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Abstract

Kinesins are microtubule-based motor proteins that are well known for their key roles in cell 

biological processes ranging from cell division, to intracellular transport of mRNAs, proteins, 

vesicles, and organelles, and microtubule disassembly. Interestingly, many of the ~45 distinct 

kinesin genes in vertebrate genomes have also been associated with specific phenotypes in 

embryonic development. In this review, we highlight the specific developmental roles of kinesins, 

link these to cellular roles reported in vitro, and highlight remaining gaps in our understanding of 

how this large and important family of proteins contributes to the development and morphogenesis 

of animals.

Introduction:

Microtubules are cytoskeletal elements comprised of tubulin and act as scaffolds for 

intracellular transport of a wide variety of cargoes, including individual proteins, vesicles, 

mRNAs, and even organelles. Microtubule-based transport is orchestrated by motor proteins, 

namely kinesins and dynein, and is integral to differentiation, morphogenesis, and cell 

survival. Dyneins function exclusively in minus-end directed transport and have been 

reviewed extensively elsewhere (Hou and Witman, 2015; Reck-Peterson et al., 2018; 

Viswanadha et al., 2017). By contrast, Kinesins are a large superfamily of proteins that 

are responsible not only for trafficking cellular cargoes along microtubules but also for 

controlling microtubule growth and stability. To date, ~45 different vertebrate kinesins have 

been placed into 15 different subfamilies, generating a wide diversity and specificity of 

function within kinesins (Supp. Table 1)(Miki et al., 2001).

Most kinesins follow a generalized structure: a highly conserved motor domain that 

facilitates binding and release of microtubules through ATP hydrolysis, a long neck 

sequence that allows homo- or heterodimerization, and finally, highly divergent cargo 

binding domains (Hirokawa and Noda, 2008). The 15 different subfamilies have been 

further categorized into three broad categories based on the location of the motor domain: N-

kinesins, C-Kinesins, and M-Kinesins (Figure 1) (Lawrence et al., 2004; Miki et al., 2001). 

N-Kinesins contain a N-terminal motor and are plus-end directed in their movement along 

microtubules (Figure 1A, D). C-Kinesins have a C-terminally located motor domain and are 

minus-end directed microtubule motors (Figure 1B, D). And finally, M-Kinesins contain a 
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“middle” motor that is more centrally located in the peptide and are described generally as 

microtubule depolymerizers (Figure 1C, E). Different motor domains are important for the 

specific microtubule-based functions each kinesin has adopted within the cell (Fig. 2).

How each kinesin interacts with microtubules, and what functions it may display in vitro 
have been relatively well defined (Supp. Table 1; Cellular roles), and the atomic structures 

and biophysical properties of kinesins have been reviewed extensively elsewhere (Endow et 

al., 2010; Verhey and Hammond, 2009; Wang et al., 2015). By contrast, the ways in which 

kinesins contribute to overall organismal development remain far less well defined, so in this 

review, we aim to highlight the specific functions of kinesins in embryonic development. 

Generally, these fall within five broad categories, which we address in turn below: (i) 

kinesins required for early axis specification by transporting maternal determinants prior to 

or as the result of fertilization; (ii) mitotic kinesins necessary for successful mitosis and 

meiosis (Fig. 2A); (iii) ciliary kinesins necessary for the formation, function, and regulation 

of cilia (Fig. 2B); (iv) kinesins essential for axonal and dendrite formation and function in 

neuronal tissues (Fig. 2C); and (v) kinesins required for development of specific organs and 

tissues.

In Supplemental Table 1, we provide a full accounting of all mammalian kinesins, their 

cell biological roles as established by in vitro studies, and in vivo phenotypes in animal 

models or humans. In the main text of this review, we will highlight the links between 

different kinesins’ cellular functions and specific processes in embryogenesis, we note gaps 

that remain in understanding, and highlight the most exciting questions left to answer in 

kinesin developmental biology.

Transport of polarizing maternal determinants:

In a variety of different organisms, the embryonic axes are established prior to or as the 

result of fertilization. Interestingly, the establishment of these embryonic axes are often 

dependent upon microtubule-based transport. Most notably, axis specification is dependent 

upon specific members of the N-type kinesins for transport of maternally deposited mRNAs 

and proteins (Supp. Table 1). N-type kinesins regularly partake in transporting maternal 

determinants through a variety of different mechanisms that highlight an evolutionarily 

conserved function. Here, we will review the contribution of kinesins in early axis 

specification in D. melanogaster, X. laevis, and D. rerio.

Prior to fertilization, the D. melanogaster oocyte establishes an anterior/posterior axis 

by polarizing maternally deposited mRNAs and proteins. How maternal determinants are 

polarized in the oocyte has been the subject of much debate for years, however, live 

imaging revealed oskar mRNA was actively transported along microtubules (Zimyanin et 

al., 2008). Though microtubules are oriented in every direction in the embryo, there is 

a slight biased orienting of plus-ends towards the posterior pole (Zimyanin et al., 2008). 

More detailed analysis later showed that oskar mRNA and Staufen protein are posteriorly 

localized via multiple modes of activity of the N-terminal plus-end directed Kinesin-1 motor 

(Brendza et al., 2002, 2000; Clark et al., 1994). In order to properly localize oskar mRNA 

and Staufen protein, Kinesin-1 transports oskar and Staufen in a two part mechanism: 
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(i) by directly transporting the mRNA and protein as cargo and (ii) by participating 

in “microtubule sliding” where Kinesin-1 binds microtubules as cargo and walks along 

neighboring microtubules to produce a “sliding” effect (Lu et al., 2016; Métivier et al., 

2019). This microtubule sliding activity of Kinesin-1 in flies is critical for cytoplasmic 

streaming in Drosophila oocytes that further reinforces oskar and Staufen localization at the 

posterior pole of the oocyte (Lu et al., 2016).

Interestingly, while Kinesin-1 contributes to overall posterior localization of Staufen and 

oskar mRNA via these mechanisms, an interesting dynamic occurs between Kinesin-1 and 

Myosin-V at the posterior pole (Lu et al., 2020). Kinesin-1 actively continues to transport 

Staufen and oskar mRNA moving them away from the posterior cortex, however, Myosin-

V actively works to anchor oskar and Staufen to the posterior cortex (Lu et al., 2020). 

Eventually Myosin-V wins this battle-of-motor proteins due to the low microtubule density 

at the posterior pole, anchoring Staufen and oskar mRNA to the posterior cell cortex (Lu 

et al., 2020). Altogether the activity of Kinesin-1 posteriorly localizes oskar mRNA and 

Staufen protein in the D. melanogaster oocyte which are each separately critical for axis 

specification prior to fertilization.

X. laevis, on the other hand, offers an example of post-fertilization axis specification that 

also requires kinesin activities. In Xenopus, sperm entry triggers the assembly of maternally-

deposited cortically-located microtubules to position and anchor their plus ends to the 

future dorsal cell cortex (Elinson and Rowning, 1988; Olson et al., 2015). These parallel 

microtubule arrays are essential for the transport of maternally deposited factors to the 

future dorsal side of the embryo in a process termed “cortical rotation.” Specifically, these 

microtubules are thought to act as tracks for the dorsal translocation of several regulatory 

factors, including the Frat1/GBP and Dishevelled proteins, as well as β-catenin, Vg1 and 

Wnt11 mRNAs (Miller et al., 1999; Schroeder et al., 1999; Tao et al., 2005; Weaver 

et al., 2003). Strikingly, two sets kinesins transport different mRNA and protein cargoes 

during these translocation events. Specifically Kinesin light chain (Klc4) was shown to both 

bind, and be required for transport of Frat1/GBP(Weaver et al., 2003), while the Kinesin-2 

complex, Klp3A/3B (the homolog of mammalian Kif3A/3B), specifically transports Vg1 

mRNA (Betley et al., 2004). The transport of these maternal mRNAs and proteins by 

two separate kinesins in X. laevis highlights how kinesins have evolved highly specific 

interactions with their cargoes. The dorsal translocation activities of these kinesins and the 

determinants they carry as cargo is central to the establishing the dorsal/ventral axis of the 

embryo and initiating the program for formation of the Nieuwkoop center and later the 

Spemann-Mangold organizer (Gerhart et al., 1991; Weaver and Kimelman, 2004; White and 

Heasman, 2008). In the absence of cortical rotation, the embryo becomes ventralized and 

fails to form any dorsal structures essential for survival.

Interestingly, Kinesin-1 family members in D. rerio serve similar functions to D. 
melanogaster and X. laevis in early embryo axis specification. Specifically, Kif5Ba 

has similar dorsalizing activity to that of Xlc4 and Kif3A/B in X. laevis, while also 

participating in microtubule organizing activities that have been described with Kinesin-1 

in D. melanogaster. Kif5Ba promotes formation of parallel microtubule arrays and delivers 

wnt8a and Syntabulin to the future dorsal side of the zebrafish embryo (Campbell et al., 
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2015). This dual function for kinesins in early embryo axis specification is both essential 

and conserved at some level in vertebrate axis specification. However, how kinesin family 

members may contribute to early mammalian embryonic axis specification remains an 

interesting area for future work.

Early embryonic cell cycle progression:

The earliest phase of development in most animals involves a period of remarkably rapid 

cell division. In order to execute mitosis, cell division is highly dependent upon a complex 

set of microtubule movements, alignments, and attachments that requires a diverse set of 

kinesins. Though such cleavage divisions in most embryos lack many of the cell cycle 

controls in place in adult cells, they nonetheless still require the proper microtubule 

dynamics, alignment, and attachment to cargoes or adaptors to ensure faithful segregation of 

chromosomes. A huge number of distinct kinesins have been implicated in diverse aspects of 

cell division in vitro (Fig. 2), so it is interesting that Kif11, Kif22, and Kif10 (Fig. 2A, 3A) 

have also been shown to play specific roles in embryonic cleavage and knockout of any one 

leads to cell cycle arrest and early embryonic death in mice (Supp. Table 1).

Kif11 has been shown in vitro to be required for spindle bipolarity/poleward flux at 

metaphase (Fig. 2A) (Heck et al., 1993; Sawin et al., 1992). Kif10 is required at the 

kinetochore to ensure proper chromosome alignment during mitosis (Fig. 2A) (Brown et 

al., 1996; Putkey et al., 2002; Wood et al., 1997; Yao et al., 2000; Yen et al., 1992). 

Finally, Kif22 is classified as a chromokinesin, meaning its cargo binding domain is capable 

of binding chromosomes. As such Kif22 is required for chromosome movements during 

prometaphase and metaphase (Fig. 2A) (Antonio et al., 2000; Levesque and Compton, 2001; 

Ohsugi et al., 2008; Tokai et al., 1996; Tokai-Nishizumi et al., 2005; Zhu et al., 2005). 

In addition to mammalian kinesins, the microtubule depolymerizing kinesin, KLP10A, 

related to the Kinesin-13 family in mammals, has dual roles in cell cycle progression in 

D. melanogaster. In females, KLP10A has been shown to control acentrosomal spindle 

organization and dynamics in oocytes (Radford et al., 2012), while also controlling 

centrosomal length in D. melanogaster male germline stem cells (GSCs) (Chen et al., 2016). 

Given the myriad functions of kinesins in mitosis, these studies highlight the power of 

intersecting cell biology in vitro with genetics in vivo for understanding kinesin function 

during development.

Cilia formation and function during development:

Cilia are microtubule-based projections of the cell that function in signaling and fluid flow 

in many developing organisms. During development, two types of cilia are integral for 

the organism: primary cilia are essential organelles for processing signaling events that 

govern embryonic patterning, while motile cilia generate polarized fluid flows essential 

to both patterning and homeostasis in tubular organs. Cilia rely heavily upon kinesins for 

their formation, function, and regulation in a variety of different manners. Although ciliary 

kinesins have been extensively reviewed relatively recently (Lechtreck, 2015; Reilly and 

Benmerah, 2019; Scholey, 2008), we will briefly review them here with an emphasis on 

developmental contexts.
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Intraflagellar Transport (IFT):

Intraflagellar Transport (IFT) is the process by which ciliary components are actively 

transported from the basal body, a modified mother centriole, into the cilium and out again. 

IFT is essential for the proper assembly and maintenance of each and every cilium and 

it, too, has been reviewed extensively elsewhere (Prevo et al., 2017; Reilly and Benmerah, 

2019; Scholey, 2008). The Kinesin-2 family is indispensable for IFT, with Kif3A and 

Kif3B serving as motors required for anterograde movement of IFT in all cilia types 

(Fig. 2B, Supp. Table 1). In multiple animal models, loss of Kif3A/B function leads to 

global ciliogenesis defects in every ciliated cell type (Supp. Table 1). Kif3A and Kif3B 
mutant mice are embryonic lethal due to exencephaly and laterality defects associated with 

ciliogenesis defects (Marszalek et al., 1999; Nonaka et al., 1998; Takeda et al., 1999). 

Interestingly, the two other kinesins of the Kinesin-2 family, Kif17 and Kif3C, have been 

implicated in IFT in specific tissues in C. elegans and zebrafish (Supp. Table 1), however 

their roles in IFT in mammals remains unclear (Jiang et al., 2015). Kif17 (osm-3 in C. 
elegans) has been well-described as an “accessory” IFT motor that aids in assembly of distal 

segments in specialized cilia types both in C. elegans and in D. rerio (Insinna et al., 2008, 

2008; Zhao et al., 2012). Most interestingly, Kif17 is homodimeric and walks at a slower 

rate than the Kif3A/3B kinesin complex. When bound to an IFT train with Kif3A/3B, a 

recent study found that the two kinesin complexes find a walking rate between the rate of the 

faster and slower kinesins (Milic et al., 2017). This unique cooperation between the two sets 

of motors highlights the complex molecular interactions that can occur between kinesins.

Primary cilia:

Primary cilia act as signaling antenna, transmitting signals like Sonic Hedgehog (Shh) that 

are vital for proliferation, cell survival, and specification during development (Bangs and 

Anderson, 2017). Primary cilia are present on mitotically active cells and are continually 

assembled and disassembled when entering and exiting the cell cycle. Here, we will discuss 

the kinesins important for Shh signaling and ciliary disassembly.

How the cilium transmits Shh signals detected within the cilium to the rest of the cell still 

remains an active area of research, but myriad studies have demonstrated that activation 

requires the localization of Shh signaling components to the ciliary tip. Interestingly, 

the atypical kinesin Kif7 organizes this compartment of primary cilia by regulating the 

length of ciliary microtubules at the tip and binding Gli proteins, the transcription factors 

responsible for downstream Shh signaling (Cheung et al., 2009; He et al., 2014; Liem et al., 

2009). Consistent with this cell biological function, Kif7 mutant mice phenocopy mice with 

mutations in the Shh pathway, dying at the end of gestation with polydactyly and expanded 

motor neuron fates (Liem et al., 2009).

Both assembly and disassembly of primary cilia are closely linked with the cell cycle, 

and accordingly, both processes are essential for normal signaling. Cycling cells assemble 

primary cilia during interphase and disassemble cilia when entering mitosis (Wang and 

Dynlacht, 2018). For disassembly, two Kinesin-13 family members are essential: Kif2A 

and Kif24 (Fig. 2B). In general, the Kinesin-13 subfamily acts as M-type depolymerizing 

kinesins. Kif2A interacts with Polo Like Kinase 1 (PLK1) upon entry into the cell cycle 
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and mediates primary cilia disassembly (Broix et al., 2018; Miyamoto et al., 2015). This 

kinesin has also been shown to depolymerize axonal microtubules (Homma et al., 2003). 

Kif2A mutant mice are embryonic lethal with severe brain defects partially due to cell death 

of neural progenitors due to improper disassembly of cilia upon cell cycle entry (Broix et 

al., 2018; Homma et al., 2003). Interestingly, the other Kinesin-13 member Kif24, which is 

mammalian specific, is suggested to play a similar role in ciliary disassembly in cell culture, 

though no in vivo validation has been reported (Supp. Table 1, Fig. 2B) (Kim et al., 2015; 

Kobayashi et al., 2011).

Motile cilia and multiciliated cells:

Motile cilia play diverse roles in embryonic development. Single motile cilia are required to 

move fluid and signals that break the left/right symmetry of the embryo (Little and Norris, 

2020). On the other hand, multiciliated cells have dozens of motile cilia located in the 

brain (i.e. ependymal cells), the trachea, and male/female reproductive tracts where they 

move fluids to ensure the development and health of those tissues (Brooks and Wallingford, 

2014). Additionally, sperm have motile flagella that are essential for sperm movement. A 

variety of kinesins, including the IFT kinesins, are important for the formation, function, and 

regulation of motile cilia. In addition, several non-IFT kinesins have been linked to motile 

cilia specific roles. This set of kinesins are often identified as being direct targets of the 

master motile cilia transcription factor FoxJ1 (Choksi et al., 2014a, 2014b; Jacquet et al., 

2009); these include: Kif6, Kif9, Kif27, Kif19A and Kif18B (Fig. 2B).

Kif6 and Kif9 are the only two members of the Kinesin-9 super family and both have 

been linked to motile cilia function, albeit through separate and specific functions. This 

family is thought to consist of N-type motors, although the precise walking and molecular 

capabilities of these two kinesins remains unexplored. We recently reported that Kif6 is 

expressed in a highly tissue-specific manner and is specifically required for ciliogenesis of 

multiciliated ependymal cells in the brain (Fig. 3), while deleterious mutations in Kif6 does 

not affect other multiciliated tissues in mice or zebrafish (Buchan et al., 2014; Konjikusic et 

al., 2018). In contrast, Kif9 is not required for ciliogenesis, but rather is necessary for ciliary 

beating. Klp1 is the Kif9 homologue in the ciliated algae Chlamydomonas, and it localizes 

to the central apparatus of motile flagella, and its loss leads to structural disruption of the 

central pair and defective flagellar beating (Bernstein et al., 1994; Yokoyama et al., 2004). 

Moreover, a recent study reported that Kif9 mutant mice have impaired sperm flagellar 

motility (Miyata et al., 2020). Intriguingly, this study observed no hydrocephaly in their Kif9 
mutant mice, suggesting that Kif9 is dispensable for ependymal cell cilia motility, while 

analysis of the multiciliated cells of the trachea or oviduct was not reported.

Kif27 is a mammalian-specific paralog of the Kinesin-4 protein Kif7 and has been found 

to function specifically in motile cilia (Fig. 2B). Mouse Kif27 knockout results in situs 

inversus, hydrocephaly, and otitis media, all phenotypes linked to motile cilia dysfunction 

(Vogel et al., 2012). Kif27 thought to be required for assembly of the central pair of 

microtubules and localizes to basal bodies of trachea multiciliated cells (Wilson et al., 2009; 

Yue et al., 2018). The precise function of Kif27 remains to be determined, but in vitro, this 
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kinesin is slowly processive and can inhibit microtubule growth (Wilson et al., 2009; Yue et 

al., 2018)

Finally, the two other kinesins with suggested roles in motile cilia, Kif19A and 

Kif18B, are part of the Kinesin-8 family, motors that primarily function in microtubule 

depolymerization. Kif19A localizes to the tip of these multiciliated cells where it 

depolymerizes microtubules to regulate ciliary length (Niwa et al., 2012; Wang et al., 2016, 

p. 19). In fact, Kif19A knockout mice present with hydrocephalus and display longer cilia 

on their ependymal and tracheal/oviductal multiciliated cells, presumably causing disrupted 

fluid flow in these tissues (Niwa et al., 2012). The other Kinesin-8 family member, Kif18B 

can promote microtubule catastrophe of the mitotic spindle in cell culture but has also been 

reported to be a target of FoxJ1 and loss of function in zebrafish showed shorter motile cilia 

in the pronephros (Choksi et al., 2014a). To date there is no mammalian Kif18B mutant 

reported to validate a role in mammalian multiciliated cells.

Development of the brain and central nervous system (CNS):

The development of the central nervous system is a complex process requiring proliferation 

of neural progenitors, extension of long polarized microtubule-based axonal/dendritic 

processes, transport of support factors along these microtubule-based extensions, and later 

transport of neurotransmitters/ signals to/from nearby cells. It is no surprise, then, that many 

of the 45 kinesins have been linked to the CNS in one way or another (Fig. 3C, Supp. Table 

1). Although the function of kinesins in the CNS has been reviewed at length (Hirokawa et 

al., 2010), we will briefly review their roles with a focus on developmental contexts.

Mitosis and Proliferation in the Brain and CNS:

As described above (see early embryonic cleavages), successful completion of mitosis and 

proliferation/differentiation of cells is critical for the development of any given tissue in 

the embryo. Cells must not only replicate themselves to form more progenitor cells (a 

term called “symmetric divisions”), but ultimately divide to replicate two daughter cells 

with two separate states: progenitor and non-progenitor-like states (“asymmetric divisions”). 

The development and homeostasis of the brain and CNS is no different. Interestingly, 

two Kinesin-6 family members play separate and specific roles in mitotic events and 

proliferation decisions in the CNS. Kif20A is required for the control of symmetric vs. 

asymmetric cell divisions in the developing CNS, so Kif20A knockout mice are embryonic 

lethal, displaying smaller brain and body size due to increased apoptosis in the brain 

caused by improper cell division decisions (Geng et al., 2018). In contrast, Kif20B controls 

midbody organization during cytokinesis in polarized cortical stem cells. Knockout in 

mouse leads to perinatal lethality and microcephaly caused by loss of midbody organization 

(Janisch et al., 2018, 2013). These examples highlight the fact that despite close homology, 

kinesins have frequently evolved highly divergent roles in mitosis in distinct tissues in the 

developing brain and CNS.
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Axonal outgrowth:

Axons are long, polarized, microtubule-based neuronal projections that send signals from 

the neuronal cell body to other cells. Axons extend from the cell body, orienting their 

minus ends towards the cell body, and the plus-ends/growing ends of microtubules towards 

the tip of an axon (Figure 2C). While the generation and dynamics of the axonal growth 

cone is heavily dependent upon the actin cytoskeleton and its dynamics (Dent et al., 2011), 

axons still rely on kinesins for axonal outgrowth in a variety of ways (Hirokawa et al., 

2010). Two mammalian kinesins, Kif21A and Kif5A (Fig 2C), that have been linked to 

the control of axon outgrowth by separate and specific functions. First, Kif21A, a member 

of the Kinesin-4 family, acts via microtubule growth inhibition at the cell cortex, allowing 

microtubules to accumulate within the axon rather than at the cortex (van der Vaart et al., 

2013). Mutations in Kif21A in human and mouse are associated with Congenital Fibrosis 

of the Extraocular Muscles Type 1 (CFEOM1) resulting from aberrant axon morphology 

and reduced responsiveness to inhibitory cues (van der Vaart et al., 2013; Yamada et al., 

2003). On the other hand, Kif5A is required for axonal outgrowth through the transport 

of neurofilaments (Xia et al., 2003, p. 200). Loss of Kif5A in mouse leads to loss 

of large caliber axons and neurofilament accumulation in neuronal cell bodies (Brenner 

et al., 2018; Nicolas et al., 2018; Reid et al., 2002). Interesting, in D. melanogaster 
Kinesin-2 also contributes to axonal outgrowth and microtubule polarity by guiding plus-

ends towards axonal outgrowths and actively excluding them from dendrites via the existing 

microtubule network (Mukherjee et al., 2020). The plus-end directed motion of Kinesin-2 

guides growing microtubules as cargo towards existing plus ends, further elongating axons, 

while preferential excluding them from dendrites where microtubule polarity is minus-ends 

outward (Mukherjee et al., 2020). Additional kinesins have been linked to axonal outgrowth, 

but further analysis is warranted (see Supp. Table 1).

Axonal Transport:

Once axonal outgrowth is completed, plus-/minus-end directed transport along fully 

developed axons is also highly dependent upon kinesins. Several kinesins have evolved 

specific roles in axonal transport, but unlike Kif5a, are not required for axon outgrowth 

(Fig 2C). For example, Kif1A and KifC2 are required for bidirectional vesicular transport 

along axons: Kif1A is a neuronal-specific kinesin required for plus-end directed transport 

of presynaptic vesicles from the cell body to the axon, and knockout mice die shortly after 

birth due to motor and sensory neuron deficiencies (Hall and Hedgecock, 1991; Okada et 

al., n.d.; Otsuka et al., 1991; Stavoe et al., 2016; Yonekawa et al., 1998). Conversely, KifC2, 

a C-type kinesin in the Kinesin-14B family, is thought to contribute to minus-end directed 

vesicular transport from the axon back to the cell body, however validation in mice showed 

no obvious phenotypes as mutants were viable and fertile (Hanlon et al., 1997; Saito et al., 

1997). This effect may be due to genetic compensation (see below). Rather than vesicles, 

Kif13A can directly bind and transport specific proteins within axons (Zhou et al., 2013). 

Kif13A mutant mice develop normally and are adult-viable but display high-level anxiety 

phenotypes caused by loss of serotonin receptor transport (Delevoye et al., 2009; Nakagawa 

et al., 2000; Sagona et al., 2010; Zhou et al., 2013). Finally, the Kinesin-1 family member 

Kif5C has been exhaustively studied in vitro for its role in intracellular cargo transport, yet 

Kif5C knockout mice are viable. They do, however, develop with smaller brain sizes due 
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to an overall loss of motor neurons (Kanai et al., 2000). It is not understood how Kif5C 

contributes to maintenance of motor neurons through axonal transport (Kanai et al., 2000), 

and a more in-depth analysis is warranted.

Dendrite formation and transport:

Dendrites are the site for receiving neuronal signals. Interestingly, unlike axons, dendrites 

have a mixed polarity of microtubules, leading to minus ends and plus ends pointing towards 

and away from the cell bodies. This means that while axons are very polarized, dendrites do 

not have the stringent traffic patterns observed in axons. Interestingly, though we will not 

expand on this here, actin also has a role in dendrite formation and maintenance (Konietzny 

et al., 2017). Dendrites are typically not as long and large as axons, but they are microtubule 

based and do require kinesins for their formation and function.

Several kinesins have implicated dendritic functions: Kif3B, Kif21B and KifC2 (Fig. 2C). 

Interestingly, a recent report found human patients with schizophrenia associated with Kif3B 

mutations (Alsabban et al., 2020). This study further showed Kif3B heterozygous mice 

displayed schizophrenic phenotypes and abnormal dendritic spine morphology due to loss 

of specific NMDAR receptor transport (Alsabban et al., 2020). On the other hand, a recent 

study expressed human missense variants of Kif21B in mouse and found that the mice 

developed microcephaly and suggested a role for Kif21B in axonal transport (Asselin et al., 

2020) (see below in kinesins in human diseases). However, Kif21B has also been shown 

to be responsible for branching of the dendritic arbor and spine formation (Supp. Table 1; 

(Joseph R. Marszalek et al., 1999; Muhia et al., 2016). Cell culture experiments support 

the necessity of KifC2 for dendritic transport, however as discussed above, KifC2 mouse 

mutants are viable and fertile.

Organogenesis:

The development of each organ in the vertebrate body requires fine regulation of cell 

division, complex organizations, and specific polarization of multiple cells within the tissue. 

These processes are heavily reliant on microtubules, so it is not surprising that some kinesins 

display specific roles in organogenesis (Fig. 3). Here, we will review these roles on an organ 

by organ basis.

Kidney development:

Several kinesins have associations with development of the kidney in mouse, zebrafish and 

human (Fig. 3C), and these fall into two separate categories: (i) the necessity for cilia in 

proper renal function and (ii) the general development of the tissue.

The first category is closely linked to roles in the cilium. Cilia-mediated signaling is 

essential for mechano-sensation of fluid flow through renal ducts, and ciliary dysfunction 

leads to Polycystic Kidney Disease (PKD) (Veland et al., 2009). The IFT kinesins have 

been linked to PKD but we will not discuss their roles here as they are described above 

(see ciliary kinesins section). Interestingly, Kif12 is a non-IFT kinesin that has a potential 

link to ciliary function in the mammalian kidney (Fig. 2B, Fig. 3C). Kif12 has been 

transcriptionally linked to PKD through mouse models (Gong et al., 2009). Additionally, 
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localization of Kif12 has been found at the primary cilia in the mouse kidney though its 

developmental function has yet to be defined in an animal model (Gong et al., 2009; Mrug et 

al., 2015).

Two kinesins have discreet non-ciliary functions in kidney development (Fig. 3C). Kif26B 

is required for migration and polarization of the mesenchyme that surrounds the ureteric 

bud during development (Guillabert-Gourgues et al., 2016; Uchiyama et al., 2010). Kif26B 
mutant mice die 24 hours post birth due to kidney agenesis (Uchiyama et al., 2010). On the 

other hand, human mutations in Kif14 and analysis in developing zebrafish suggest a role 

for this kinesin in renal hypodysplasia stemming from improper cytokinesis (Carleton et al., 

2006; Filges et al., 2014; Gruneberg et al., 2006; Makrythanasis et al., 2018; Moawia et al., 

2017; Reilly et al., 2019).

Enteric nervous system (ENS) development:

While many kinesins are required for the development of the CNS in a variety of different 

manners (see above), one has a particular role in the development of the enteric nervous 

system (ENS) (Supp. Table 1, Fig. 3D). The ENS is a separate neuronal system which 

innervates the gut to control the digestive system (Rao and Gershon, 2016). Kif26A is an 

atypical kinesin in that it lacks the typical ATPase activity of the motor domain. It has been 

shown to negatively regulate GDNF/Ret signaling important for ENS development but has 

also been proposed to stably bind microtubules and regulate the length of neurites in the 

ENS, although this has not been shown in depth (Zhou et al., 2009). Kif26A mutant mice 

are born at normal mendelian ratios but die at 5 weeks of age with megacolon due to failure 

of neurite overgrowth in the ENS (Zhou et al., 2009). The mechanism to which Kif26A 

controls ENS neurite outgrowth may not be fully defined, but it offers another clear example 

of tissue-specific roles adopted by certain kinesins.

Female/male fertility:

Intriguingly, some kinesins show a specific role in mammalian fertility (Supp. Table 1, Fig. 

3F). Among these, Kif18A is the most interesting, as it is required in both female and male 

fertility. Interestingly, Kif18A male and female mutant mice are born and develop normally, 

but are infertile (Czechanski et al., 2015) because Kif18A is specifically required for cell 

cycle progression of germ cells during gonad development (Czechanski et al., 2015; Liu et 

al., 2010; Mayr et al., 2007; Stumpff et al., 2012, 2008). How this kinesin has evolved such a 

specific role in gonadal development remains to be explored.

Primitive endoderm/Epiblast:

Kinesins are classically known as microtubule-based transport motors, required for transport 

of signals, organelles, and cargos across the cell. One kinesin is required for intracellular 

transport of a specific receptor during early embryonic development, Kif16B (Fig. 2D, 

3A). Prior to creation of a mouse knockout, Kif16B was well-described to participate 

in endosome trafficking and recycling in vitro and in cell culture (Blatner et al., 2007; 

Hoepfner et al., 2005). However Kif16B knockout in mouse revealed that Kif16B is 

specifically required for endosomal trafficking of FGFR in the early embryo (Ueno et al., 

2011). Upon loss of function, Kif16B mutant embryos fail to form epiblast and primitive 
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endodermal cell lineages due to the loss of FGFR transport, leading to embryonic lethality 

prior to implantation (Ueno et al., 2011). This phenotype closely mimics phenotypes 

associated with FGFR mutant mice (Arman et al., 1998). It is the combined in vitro cell 

culture and in vivo work that defined the developmental role Kif16B plays in the mouse 

embryo.

Genetic compensation:

Genetic compensation is common in gene families with high sequence homologies (El-

Brolosy et al., 2019), as is the case for kinesins. Moreover, recent studies have revealed 

that genetic compensation plays a significant role in dictating phenotype severity in mutant 

analysis in vivo (El-Brolosy et al., 2019). We suggest that more in depth investigation of 

genetic compensation between kinesins could provide important insights into previously 

undefined developmental roles, so we offer two examples here:

The kinesin-3 family contains two highly homologous kinesins, Kif13A and Kif13B 

(Hirokawa et al., 2009). Kif13B knockout mice develop completely normally and are viable 

(Kanai et al., 2014). Knockout of Kif13A alone also produces no severe developmental 

phenotype, although these mice do display high level anxiety phenotypes (Zhou et al., 

2013). Work in cell culture suggested a role of Kif13B in controlling the structure and 

signaling functions of cilia (Schou et al., 2017), so it was striking that when Kif13A 
and Kif13B double knockout mice were generated, they displayed perinatal lethality with 

craniofacial abnormalities but did not display other ciliary related phenotypes such as 

polydactyly or exencephaly. Because cilia mediated Shh signaling is integral to craniofacial 

development (Schock and Brugmann, 2017), this genetic experiment suggest the possibility 

of a highly tissue-specific role for Kif13A/B in craniofacial ciliogenesis.

Within the Kinesin-2 family, studies in zebrafish also reveal a specific genetic compensation 

between Kif3B and Kif3C (Zhao et al., 2012). Kif3A can dimerize with either Kif3B or 

Kif3C (Muresan et al., 1998; Nonaka et al., 1998; Yamazaki et al., 1996). However, the 

role of Kif3C in animal development remains largely unclear. Double knockout of kif3B 
and kif3C in zebrafish shows a complete loss of photoreceptor and hair cell cilia that is not 

present in either kif3B or kif3C knockout zebrafish alone (Zhao et al., 2012). In either case, 

the clear genetic compensation between Kif3 proteins demonstrates that highly homologous 

kinesins can serve redundant roles. Many other kinesins display high levels of homology 

within families and could easily function redundantly during development. More in-depth 

genetic studies of homologous kinesins in vivo should reveal previously undetected roles in 

animal development.

Kinesins in human genetic disorders:

Given the diversity of kinesin function during developmental and physiology described 

here, it is no surprise that kinesins are also implicated in human disorders and disease, as 

was recently reviewed elsewhere (Kalantari and Filges, 2020). In addition to many roles 

in cancer progression (Rath and Kozielski, 2012), many so-called “Kinesinopathies” are 

effectively modeled by mouse/zebrafish developmental mutant phenotypes (Supp. Table 1). 
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On the other hand, some kinesins display discrepancies between human disease phenotypes 

and those reported in animal models (Supp. Table 1), though more detailed analysis is 

now clarifying these discrepancies and offering insights into previously overlooked kinesin 

functions.

One recent example involved expression of human missense variants of Kif21B in 

mouse confirming human microcephaly associations (Asselin et al., 2020). In addition to 

humanized mutational analysis in vertebrate models, kinesin biologists should not ignore the 

power of mouse conditional genetics when it comes to in vivo analysis. A recent study used 

conditional knockout out Kif11 specifically in vascular endothelial cells to overcome early 

embryonic necessity, which revealed vascular defects in the retina and slower proliferation 

of the cerebellum, mimicking several symptoms associated with Kif11 mutations in human 

that were previously overlooked (Wang et al., 2020). While it remains possible that several 

kinesins have evolved differential functionality in humans in comparison to roles shown in 

other vertebrates, it is likely that more in depth in vivo studies via humanized mutational 

analysis or conditional genetic approaches in animal models will continue to offer insights 

into human disease phenotypes.

Conclusions:

Here, we have outlined the central roles of kinesins during embryonic development. These 

include regulating cell division and cargo transport in a variety of different tissues and/or 

cellular compartments, as well as in regulating the length and stability of microtubules in 

the same or different cell types and tissues. Within subfamilies of kinesins, we observe both 

redundant roles between family members, and extremely divergent roles. Some kinesin 

family members play specific roles in specific tissues during development (e.g. Kif6, 

Kif18A, Kif26B, and Kif26A), while others play multiple roles in several different tissues 

(Supp. Table 1, Fig. 2). How certain kinesins have evolved such specific roles in tissue 

development remains to be explored and will elucidate links between kinesin evolution and 

the evolution of their cargos, transport, and microtubule interactions. Several kinesins clearly 

are understudied in vivo, and demand our attention (e.g. KifC2, Kif2B, Kif24, Kif25, Kif12, 

Kif19B, and Kif16A; Supp. Table 1). Additionally, some kinesins have been reported in 

human disease and disorders yet their etiology remains only poorly defined (e.g. Kif16A, 

Kif16B, Kif1B, and Kif21B;Supp.Table 1, (Asselin et al., 2020).

Finally, most kinesins have been studied in some capacity with regard to in vivo analysis, but 

some have no observable phenotype in vertebrate models. Although it remains a possibility 

that they are dispensable for development, the high homology between certain members of 

kinesin families leads us to hypothesize that they may function redundantly. As we have 

outlined, several kinesins have already been subject to such analysis and have redundant 

roles. We suggest then a more detailed phenotypic analysis for the compensation between 

kinesins family members may lead to exciting and previously undefined developmental 

roles.
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Figure 1. Schematic representing motor domain locations in N-, C-, and M-type kinesins.
Figure 1A. Schematic of N-type kinesins with N-terminal motor domains. Figure 1B. 

Schematic of C-type kinesins with C-terminal motor domains. Figure 1C. Schematic of 

M-type kinesins with motor domains located in the middle of the polypeptide. Figure 1D. 

Schematic depicting general direction of movement along microtubules of N- and C-type 

kinesins. N-type are plus end directed, while C-type are minus end directed. Figure1E. 

Schematic depicting M-type kinesins as microtubule depolymerizing kinesins, regulating 

plus end growth by depolymerizing microtubules at these locations. Inset acts as legend for 

figure.
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Figure 2. Cellular functions associated with kinesin. Figure 2A.
The kinesins found to have a role in mitosis either in vivo and/or in cell culture categorized 

by the exact functions they have in mitosis. Figure 2B. Kinesins found to have functions 

in cilia, categorized by the type of cilia and functions they have within cilia. Figure 2C. 

Kinesins who have a neuronal role categorized by the functions they have in dendrite and 

axon outgrowth or axonal transport. Figure 2D. Kinesins associated with organelle and 

vesicle intracellular transport categorized by the type of cargo they transport. Names of 

kinesins are color coded to match the subcellular functions associated with each kinesin.
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Figure 3. Developmental functions of each kinesin with confirmed in vivo studies categorized by 
organ and tissue.
All kinesin names are color coded to match cellular roles defined in Figure1. Red for 

mitosis, yellow for cilia, blue for neuronal functions, and green for vesicle/endosome 

transport. Figure 3A. Kinesins required for embryonic development. Figure 3B. Kinesins 

required for development of brain and central nervous system. Figure 3C. Kinesins required 

for male and female fertility. Figure 3D. Kinesins required for kidney development. Figure 

3E. Kinesins required for respiratory tract development. Figure 3F. Kinesins required for the 

development of the intestinal tract.
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