 expression level with B cell, CD4 + T cell, CD8 + T cell, dendritic cell, macrophage, or neutrophil 
infiltration levels in BRCA. C Spearman’s correlation of FLI1 expression with PD-L1, PD1, and CTLA-4 expression in BRCA adjusted by purity using 
TIMER (left) and validated using the GEPIA database (right). D, E GSEA pathways (G) and GO biological process (E) enrichment analyses were 
performed using the single-gene method for FLI1in BRCA, and the top ten items were displayed

(See figure on next page.)

https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results
http://www.eqtlgen.org
http://www.eqtlgen.org
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summary statistics were obtained from a meta-analysis 
of two European cohorts, including the Brisbane Systems 
Genetics Study (BSGS, n = 614) and the Lothian Birth 
Cohorts (LBC, n = 1366) [26]. Our study focused only 
on cis-regulatory rather than trans-regulatory elements; 
thus, SNPs within ± 1 Mb of the FLI1 gene were selected 
for related analyses. All those mQTLs and eQTLs data 
were downloaded from the Yang Lab website (https://​
yangl​ab.​westl​ake.​edu.​cn/​softw​are/​smr/#​mQTLs​ummar​
ydata).

SMR and HEIDI analysis
The SMR tool was utilized to examine the causal infer-
ence of FLI1 gene expression in BRCA occurrence. The 
1000 Genomes European dataset was used as the refer-
ence for calculating linkage disequilibrium (LD). We con-
ducted a three-step SMR analysis as follows: (1) blood 
FLI1 gene expression was exposure, and BRCA was the 
outcome, while the instrumental variable was the top 
SNP showing the strongest association with the FLI1’s 
expression among all 96 candidates SNPs (P < 5E − 8, 
Supplementary Table  1) [27]. (2) SNPs within ± 1  Mb 
of the FLI1 gene were selected as instruments, blood 
DNAm was exposure, and BRCA was the outcome. (3) 
SNPs within ± 1  Mb of the FLI1 gene were selected as 
instruments, blood DNAm was exposure and blood FLI1 
gene expression was the outcome. In the SMR analysis, 
we utilized the default threshold of P eQTL = 5E − 8 to 
select the top associated cis-eQTL for the SMR analysis. 
We removed SNPs with allele frequency difference > 0.2 
between any pairwise data sets, including the reference 
data 1000 Genomes European dataset), the eQTL sum-
mary data, the mQTL summary data, and the GWAS 
summary data. We also conducted the heterogeneity 
in dependent instruments (HEIDI) test to evaluate the 
existence of linkage. The final criteria to select positive 
signals were defined as follows: (1) SNPs showed sig-
nificant genome-wide association in all eQTLs, mQTLs, 
and GWAS (P < 1E − 5). (2) SNPs passed all three-step 
SMR analyses (pSMR < 0.05). (3) SNPs presented heter-
ogeneity in the HEIDI test of all three-step SMR analy-
ses (pHEIDI > 0.05). Data curation and bioinformatical 
analysis were performed using R version 4.0.3 (https://​
www.​rproj​ect.​org/), PLINK 1.9 (https://​www.​cog-​genom​

ics.​org/​plink/1.​9/), and SMR (https://​cnsge​nomics.​com/​
softw​are/​smr/).

scRNA‑Seq data collection and processing
The scRNA-Seq raw data used in this study were obtained 
from the Gene Expression Omnibus (GEO) database 
(www.​ncbi.​nlm.​nih.​gov/​geo/, GSE161529). The sample 
information is presented in Supplementary Table  12, 
which includes thirteen normal breast samples, seven 
pairs of breast tumor samples, and corresponding lymph 
node samples composed of ER + tumor total cells and 
ER + tumor lymph node cells, respectively. The Seurat 
R package (version 4.2) was used to analyze scRNA-seq 
data, and doublets were identified using DoubletFinder 
(version 1.0.1) with default parameters [28, 29]. The fol-
lowing criteria were exploited for each sample: unique 
gene number > 500, unique molecular identifier (UMI) 
count > 1000, and mitochondrial gene percentage < 0.15. 
We merged the datasets and normalized the raw counts 
using the MergeSeurat and NormalizeData functions. 
High-variable genes were identified with the FindVari-
ableFeatures function. We used the ScaleData function 
to scale and centralize datasets and regressed out UMI 
numbers, mitochondrial gene percentages, ribosomal 
gene percentages, and heat shock protein gene percent-
ages. Subsequently, different ScRNA-seq datasets were 
integrated using the “integrated CCA” function in Seurat 
and dimensions of 1:30 to correct the batch effect.

Dimensionality reduction and cell type identification
For dimensionality reduction, highly variable genes were 
used for principal component (PC) detection. Based 
on the expression table according to the UMI counts of 
each sample and percent of mitochondria rate, raw fea-
ture counts were log-normalized, scaled, and subjected 
to principal component analysis (PCA), which was per-
formed based on the scaled data of the top 2000 highly 
variable genes. The top 10 PCs were used for UMAP con-
struction, and unsupervised cell cluster results based on 
the top 10 PCs were obtained using a graph-based cluster 
method. Cells were subsequently clustered with a "reso-
lution" set to 0.9, identifying 21 primary clusters. These 
clusters were then annotated according to the expression 
of lineage-specific genes in previous works. The marker 

(See figure on next page.)
Fig. 7  Establishment of the ceRNA network of FLI1 in BRCA. A FLI1 expression in BRCA tissues compared with corresponding TCGA and GTEx 
normal tissues. B Correlations between patients’ survival probability and FLI1 expression levels in BRCA. C The visible network of predicted 
miRNAs and FLI1 in BRCA constructed using Cytoscape. D Negative correlations between hsa-miR-324-5p and FLI1 and the prognostic value 
of hsa-miR-324-5p in BRCA. E Negative correlations between hsa-miR-324-5p and the predicted LncRNAs expression (upper panel), the positive 
correlations between FLI1 and predicted LncRNAs expression (lower panel) (F) The prognostic value of the candidate LncRNAs in BRCA. G The 
ceRNA network model of FLI1 in BRCA. *p value < 0.05; **p value < 0.01; ***p value < 0.001

https://yanglab.westlake.edu.cn/software/smr/#mQTLsummarydata
https://yanglab.westlake.edu.cn/software/smr/#mQTLsummarydata
https://yanglab.westlake.edu.cn/software/smr/#mQTLsummarydata
https://www.rproject.org/
https://www.rproject.org/
https://www.cog-genomics.org/plink/1.9/
https://www.cog-genomics.org/plink/1.9/
https://cnsgenomics.com/software/smr/
https://cnsgenomics.com/software/smr/
http://www.ncbi.nlm.nih.gov/geo/
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genes using the FindAllMarkers function with the Wil-
coxon rank sum test algorithm were calculated with the 
following criteria: (1) lnFC > 0.25; (2) p-value < 0.05; and 
(3) min.pct > 0.1. To identify specific cell types, clusters of 
the same cell type were selected for re-UMAP analysis, 
graph-based clustering, and marker analysis.

Cell–cell communication and gene regulatory network 
analysis
Cellchat (version 1.1.0) was used to detect the inference 
and analysis of cell–cell communication with default 
parameters [23]. The versatile toolkit CellChat and a 
web-based Explorer (http://​www.​cellc​hat.​org/) were used 
to build cell–cell communication atlases. To assess the 
regulatory strength of TFs, the SCENIC (version 0.9.5) 
workflow, a new computational method for the construc-
tion of regulatory networks and identification of different 
cell states from scRNA-seq data, was used using the 20 
000 motif database for RcisTarget and GRNboost [30]. 
GENIE3 in SCENIC was employed to build gene regu-
latory networks using an expression matrix and select 
potential direct-binding targets (regulons) through DNA 
motif analysis. The activity of regulons in individual cells 
was scored by the AUCell function, and the regulon 
activity scores in each sample were scaled and calculated 
using the Limma R package (version 4.2) using the follow-
ing criteria: adj. P value < 0.05 and |logFoldChange|> 0.25.

GO and KEGG pathway analysis
The clusterProfiler package in R was selected to perform 
gene ontology (GO) functional annotation and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) analy-
ses to investigate and visualize the biological function 
of 69 FLI1 target genes. The Fisher exact test was used 
to identify the significant GO categories, and a false dis-
covery rate (FDR) was used to correct the p-values. A 
p-value < 0.05 and an FDR < 0.05 were considered statisti-
cally significant.

Bulk RNA‑seq data collection and survival analysis
The transcriptome profiles (HTSeq-FPKM) of 1,222 
samples, consisting of 1,109 breast tissues of patients 
with BRCA and 113 adjacent tissues, and corresponding 
clinical information were downloaded from the TCGA 
(https://​genome-​cancer.​ucsc.​edu/). Each sample’s expres-
sion data or clinical information was combined into cor-
responding matrix files using Perl language. Ensemble 
IDs in the expression matrix profile were also converted 
into Gene Symbols with Perl language. ID numbers in 
the expression and clinical information profiles were 
matched, and samples whose ID numbers did not match 
were excluded from our study. Finally, we obtained 1,097 
BRCA cases for subsequent analysis. Raw expression 

data were transformed with log2 and normalized for 
the following differential expression analysis of FLI1 
using the limma package in R language [31]. P < 0.05 
and FDR < 0.05 were considered statistically significant. 
GEPIA (http://​gepia.​cancer-​pku.​cn/) was used to verify 
the differential expression levels of FLI1, CKMT2-AS1, 
PSMA3-AS1, and DIO3OS in BRCA, which is an online 
web tool containing gene-expression profiles based on 
TCGA and The Genotype-Tissue Expression (GTEx) data 
[32]. P < 0.05 was considered statistically significant. The 
survival analysis of FLI1, candidates’ miRNAs, and LncR-
NAs in BRCA were all performed using TCGA data. We 
set the median expression values of FLI1 or candidates’ 
miRNAs and LncRNAs in all BRCA samples as the cut-
off values. According to the cut-off values, the BRCA 
samples in TCGA were divided into the high-expression 
or the low-expression group, respectively. A log-rank test 
was performed to compare the differences in OS between 
high- or low-expression groups. The survival analysis 
between these two groups was conducted using the sur-
vival package in R software.

Candidate miRNAs / LncRNAs selection and ceRNA network 
construction
Several target gene prediction databases, including PITA, 
RNA22, TargetScan, PicTar, microT, miRanda, and miR-
map, were used to predict the upstream binding miRNAs 
of FLI1, and we chose the miRNAs that appeared in more 
than two databases’ prediction results as the candidate 
miRNAs of FLI1. The starBase database was exploited 
to predict the binding LncRNAs of has-miR-324-5p. 
The mutual expression correlations between FLI1 and 
miRNAs or LncRNAs were conducted using R language 
based on the expression data of 1097 BRCA samples in 
TCGA, and the ceRNA network was visualized using the 
Cytoscape software.

Immune cell infiltration and checkpoint analysis
The immune cell infiltration for all BRCA tumor sam-
ples was downloaded from an online website named 
Tumor Immune Estimation Resources (TIMER) (https://​
cistr​ome.​shiny​apps.​io/​timer). Then, it was employed to 
complete the correlation analyses between FLI1 expres-
sion and the infiltrating levels of different subtypes of 
immune cells [33]. Specifically, the TPM data of RNA-
seq was converted from FPKM data and used for esti-
mating the abundance of different immune cell types by 
CIBERSORT (https://​ciber​sort.​stanf​ord.​edu/) [34]. We 
attained the immune cell types and their corresponding 
biomarkers gene lists from TIMER for the checkpoint 
analysis. Then, the expression values of each biomarker 
were extracted from the 1109 BRCA samples, and the 
correlations were analyzed. The limma, the cor. function, 

http://www.cellchat.org/
https://genome-cancer.ucsc.edu/
http://gepia.cancer-pku.cn/
https://cistrome.shinyapps.io/timer
https://cistrome.shinyapps.io/timer
https://cibersort.stanford.edu/
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ggplot2, ggpubr, and ggExtra packages in R were utilized 
as needed in these analyses.

Gene Set Enrichment Analysis (GSEA)
The 1097 BRCA samples of TCGA were divided into 
two groups according to the median expression value of 
FLI1, thus resulting in the high FLI1 group and low FLI1 
group. GSEA was implemented to discover the gene sets 
enriched in the gene rank in the two groups to recog-
nize the potential KEGG pathways and biological pro-
cesses of FLI1 in BRCA. The annotated gene sets of h.all.
v6.2.symbols.gmt in the Molecular Signatures Database 
(MSigDB) were selected in GSEA version 3.0. We exe-
cuted 1,000 times of permutations. The collapse dataset 
to gene symbols was “False.” The permutation type was 
“phenotype.” GSEA was run, and the cut-off criteria were 
as follows: normalized enrichment scores (NES) > 1.0, 
false discovery rate (FDR) q > 0.25, and nominal p < 0.05. 
Then, we showed the top 10 KEGG pathways and biologi-
cal processes.

Discussion
Tumor-infiltrating lymphocytes (TILs), a population 
of immune cells infiltrating in tumor tissue, have been 
reported in various solid cancers, such as BRCA, colon, 
and lung cancer [35–37]. In recent decades, evidence of 
TILs as a prognostic biomarker, which came from clinic 
research containing thousands of BRCA patients, rapidly 
soared. For example, the triple-negative BRCA patients 
displayed a robust linear relationship between increased 
TILs and improved recurrence-free survival (RFS) conse-
quences [38–40]. Hence, the definite correlation between 
TILs and antitumor therapy consequences triggered a 
series of studies focused on seeking novel immune tar-
gets that might enhance the TIL population by regu-
lating immune-related processes in BRCA tissues and 
ultimately improve patients’ prognosis. With this goal, we 
designed this study. We focused on FLI1, which has been 
documented as a member of the ETS family with a cru-
cial role in hematopoiesis and development pathways in 
both immune and non-immune cells [41, 42]. To compre-
hensively investigate the correlation between FLI1 and 
BRCA, we investigated the latent upstream regulatory 
mechanisms of FLI1 expression at both the DNA and 
RNA levels.

First, we clarify the causal relationship between FLI1 
and BRCA using the currently available BRCA GWAS 
and FLI1 mQTL/eQTL data, which were analyzed via the 
Mendelian randomization method. The causal pathway 
linking CpG methylation of FLI1 to FLI1 mRNA expres-
sion and finally to BRCA susceptibility was identified. A 
three-step SMR analysis verified a negative correlation 
between the mRNA expression and the BRCA onset, a 

positive correlation between the methylation of FLI1 and 
its mRNA expression, and a negative correlation between 
the methylation of FLI1 and the BRCA onset. The tradi-
tional view is that a certain gene’s high DNA methyla-
tion always leads to repressed transcription activity [43]. 
However, recent years’ work from various models indi-
cated that hypermethylated promoters and enhancers 
could be permissive to the transcription of a certain gene 
rather than a dominant repressive mechanism [44]. In 
our study, we found higher methylation of FLI1 positively 
related to its expression, meanwhile negatively related 
to BRCA occurrence risk. Thus, we speculated that the 
methylation of FLI1 might be one of the mechanisms 
affecting BRCA via its regulation of FLI1 gene expres-
sion. Besides methylation at the DNA level, ncRNAs are 
another significant regulator of target gene expression 
by interacting with each other through the ceRNA net-
work. We thus constructed a potential ceRNA network 
targeting FLI1 at the RNA level mainly based on expres-
sion correlation and prognosis correlation analyses. 
Furthermore, we elucidated the downstream regulatory 
mechanism of FLI1 in BRCA relying on bulk-RNA seq 
data and single-cell RNA-seq data. On the one hand, the 
FLI1 expression strongly correlated with immune-related 
markers, including immune cell infiltration, immune cell 
marker genes, and immunotherapy checkpoint genes. On 
the other hand, we found the cell-type-specific expres-
sion and function of FLI1 in BRCA based on single-cell 
analysis, especially showing cell-type-specific target 
genes and regulating intercellular communication in 
tumor microenvironment in BRCA. We verified the dif-
ferential expression of FLI1 in BRCAs. We found FLI1 
was downregulated in BRCA tissues compared with nor-
mal tissues, and BRCA patients with higher expression 
levels of FLI1 showed better overall survival probabil-
ity. These results were also consistent with the previous 
study [18].

The functions of FLI1 in regulating immune cell devel-
opment, activation, migration, and exhaustion have been 
gradually discovered. It can also affect the function of 
immune cells by regulating cytokines and chemokines 
[45]. Thus, we demonstrated a positive relationship 
between FLI1 expression and immune cell infiltration or 
immune cell biomarker expression in BRCA, which indi-
cated that one of the reasons why patients with higher 
expression levels of FLI1 had a better prognosis might 
be the abundant activation of the immune process in 
the tumor environment. Additionally, there is a positive 
correlation between FLI1 and immune checkpoint pro-
teins, including PD-L1, PD1, and CTLA-4 in BRCA. It 
was reported that the circulating immune cells, namely 
PBMC, manifested differential gene expression profiles 
between responders and non-responders of anti-PD-1 
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therapy in melanoma patients [46]. Given the domi-
nant expression in immune cells of FLI1, we thought it 
is worthy of further study to investigate the relation-
ship between FLI1 and anti-PD-1 therapy, especially the 
different target genes of FLI1 in different immune cell 
populations, which might mediate the FLI1’s function 
in immunotherapy efficacy. The potential of FLI1 as a 
therapeutic target in human autoimmune diseases such 
as systemic sclerosis and systemic lupus erythematosus 
has been proposed, and the loss of FLI1 in CD8+ T cells 
enhances immunity to tumors has also been reported [41, 
45]. The relationship between FLI1 and immune infiltra-
tion profiles has also been analyzed in a previous study 
based on resources from available databases such as the 
TCGA [18].

To unveil the specific molecular mechanisms by which 
FLI1 regulates immune-related processes in BRCA. We 
utilized scRNA-seq data, which could provide more 
information than bulk-RNA sequencing, especially for 
highly heterogeneous cancers. Surprisingly, we found 
that FLI1 is expressed mainly in endothelial cells, mod-
erately in immune cells, including myeloid cells, T cells, 
and B cells, but hardly in epithelial cells. Accordingly, 
immune function regulation by targeting immune cells 
infiltrating the tumor microenvironment might be a 
crucial link between FLI1 and BRCA. As a transcription 
factor, FLI1 could activate or inhibit the expression of a 
series of target genes by binding to their transcription 
regulation region. Subsequent analyses of SECNIC dem-
onstrated that the transcriptional activity of FLI1 indeed 
varied in different cell types. Endothelial cells and mye-
loid cells in tumor tissues exhibit high FLI1 expression 
and high transcription activity of FLI1-targeted genes. 
We found evident activation of FLI1-targeted genes in 
myeloid cells of tumor samples compared with those of 
normal tissues.

Further analyses of cellular communication revealed 
that, in tumor samples, the communication between 
intratumor cells was different from that in normal tis-
sues, and target genes of FLI1 showed a large inter-
section with ligand or receptor genes mediating 
cellular crosstalk. We discovered several cell-commu-
nication-related target genes of FLI1 in immune cells, 
including myeloid cells and T cells, that showed dif-
ferential expression between tumor and normal tis-
sues. For example, the obvious upregulation of MHC-II 
genes (HLA-DRA, HLA-DPA1, HLA-DPB1, HLA-
DQA1, HLA-DMA, HLA-DMB, HLA-DQB1, HLA-
DRB5 and HLA-DRB), CD74, and CXCR4 in myeloid 
cells of the tumor group was accompanied by a high 
probability of communication between cells in the 
population of intratumoural myeloid cells. MHC-II 
is constitutively expressed on a subset of cells termed 

professional antigen-presenting cells (APCs), includ-
ing myeloid cells, which could further be classified 
into macrophages or dendritic cells. The enhanced 
expression of MHC-II is an important way for APCs to 
proliferate in response to pathogens [47]. CD74 partici-
pates mainly in antigen presentation as an MHC class 
II chaperone, and stromal CD74+  cell enrichment has 
been associated with favorable prognosis in patients 
with HCC [48]. The decreased expression of CD8A in T 
cells in the tumor group concurred with the decreased 
probability of communicating with B cells and T cells or 
with the cell population of intra-T cells. Collectively, we 
proposed that FLI1 functions as a BRCA protective fac-
tor likely via its transcriptional activation or inhibitory 
effect on a series of target genes in a cell-type-specific 
manner, especially ligand and receptor genes mediating 
intercellular communication in myeloid cells.

The ceRNA networks centered on FLI1 have rarely 
been reported, and most have been characterized in 
Ewing sarcoma. Several miRNAs, such as let-7g, miR-
22, miR-30a-5p and miR-145, are closely related to 
EWS-FLI1 regulation [49, 50]. A ceRNA network tar-
geting FLI1 has also reported in other types of can-
cers, including the miR-33b/FLI1 axis in hepatocellular 
carcinoma and the miR-145/FLI1 axis in colon cancer 
[51, 52]. There are no ceRNA network reports of FLI1 
in BRCA. Our study combined various databases to 
navigate the potential upstream ncRNAs of FLI1 by 
combining the binding motif prediction and negative 
expression relationships. Consequently, we established 
a novel ceRNA network focused on FLI1 in BRCA 
based on the high-throughput sequencing data and the 
direct binding relationships between hsa-miR-324-5p 
and FLI1 or CKMT2-AS1, PSMA3-AS1, and DIO3OS 
need to be confirmed through other experiments in 
molecular biology.

This study still has certain limitations that need to be 
solved to decipher the explicit role of FLI1 in BRCA. 
First, in the SMR analysis, the methylation and expres-
sion data of FLI1 in the mQTL and eQTL were derived 
from blood samples rather than from breast tissues. Sec-
ond, the ceRNA network of FLI1 was constructed using 
TCGA bulk-RNA sequencing data. However, we could 
not validate the competing mechanism using the sub-
sequent scRNA-seq data owing to the technical defects. 
Third, we did not further categorize the immune cells 
into tumor or normal groups because the total cell num-
ber of immune cells did not support further classification 
or subsequent cellular communication analyses. We are 
trying to incorporate and integrate additional scRNA-seq 
data from studies with larger sample numbers and cell 
counts. We would like to clarify the detailed regulatory 
mechanisms of FLI1 in the tumor immune field.
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Conclusions
Taken together, our SMR results suggested that a higher 
DNA methylation level in the UTR region of FLI1 upreg-
ulated the expression of FLI1 and subsequently decreased 
BRCA risk. FLI1 displayed lower expression in BRCA tis-
sues than in normal tissues, which likely resulted from 
the decrease of endothelial cells in tumor tissues com-
pared with normal tissues. FLI1 was downregulated and 
might represent a potential biomarker contributing to 
the favorable prognosis of patients with BRCA. Thus, 
we concluded that FLI1 functions primarily as a pro-
tective factor against BRCA onset and development. 
FLI1 plays its fundamental role in the microenviron-
ment of BRCA by targeting immune cells via regulating 
transcription activities of ligand and receptor genes in a 
cell-type-specific manner, which further exerts an effect 
on intercellular communication. We also first proposed 
a potential upstream regulatory mechanism of FLI1 in 
BRCA, namely CKMT2-AS1/PSMA3-AS1/DIO3OS-
hsa-miR-324-5p-FLI1 axis. Nevertheless, we conclude 
these depending on the bioinformatic analysis, and it 
is better to validate these conclusions using biological 
experiments and large clinical trials in the future.
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Additional file 2: Supplementary Figure 1. Three-step SMR analysis 
prioritized FLI1 and mechanisms in BRCA. (A) Locus zoom plots show the 
genetic effects from BRCA GWAS and cis-eQTLs near FLI1. (B) The plot 
shows chromatin state annotations from REMC for different primary cells 
and tissue types. REMC, Roadmap Epigenomics Mapping Consortium.

Additional file 3: Supplementary Figure 2. Single-cell transcription 
analysis and regulatory network of FLI1. (A) UMAP projection of 99,532 
cells, which were clustered into 21 clusters. (B) The dot plot shows FLI1 
expression in different cell types. (C) Violin plots and dot plots of FLI1 
expression in each cell type split by sample group. (D) The heatmap 
shows the activities of regulons of FLI1 and other cofactors in each cell 
type and is clustered according to the regulon activity. Colors from blue 

to red indicate low to high regulon activity. (E) Ridgeline plots and violin 
plots show the AUC values of the FLI1 regulatory network in each cell type 
integrating normal and tumor samples. N, normal. T, tumor. L, lymph node.

Additional file 4: Supplementary Figure 3. Crosstalk between all cells 
in BRCA. (A-B) Heatmaps showing summarizing the incoming (target) (A) 
and outgoing (secreting) (B) signal pathways of each cell group among 
all samples. (C) The stacked bar chart exhibiting the conserved and tumor 
or normal group-specific signaling pathway in cell communication. (D) 
The singling changes of T cells (left) or myeloid cells (right) in the normal 
group compared with the tumor group.

Additional file 5: Supplementary Figure 4. Crosstalk among all cells 
in BRCA. (A-B) Circle plots show the up or downregulated pathways of 
myeloid cells (A) or T cells (B) as target cells in communication with other 
cells in the tumor group compared with those in the normal group. (C) 
Bubble plots display the main signaling pathways mediating cellular 
interactions from endothelial cells (left), epithelial cells (middle), and B 
cells (right) to other cells. (D-E) Violin plots show the detailed expression of 
the genes related to the CXCL pathway (D) and the MHC I pathway (E) in 
each cell type in the different groups. (F) Bubble plots displaying the GO 
analysis results of the intersection genes of FLI1 target genes and ligand-
receptor genes.

Additional file 6: Supplementary Figure 5. Expression and prognostic 
value of the ceRNA network of FLI1 in BRCA. (A) Negative expression 
correlations between predicted miRNAs and FLI1. (B-D) The expression 
of candidate miRNAs (B) and candidate LncRNAs (D) in BRCA and control 
normal samples from TCGA and the prognostic value of candidate miRNAs 
in BRCA (C).
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