Skip to main content
. 2024 Feb 16;15:1327058. doi: 10.3389/fendo.2024.1327058

Table 2.

Evaluation metrics of the models constructed by each method.

Method AUC ACC PPV NPV SEN SPE F1 score MCC KAPPA Brier
score
Tra GBM 0.796 0.717 0.546 0.849 0.736 0.708 0.627 0.419 0.407 0.165
LR 0.76 0.685 0.509 0.837 0.728 0.664 0.599 0.368 0.353 0.178
Nnet 0.778 0.706 0.534 0.836 0.71 0.705 0.61 0.392 0.382 0.172
RF 0.96 0.882 0.76 0.962 0.928 0.86 0.835 0.754 0.745 0.084
SVM 0.8 0.747 0.577 0.887 0.808 0.718 0.674 0.494 0.476 0.166
XGBoost 0.995 0.968 0.937 0.984 0.967 0.969 0.952 0.929 0.928 0.042
Val GBM 0.786 0.716 0.539 0.842 0.709 0.719 0.612 0.404 0.395 0.168
LR 0.767 0.689 0.506 0.847 0.74 0.665 0.601 0.378 0.36 0.175
Nnet 0.79 0.694 0.511 0.865 0.78 0.654 0.618 0.404 0.38 0.166
RF 0.979 0.919 0.817 0.98 0.96 0.9 0.882 0.828 0.821 0.068
SVM 0.837 0.772 0.597 0.921 0.866 0.728 0.706 0.554 0.53 0.154
XGBoost 1 0.999 0.998 0.999 0.998 0.999 0.998 0.997 0.997 0.013

Tra, training set; Val, validation set; AUC, area under the curve; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; SEN: sensitivity; SPE: specificity, MCC, Matthews correlation coefficient.