Table 2.
Evaluation metrics of the models constructed by each method.
| Method | AUC | ACC | PPV | NPV | SEN | SPE | F1 score | MCC | KAPPA | Brier score |
|
|---|---|---|---|---|---|---|---|---|---|---|---|
| Tra | GBM | 0.796 | 0.717 | 0.546 | 0.849 | 0.736 | 0.708 | 0.627 | 0.419 | 0.407 | 0.165 |
| LR | 0.76 | 0.685 | 0.509 | 0.837 | 0.728 | 0.664 | 0.599 | 0.368 | 0.353 | 0.178 | |
| Nnet | 0.778 | 0.706 | 0.534 | 0.836 | 0.71 | 0.705 | 0.61 | 0.392 | 0.382 | 0.172 | |
| RF | 0.96 | 0.882 | 0.76 | 0.962 | 0.928 | 0.86 | 0.835 | 0.754 | 0.745 | 0.084 | |
| SVM | 0.8 | 0.747 | 0.577 | 0.887 | 0.808 | 0.718 | 0.674 | 0.494 | 0.476 | 0.166 | |
| XGBoost | 0.995 | 0.968 | 0.937 | 0.984 | 0.967 | 0.969 | 0.952 | 0.929 | 0.928 | 0.042 | |
| Val | GBM | 0.786 | 0.716 | 0.539 | 0.842 | 0.709 | 0.719 | 0.612 | 0.404 | 0.395 | 0.168 |
| LR | 0.767 | 0.689 | 0.506 | 0.847 | 0.74 | 0.665 | 0.601 | 0.378 | 0.36 | 0.175 | |
| Nnet | 0.79 | 0.694 | 0.511 | 0.865 | 0.78 | 0.654 | 0.618 | 0.404 | 0.38 | 0.166 | |
| RF | 0.979 | 0.919 | 0.817 | 0.98 | 0.96 | 0.9 | 0.882 | 0.828 | 0.821 | 0.068 | |
| SVM | 0.837 | 0.772 | 0.597 | 0.921 | 0.866 | 0.728 | 0.706 | 0.554 | 0.53 | 0.154 | |
| XGBoost | 1 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 0.997 | 0.997 | 0.013 |
Tra, training set; Val, validation set; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; SEN: sensitivity; SPE: specificity, MCC, Matthews correlation coefficient.