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ABSTRACT Bacillus anthracis is a Gram-positive Centers for Disease Control and 
Prevention category “A” biothreat pathogen. Without early treatment, inhalation of 
anthrax spores with progression to inhalational anthrax disease is associated with 
high fatality rates. Gepotidacin is a novel first-in-class triazaacenaphthylene antibiotic 
that inhibits bacterial DNA replication by a distinct mechanism of action and is being 
evaluated for use against biothreat and conventional pathogens. Gepotidacin selectively 
inhibits bacterial DNA replication via a unique binding mode and has in vitro activity 
against a collection of B. anthracis isolates including antibacterial-resistant strains, with 
the MIC90 ranging from 0.5 to 1 µg/mL. In vivo activity of gepotidacin was also evaluated 
in the New Zealand White rabbit model of inhalational anthrax. The primary endpoint 
was survival, with survival duration and bacterial clearance as secondary endpoints. The 
trigger for treatment was the presence of anthrax protective antigen in serum. New 
Zealand White rabbits were dosed intravenously for 5 days with saline or gepotidacin at 
114 mg/kg/d to simulate a dosing regimen of 1,000 mg intravenous (i.v.) three times a 
day (TID) in humans. Gepotidacin provided a survival benefit compared to saline control, 
with 91% survival (P-value: 0.0001). All control animals succumbed to anthrax and were 
found to be blood- and organ culture-positive for B. anthracis. The novel mode of action, 
in vitro microbiology, preclinical safety, and animal model efficacy data, which were 
generated in line with Food and Drug Administration Animal Rule, support gepotidacin 
as a potential treatment for anthrax in an emergency biothreat situation.
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B acillus anthracis, the etiologic agent of anthrax, is a Gram-positive spore-forming 
rod-shaped bacterium that is often found in the soil and commonly affects domestic 

and wild animals. Humans are incidentally infected through contact with infected 
animals or animal products. The major forms of anthrax are cutaneous, inhalational, 
gastrointestinal, and injectional. Cutaneous anthrax is the most frequent form of the 
disease and, although it can be fatal in 20% of cases, in the majority of the cases, 
it is self-limiting (1, 2). Inhalation anthrax is the most aggressive and lethal form of 
the disease, with a reported incubation period of 4–6 days from exposure to initial 
clinical symptoms and death; thus, treatment should be initiated as soon as possible 
(2). The bacterial spore is the infectious form leading to disease. The major virulence 
factors are the poly-γ-D-glutamic acid capsule, which is resistant to both phagocytosis 
and complement activation, and a tripartite toxin, which is composed of a receptor-bind
ing subunit, protective antigen (PA), two enzymatic subunits, lethal factor (LF), a zinc 
metalloprotease and edema factor (EF), and a calmodulin-dependent adenylate cyclase. 
After binding to the receptor on the host’s cell surface, the PA is cleaved, resulting in 
the exposure of binding sites for which LF and EF compete. The PA forms a membrane-
inserting heptamer, which translocates LF or EF into the cell. These subunits interact 
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to form the active toxins: lethal toxin (PA +LF) and edema toxin (PA +EF). At the initial 
stages of infection, lethal toxin (LT) and edema toxin (ET) coordinately impair the 
host’s innate immune response, enabling the pathogen to establish infection. When 
elevated toxin concentrations are reached, LT and ET can directly cause host death 
by targeting both the cardiovascular system and the liver (3–5). Without aggressive 
prophylaxis or intervention, inhalational anthrax can result in mortality rates approach
ing 90% (6–8). Fatal anthrax is ultimately the result of acute toxemia, massive bacteremia, 
and the host’s response to the toxins and bacteria (1–3). The importance of anthrax 
toxins during the latter stages of disease becomes apparent as patients can still die from 
a systemic infection after bacteria are no longer detectable (3).

High-titer anthrax spores can be easily generated using basic microbiological 
techniques, and the ability of these spores to be rapidly disseminated by aerosolization 
has made anthrax a bio-weapon and military threat. An anthrax outbreak in 1979 in 
Sverdlosk, Russia, and the 2001 attacks in the United States (US) illustrate that inhala
tional anthrax can be rapidly fatal (6, 8, 9). Following the 2001 civilian attacks in the US, 
an emphasis on post-exposure therapeutics has become a research priority (10–12).

Gepotidacin is a novel first-in class bactericidal triazaacenaphthylene antibiotic. 
It was discovered by GSK, with further development supported by a public–private 
partnership between GSK, the Defense Threat Reduction Agency (DTRA, U.S. Depart
ment of Defense), and the Biomedical Advanced Research and Development Authority 
(U.S. Department of Health and Human Services), and it is being evaluated for use 
against both biothreat and conventional pathogens. Gepotidacin inhibits bacterial DNA 
replication by a distinct mechanism of action (13–15), demonstrating in vitro and in 
vivo activity against a range of Gram-positive and Gram-negative bacterial pathogens 
(16–22). Structural models of bacterial type II topoisomerase enzymes reveal the novel 
binding mode of this class of antibacterials and distinguish it from the binding mode 
of the fluoroquinolones (13, 15). As a consequence of this novel mode of action, in vitro 
activity is maintained against most target pathogens carrying resistance determinants to 
other antibacterials, including fluoroquinolones (16, 17). Gepotidacin is currently being 
evaluated for investigational oral treatment of uncomplicated urinary tract infection 
and uncomplicated gonorrhea, including those caused by pathogens resistant to 
currently used antimicrobials, (www.clinicaltrials.gov: NCT04020341, NCT04010539, and 
NCT04187144). In addition, gepotidacin has the potential to treat bacterial biothreat 
infections, including anthrax (23, 24).

It is neither practical nor ethical to conduct inhalational anthrax clinical trials in 
humans. Between 1900 and 1976, only 17 cases of inhalational anthrax were reported 
in the US, with an additional 11 cases reported in the 2001 anthrax attacks (25). 
Under the Food and Drug Administration’s (FDA’s) Animal Rule, establishing efficacy 
in well-characterized animal models is essential for the development of therapeutics 
directed against anthrax (26, 27). The New Zealand White (NZW) rabbit has been shown 
to be an appropriate model for inhalational anthrax, and the physiologic changes 
following aerosol challenge with B. anthracis in the rabbit have demonstrated that both 
the manifestations of the disease and the pathology were similar to those observed in 
humans, though the disease progresses more rapidly in rabbits. Furthermore, rabbits 
are predictive of the outcome of inhalational anthrax in nonhuman primate infection 
models. Refinements of the model have incorporated the use of biomarkers, such as a 
significant increase in body temperature (SIBT) and the presence of circulating PA, as 
triggers for therapeutic intervention (8, 12, 28, 29).

Gepotidacin has demonstrated in vitro activity against B. anthracis and efficacy in 
proof-of-concept rabbit inhalational challenge models (20). It was therefore of interest 
to evaluate gepotidacin in a study designed to provide pivotal efficacy data under the 
FDA Animal Rule and to predict effective clinical dosing regimens for gepotidacin in the 
treatment of inhalational anthrax.
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RESULTS

Gepotidacin demonstrates in vitro activity against B. anthracis

A total of 160 isolates of B. anthracis from the U.S. Army Medical Research Institute of 
Infectious Diseases (USAMRIID) (Study 1, n = 30; Study 2, n = 100) and Rutgers University 
(n = 30) were tested to evaluate the in vitro activity of gepotidacin (Table 1). The MIC90 
values for gepotidacin ranged from 0.5 µg/mL to 1 µg/mL. Table 2 shows the activity of 
gepotidacin against the plasmid-cured B. anthracis Ames strain (ΔANR) and its isogenic 
mutants, S1-1 and S1-2. These single-step mutants have modifications in DNA gyrase 
at the following positions: S85L (S1-1) and E89K (S1-2). The MICs for the S1-1 and the 
S1-2 mutants increased 4- to 32-fold for levofloxacin and ciprofloxacin, respectively, 
compared to the parent strain. In contrast, there was only a modest 2-fold increase in the 
gepotidacin MIC for both mutants.

Therapeutically administered gepotidacin enhances survival and reduces 
disease severity

NZW rabbits challenged with a targeted dose of 200 LD50 B. anthracis Ames spores 
received a mean inhalation exposure of 191 LD50 equivalents (range 106–258) for all 
study animals. All rabbits were negative for the PA electrochemiluminescence (PA-ECL) 
assay prior to challenge, and the median time for a positive PA-ECL post challenge was 
28 h for both gepotidacin and saline groups. The time to trigger (positive PA-ECL) was 
comparable between groups (Table 3). All animals were bacteremic following trigger and 
prior to treatment, with an average bacterial burden of 3.0 Log10 colony forming unit 
(CFU)/mL in the blood. The median time to bacteremia was 25 h following challenge and 
was comparable between treatment groups: 24.7 h vs 25.5 h for gepotidacin and saline 
groups, respectively. No relationship between inhaled spore exposure and time to trigger 
was demonstrated. The median time to a significant increase in body temperature was 
comparable between the gepotidacin- and saline-treated groups: 29.3 h and 27.9 h, 
respectively (Table 3).

Gepotidacin was efficacious and provided a clear survival benefit compared to saline 
control (one-sided Boschloo’s test, P < 0.0001). As shown in Fig. 1, all six saline-treated 
animals succumbed 2 to 5 days post-challenge. Three animals died prior to euthanasia, 
and three were euthanized based on pre-defined euthanasia criteria. In contrast, 10 
of the 11 (90.1%) gepotidacin-treated rabbits survived until the end of the study (day 
28 post-challenge). The single animal that succumbed (euthanized) on day 3 post-chal
lenge had catheter complications that impacted infusion start times and gepotidacin 
exposures (e.g., AUC, Cmax, and Tmax); in particular, the first dose exposure was 
approximately 10% of the AUC values noted for the other treated animals.

Gepotidacin treatment resolves bacteremia

Terminal blood cultures for all six saline–control animals were positive with high 
numbers of bacteria, (geometric mean 8.07 log10 CFU/mL), and all control animals 
demonstrated positive organ cultures at necropsy. In contrast, blood and tissues from 
all surviving animals and animals that succumbed during gepotidacin treatment were 
cultured for the presence of B. anthracis, and all survivors were blood culture-negative by 
day 7 post challenge. Blood cultures remained negative until the end of the study, i.e., 

TABLE 1 Gepotidacin MIC values for a collection of B. anthracis strains (N = 160)a

Number of isolates
MIC range MIC50 MIC90

(μg/mL) (μg/mL) (μg/mL)

USAMRIID diversity set 30 0.5–2 1 1
USAMRIID collection 100 0.12–1 0.5 0.5
Rutgers 30 0.25–1 0.5 1
aMIC, minimum inhibitory concentration; USAMRIID, United States Army Medical Research Institute of Infectious 
Diseases.
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day 28 post challenge. In addition, all organs from surviving gepotidacin-treated animals 
were culture-negative, with the exception of one animal that was positive for lung and 
one for spleen with colony-forming units below the limit that could be quantified by 
the methods used, likely representing latent spores. (Tables 4 and 5). The terminal blood 
culture from the single gepotidacin-treated animal that had catheter complications with 
reduced gepotidacin exposure and succumbed was positive; however, the numbers of 
bacteria were lower relative to those in controls (3.18 log10 CFU/mL compared to 8.07 
log10 CFU/mL). Additionally, organ culture bacterial counts tended to be lower in this 
animal relative to the saline controls, with the exception of the brain, which had bacterial 
counts comparable to those in controls.

Gepotidacin MICs were determined for isolates recovered from animals treated with 
gepotidacin and compared to those of the parent challenge strain to evaluate any 
development of resistance on therapy. All MICs were the same or within 1 dilution of the 
parent challenge strain, suggesting no development of resistance in this study.

Gepotidacin treatment resolves fever

The average baseline body temperature in the rabbit was 38.0 ± 0.7°C. After challenge, 
the mean body temperature for both groups of animals increased 1 to 2°C compared to 
that at baseline and resolved by day 7 post-challenge in the gepotidacin-treated group. 
The mean body temperature did not return to the baseline level for the saline–control 
group (Fig. 2).

Gepotidacin-treated animals develop immune response to LT

Prior to challenge, no toxin neutralization assay (TNA) neutralizing titers were detected 
in any animals. Neutralization factor-50 (NF50) titers were detected only in gepotidacin-
treated animals that survived beyond day 5. By day 10 post-challenge, all surviving 
animals had NF50 titers ranging from 0.23 to 9.5. At study termination (day 28 post-chal
lenge), NF50 values increased and ranged from 1.55 to 17.5 (Fig. 3).

Gepotidacin is efficacious at exposures below the predicted human exposure 
in rabbits

The administered gepotidacin dosing regimen of 114 (mg/kg/d) to rabbits provided 
free-drug Cmax (fCmax) and free-drug area under the concentration curve (fAUC) levels in 
plasma below exposures associated with the 1,000 mg i.v. TID human dose. Steady-state 

TABLE 2 Activity of gepotidacin, ciprofloxacin, and levofloxacin against attenuated B. anthracis single-step 
gyrase mutantsc

Strain
Amino acid 
change

Frequency of 
isolationb

Gepotidacin Ciprofloxacin Levofloxacin
MIC MIC MIC
(μg/mL) (μg/mL) (μg/mL)

Parent ΔANRa NA NA 1 0.03 0.06
S1-1^ S85L 80% 2 1 0.25
S1-2^ E89K 20% 2 1 0.25
aPlasmid-cured B. anthracis Ames strain.
bLaboratory-generated mutants; the frequency of isolation is from the original publication (30).
cMIC: minimum inhibitory concentration; NA: not applicable.

TABLE 3 Aerosol exposure range, time to trigger, time to treatment, bacteremia onset, and challenge doseb,c

Treatment
LD50 exposure average 
(range)

Time to triggera (hours post 
challenge) median (95%)

Time to onset of bacteremia 
(hours) median (95%)

% Bacteremic
PTT

Time to SIBT 
median (95%)

Gepotidacin 180 (106–257) 28.4 (24.5–35.4) 24.7 (22.6–28.6) 100 29.3 (25.2–30.6)
Saline 212 (157–258) 28.3 (23.3–38.3) 25.5 (23.0–31.3) 100 27.9 (23.9–33.4)
aTrigger = positive PA-ECL.
bNo statistical difference between the LD50 exposure, time from trigger to treatment, bacteremia onset, or challenge dose (two-tailed t-test).
cLD50, lethal dose; PTT = prior to treatment; SIBT = significant increase in body temperature.
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plasma pharmacokinetic profiles are shown in Fig. 4. Application of the previously 
determined rabbit plasma protein-binding value of 21.6% (20) and human plasma 
protein-binding value of 33.0% (31, 32) did not exceed fCmax in the rabbit compared 
to that in humans, fCmax (4.7 and 6.1 µg/mL, respectively), and the time to peak plasma 
concentration (Tmax) was 2 h in both rabbits and humans. The 24-h fAUC in the rabbit 
was also below the human fAUC (33 and 57 µg·h/mL, respectively).

Gepotidacin treatment reduces the tissue bacterial burden and damage 
associated with B. anthracis infection

At necropsy, gross lesions were evident in three of six saline control animals that died 
or were euthanized due to anthrax. Gross lesions included enlarged mediastinal lymph 
nodes, with clear fluid in the abdominal, thoracic, and/or pericardial cavity, and red 

FIG 1 Gepotidacin (GEP) provided a survival benefit in the anthrax inhalation model. Rabbits challenged 

with 200 x LD50 B. anthracis spores were treated within 3 to 4.3 h (mean 3.8 h) of a documented positive 

protective antigen electrochemiluminescence result, with either saline or GEP. The survival of GEP-treated 

animals (n = 11) was significantly different from that of the saline control (n = 6), P = 0.0001, one-sided 

Boschloo’s test.

TABLE 4 Geometric means and range for positive quantitative B. anthracis bacteremia (log10 CFU/mL)a,c,d

Gepotidacin Saline

Time point No. of culture-positive/total no. of 
animals

Geometric mean (range) No. of culture positive/total no. of 
animals

Geometric mean (range)

24 h PC 6/11 2.63 (<2.40, 3.04) 3/6 2.88 (<2.40, 3.52)
30 h PC 6/7 2.78 (<2.40, 3.06) 4/4 2.62 (<2.40, 3.17)
36 h PC 3/3 2.66 (<2.40, 3.11) 2/2 2.83 (2.67, 3.0)
42 h PC 1/1 <2.40 (--) 0/0 --(--)
PTT 9/9b 3.04 (<2.40, 3.82) 6/6 3.30 (<2.40, 5.12)
24 PTI 9/11 3.70 (<2.40, 4.64) 5/5 4.56 (4.05, 6.13)
Day 7 PC 0/10 --(--) 0/0 --(--)
Day 14 PC 0/10 --(--) 0/0 --(--)
Day 28 PC 0/10 --(--) 0/0 --(--)
Terminal 1/1 3.18 (--) 6/6 8.07 (6.15, 8.78)
aParameter was log10-transformed for the analysis.
bBlood samples were not available for two animals that were positive at time points prior to PTT.
c-- Samples were not collected for this group at this time point, or all results were below the LLOQ, or there was a single observation for this group at this time point.
dLLOQ = 2.40 log10 CFU/mL; LLOQ = lower limit of quantification; PC = post-challenge; PTT = prior to treatment ; PT1 = post first treatment.
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discoloration of the meninges. No gross lesions were seen in gepotidacin-treated rabbits, 
including the rabbit that succumbed to anthrax on day 3.

Microscopy findings of control animals and of the single gepotidacin-treated animal 
that succumbed were consistent with published reports of anthrax in rabbits (2). In these 
animals, there was fibrinous pneumonia with edema and intravascular and extravascular 
bacteria (Fig. 5). Intra- and/or extravascular bacteria were also identified in the meninges, 
brain, liver, spleen, and mediastinal lymph nodes, often associated with hemorrhage and 
necrosis.

DISCUSSION

Inhalational anthrax is a disease mediated by bacterial growth and toxemia, leading to 
inflammation, tissue damage, and, most often, acute death. In this study, gepotidacin, a 
novel, bactericidal, triazaacenaphthylene antibacterial rapidly cleared inhaled B. anthracis 
Ames strain from the blood and tissues of rabbits, reducing fever, inflammation, and 

FIG 2 Basal temperatures returned to normal with gepotidacin (GEP) treatment. Mean daily body 

temperature (°C) from baseline through day 28 post-challenge. Average temperature for the saline-trea

ted animals increased on days 3 and 4 post-challenge (fever), while temperatures normalized in the 

GEP-treated animals. All saline control animals succumbed to anthrax by day 5 post-challenge.

TABLE 5 Geometric means and range for positive B. anthracis tissue burden (log10 CFU/g)a,c,d

Gepotidacin Saline

Tissue No. of culture-posi
tive/total
no. of animals

Geometric mean
(range)

No. of culture-posi
tive/total
no. of animals

Geometric mean
(range)

Heart 1/11 <3.40 (--) 6/6 7.54 (<3.40, 7.94)
Brain 1/11 6.84 (--) 6/6 6.64 (3.68, 8.27)
Lung 2/11b <3.40 (<3.40) 6/6 8.74 (4.49, 9.03)
Kidney 1/11 3.44 (--) 6/6 6.34 (<3.40, 8.15)
Spleen 2/10b 3.89 (<3.40, 4.22) 6/6 8.31 (6.92, 9.20)
Mediastinal 

lymph node
1/11 3.44 (--) 6/6 7.75 (7.02, 8.48)

aParameter was log10-transformed for the analysis. LLOQ = 3.40 log10 CFU/mL (triple plating was used for counts 
and <25 colonies were seen on two of three plates).
bIncludes a gepotidacin-treated survivor that was culture-positive at the study end.
c-- Range of counts could not be determined since there was only one positive observation for this group at this 
time point or results were the same.
dCFU, colony-forming units; LLOQ, lower limit of quantification.
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subsequent tissue damage, resulting in enhanced survival. Animals that completed 
the gepotidacin dosing regimen survived until study end, whereas all saline controls 
succumbed to anthrax. Gepotidacin is widely distributed in tissues following i.v. infusion, 
with an alveolar macrophage:unbound plasma AUC ratio of 178:1(33). Once inside 
the lungs, anthrax spores are engulfed by alveolar macrophages and transported to 
mediastinal and peribronchial lymph nodes where the spores may germinate. Given 
the importance of macrophages in the progression of infection (1, 6), the high concen
trations of gepotidacin in the macrophages could be beneficial in terms of cell killing 
once the spores have germinated, potentially limiting progression of the disease. Ionin 
et al. recently described a TNA NF50 threshold predictive of immunity to LT and survival 
of rabbits following anthrax vaccination with subsequent re-challenge (30). In those 

FIG 3 Gepotidacin (GEP)-treated rabbits developed an immune response to lethal toxin. Toxin-neutraliz

ing activity to lethal toxin was evaluated 5 days prior to challenge (all results below the limit of detection 

of 0.054 NF50) and at days 10 and 28 post-challenge in GEP-treated animals. All saline-treated control 

animals (n = 6) succumbed between days 2 and 5 post-challenge.

FIG 4 Gepotidacin (GEP) pharmacokinetic profiles of humans and rabbits (free concentrations). 

Observed plasma free gepotidacin concentrations in humans and rabbits at steady state (day 5 for rabbits 

and day 7 for humans) (mean ± standard deviation). Protein-binding values of 33% and 21.6% were used 

to calculate the free-drug values for human and rabbit respectively.
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studies, a TNA NF50 titer of 0.56 corresponded to a 70% probability of survival in 
rabbits following re-challenge. In the current study, all gepotidacin-treated survivors 
assessed had an NF50 titer greater than 0.56 (1.5–17.5) on day 28 post-challenge. These 
data suggest that following treatment of an active infection with gepotidacin, surviv
ing rabbits may mount an immune response that would enhance survival following 
exposure to a new aerosol challenge or potential germination of residual spores. In 
addition, gepotidacin demonstrated in vitro activity against diverse sets of B. anthracis 
isolates, suggesting gepotidacin would provide coverage against isolates that may be 
encountered in the real world.

One of the therapeutic challenges of anthrax infection is that it is the spore, rather 
than the vegetative cell, that is the infectious agent, and residual spores in the body may 
germinate after cessation of antibiotic therapy, producing an active infection. Follow
ing inhalational challenge, spores are phagocytosed by resident alveolar macrophages 
and dendritic cells and transported via the circulatory system to the mediastinal and 
peribronchial lymph nodes where they germinate. In this study, consistent with the 
hematologic dissemination from the lungs, intravascular bacteria were found in distal 
organs, such as the spleen, liver, and brain, of saline-treated controls. All animals had 
minimal to mild histiocytic cellular infiltrates within the lungs, indicative of an immune 
response to infection; however, there were no microscopic lesions consistent with 
anthrax in the gepotidacin-treated animals.

Steady-state plasma concentrations for rabbits given a dosing regimen designed to 
achieve plasma exposure profiles that simulate the human 1,000 mg i.v. TID regimen 
demonstrated Cmax and AUC values below those seen clinically in humans, demonstrat
ing that the 1,000 mg i.v. TID regimen achieves gepotidacin exposures shown to be 
efficacious in these pivotal Animal Rule studies.

The FDA Animal Rule provides the basis to establish efficacy in support of human 
treatment, using a well-characterized animal efficacy model, in cases where it is not 
practical or ethical to conduct testing on humans (26, 27). The NZW rabbit model of 
inhalational anthrax utilized for this study has been shown to be an appropriate model 
for disease pathogenesis in humans. Furthermore, the similarities of the rabbit model 
to human disease make it suitable for evaluation of antibacterial therapies. The study 
presented here was blinded and randomized and designed to provide pivotal Animal 
Rule efficacy data for use of gepotidacin for anthrax treatment. In vitro studies against 
diverse collections of B. anthracis demonstrated no pre-existing gepotidacin resistance, 
supporting gepotidacin as a potential treatment option against anthrax strains resistant 

FIG 5 Gepotidacin reduced bacterial burden in the lungs following B. anthracis aerosol challenge. 

(A) Pulmonary artery demonstrating bacteremia (arrow) and perivascular edema (star) in the saline 

control rabbit. (B) Mats of intravascular bacteria, seen as bacilli, sometimes forming chains, on high 

magnification. (C) Normal pulmonary artery and small adjacent artery of gepotidacin-treated animals 

demonstrating absence of bacteremia. Magnification A and C, 4X; B, 40X.
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to standard antibiotic classes. The combination of the novel mode of action, in vitro 
activity, a favorable pharmacodynamic profile, and efficacy in the rabbit anthrax model 
supports gepotidacin as a potential treatment for anthrax, including infections caused by 
antibiotic-resistant strains.

MATERIALS AND METHODS

B. anthracis isolate collections and MIC testing

MICs were determined by the broth microdilution method on 130 isolates at USAMRIID, 
including at least 17 genotypes from a diverse geographic distribution (34). Thirty 
additional isolates were tested from the culture collection at Rutgers University. MICs 
were also determined against the attenuated (plasmid-cured ΔANR) B. anthracis Ames 
strain and two single-step DNA gyrase mutant isolates at USAMRIID (35, 36). All testing 
was conducted according to Clinical and Laboratory Standards Institute (CLSI) guidelines 
(37, 38). Gepotidacin MICs were determined for the in vivo B. anthracis Ames challenge 
strain and on positive cultures from terminal blood or tissue sample plates collected from 
gepotidacin-treated animals. Three to five colonies were assayed in triplicate from the 
same inoculum.

Circulating PA levels (PA-ECL)

The presence of B. anthracis PA suggests an active anthrax infection (28, 30, 39) and has 
been correlated with bacteremia. Prior to the challenge, and at 6-h intervals beginning 
24 h post-challenge until 72 h post-challenge, 1 mL of blood was collected in serum 
separator tubes, and an aliquot of the serum was evaluated in the PA-ECL assay. A 
positive PA-ECL result was used as the trigger for treatment (29, 40).

Toxin neutralization assay

The TNA is designed to measure the functional ability of serum antibodies to neutralize 
B. anthracis lethal toxin activity. The assay was performed as previously described using 
an in vitro cytotoxicity assay from the serum sampled, as outlined in Fig. 3 (41).

Preparation of test article and dose formula analysis

Gepotidacin was dissolved in 0.9% sterile saline (pH 5.0 to 5.5) and filter-sterilized. 
All dosing solutions were prepared daily and maintained at ambient temperature for 
infusion. Aliquots from gepotidacin formulations were analyzed on the day of prepara
tion to confirm the concentration of gepotidacin in the dose solution prior to use in the 
study.

In vivo NZW rabbit model of inhalational anthrax

All animal procedures were approved by the GSK’s and Battelle’s (a contract research 
laboratory with expertise in FDA Animal Rule studies) Institutional Animal Care and 
Use Committee and the U.S. Army Medical Research and Materiel Command’s Animal 
Care and Use Review Office and were conducted in an Association for Accreditation 
and Assessment Laboratory Animal Care-accredited facility in compliance with U.S. 
regulations governing the housing and use of animals. This study was conducted in 
coordination with the FDA and was completed under the agency’s Special Protocol 
Assessment process. All exposures and assays were performed in a Biosafety Level-3 
laboratory registered and approved with the Centers for Disease Control and Prevention 
(CDC) and inspected by the U.S. Departments of Defense and Agriculture. The Battelle 
CDC principal investigator approved the use of B. anthracis on rabbits in this study. In 
addition, this study was conducted in compliance and reviewed by the Chair of Battelle’s 
Biological Safety Committee, which has oversight of all risk group 2 and 3 biological 
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research at Battelle. All studies were conducted humanely and complied with national 
laws, guidelines, and company policies for the care, welfare, and treatment of animals.

Test system

Male and female NZW rabbits (Oryctolagus cuniculus) weighing at least 3 kg were 
obtained from Covance (Denver, PA), a U.S. Department of Agriculture-licensed facility. 
All rabbits were confirmed negative for prior exposure to B. anthracis using the TNA 
and for the presence of an active B. anthracis infection using the PA-ECL assay prior to 
challenge. Rabbits were housed individually, in stainless steel cages, on racks equipped 
with automatic watering systems. Rabbits were surgically implanted with dual cath-in-
cath vascular access ports (VAPs) for antibacterial dosing and for blood collection. A 
tether was attached to the jacket and to a swivel in the top of the cage to allow for 
free movement of the animal without twisting the infusion line. Rabbits were observed 
for clinical signs either twice daily [BID (before challenge and from day 7 through day 
28 post-challenge)] or four times daily [QID (from day 1 to day 7 post-challenge)]. Any 
animal judged to be moribund was humanely euthanized.

Surgical procedures

Prior to animal arrival, two VAPs were surgically implanted into rabbits by the vendor, 
one in the jugular vein and the other in the femoral vein. The port from the jugular vein 
catheter was utilized for blood sampling, and the port from the femoral vein catheter 
was used for dosing.

Body temperature

Rabbits were sedated with acepromazine (1 to 5 mg/kg, intramuscularly), and transpond
ers (IPTT-300, BMDS, Seaford, DE) were injected subcutaneously into the rump of each 
rabbit. Mean baseline temperatures were established for each rabbit from day 5 until just 
prior to challenge. Following challenge, temperatures were recorded hourly for the first 3 
days post-challenge and BID from day 4 post-challenge through study termination (day 
28 post-challenge).

Inhalational challenge

Rabbits were exposed (muzzle only) to an aerosolized dose of B. anthracis spores, 
targeting 200 × LD50s (2.1 × 107 spores) by real-time plethysmography (42). Post-expo
sure aerosol concentrations of B. anthracis were quantified by determination of the CFU 
from the effluent streams of the animal exposure port by an in-line impinger (Model 
7541, Ace Glass Incorporated, Vineland, NJ) (29). The gepotidacin MIC for the Ames in 
vivo challenge strain determined at Battelle was 2 µg/mL.

Randomization

Animals were randomized to the treatment group at the time of a positive PA-ECL result 
(trigger).

Test article administration

Intravenous infusions of gepotidacin or vehicle (0.9% saline) were administered based on 
a positive serum PA result in the ECL assay (trigger for treatment). The first treatment was 
initiated within 3 to 4.3 h (mean 3.8 h) of a documented positive ECL result. Gepotidacin 
dose or a corresponding volume of the saline vehicle was based on the individual body 
weights collected on the day of aerosol exposure. Gepotidacin was administered as a 
2-h infusion (30 mg/kg), followed 1 h later by a 4-h infusion of 8 mg/kg. This dose 
regimen was repeated TID every 24 h, for a total daily dose of 114 mg/kg (six total 
infusions). Treatment was continued for 5 consecutive days. Doses were designed to 
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simulate plasma exposures consistent with a human 1,000 mg i.v. TID dose in terms of 
the shape of the exposure profile and daily fAUC values.

Gepotidacin plasma analysis

On treatment days 1 and 5, blood samples were collected prior to treatment (PTT) and at 
2 h, 3 h, 7 h, and 8 h after start of treatment. Blood samples collected from the VAP were 
chilled, centrifuged for plasma processing, filtered, tested for sterility, and maintained 
at ≤–70°C until assayed. Gepotidacin concentrations in plasma were analyzed using 
ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrome
try (MS/MS) detection. Tmax was observed at 2 h after the start of the first and 25th 
infusion for all animals. There was no marked (>2 fold) difference in systemic exposure 
(mean Cmax and AUC0-t values) between females and males after either the first or 25th 
infusions. Free gepotidacin pharmacokinetic analysis results were based on steady-state 
sampling on day 5 for rabbits and day 7 for humans.

Human pharmacokinetics

The pharmacokinetics of gepotidacin following repeat i.v. dosing were previously 
determined in healthy human volunteers in accordance with the International Confer
ence on Harmonization-Good Clinical Practice guidelines and applicable subject privacy 
requirements and guidelines (43). Eight-hour dosing intervals were maintained for TID 
regimens.

Bacteriology assessments

At predetermined time points, whole blood was collected in sodium polyanethol 
sulfonate tubes and was assessed quantitatively for the presence of bacteria with 
colony morphology consistent with that of B. anthracis. Following necropsy and prior 
to fixation, ~1 cm3 samples of the heart, brain, lung, kidney, spleen, lymph nodes, and 
gross lesions from each animal were aseptically collected, weighed, homogenized, and 
cultured by spread plate enumeration and assessed quantitatively for colony morphol
ogy consistent with that of B. anthracis. The bacterial burden was reported as CFU/g 
tissue or CFU/mL of blood. Gepotidacin MICs were determined on any isolates recovered 
from blood and/or tissues of gepotidacin-treated animals by selecting three to five 
colonies and testing MICs in triplicate from the same inoculum.

Necropsy/histopathology

A complete necropsy was performed on all study animals found dead, euthanized in 
moribund condition, or at study termination. Gross necropsies included examinations of 
the external surfaces of the body; all orifices; and the cranial, thoracic, and abdominal 
cavities and their contents. Target tissues including those of the brain, lungs, liver, 
spleen, and mediastinal lymph nodes along with gross lesions were collected, preserved 
in 10% neutral-buffered formalin, stained with hematoxylin and eosin, and examined 
microscopically to confirm death or illness due to anthrax, by a study pathologist who 
was blinded to the treatment group.

Statistical analyses

Boschloo’s tests were conducted in R (version 3.3.1 64-bit). For a one-sided test, the 
0.025 level was considered significant. Analyses were also conducted with SAS (version 
9.4 64-bit). Other analyses were conducted using GraphPad Prism version 7.03, where a 
P-value of <0.05 was considered statistically significant.
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