
Molecular Biology of the Cell • 35:mr2, 1–13, March 1, 2024 35:mr2, 1  

From pixels to phenotypes: Integrating image-
based profiling with cell health data as BioMorph 
features improves interpretability

ABSTRACT Cell Painting assays generate morphological profiles that are versatile descrip-
tors of biological systems and have been used to predict in vitro and in vivo drug effects. 
However, Cell Painting features extracted from classical software such as CellProfiler are 
based on statistical calculations and often not readily biologically interpretable. In this study, 
we propose a new feature space, which we call BioMorph, that maps these Cell Painting fea-
tures with readouts from comprehensive Cell Health assays. We validated that the resulting 
BioMorph space effectively connected compounds not only with the morphological features 
associated with their bioactivity but with deeper insights into phenotypic characteristics and 
cellular processes associated with the given bioactivity. The BioMorph space revealed the 
mechanism of action for individual compounds, including dual-acting compounds such as 
emetine, an inhibitor of both protein synthesis and DNA replication. Overall, BioMorph space 
offers a biologically relevant way to interpret the cell morphological features derived using 
software such as CellProfiler and to generate hypotheses for experimental validation.

have been used to successfully predict drug effects on many aspects 
of cell health (Way et al., 2021), such as cytotoxicity (Seal et al., 2021), 
mitochondrial toxicity (Seal et  al., 2022), proteolysis targeting chi-
mera (PROTAC) phenotypic signatures (Trapotsi et al., 2022), cardio-
toxicity (Seal et al., 2023a), and other types of bioactivities (Trapotsi 
et al., 2021; Seal et al., 2023b). Further, Cell Painting data can be 
used to cluster together compounds with various mechanisms of ac-
tion based on the similarity of resulting morphological features they 
induce (Nyffeler et al., 2020; Way et al., 2022). Thus, Cell Painting 
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INTRODUCTION
Cell Painting profiles (Gustafsdottir et al., 2013) can be used to study 
the morphological characteristics of cells treated with chemical or ge-
netic perturbations and provide valuable information about the func-
tion of a biological system (Simm et al., 2018; Chandrasekaran et al., 
2021). The Cell Painting assay involves labelling eight relevant cellu-
lar components or organelles with six fluorescent dyes, imaging them 
in five channels (Bray et  al., 2016), and analysing images (Stirling 
et al., 2021) to provide thousands of morphological features such as 
shape, area, intensity, texture, correlation, etc. Cell Painting data 
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features serve as a tool for investigating the chemical space and en-
abling the prediction of a compound’s biological activities (Liu et al., 
2023; Pruteanu and Bender, 2023).

In general, Cell Painting features are obtained using classical im-
age processing software, such as CellProfiler (Stirling et al., 2021). 
After establishing the threshold for distinguishing signal from the 
background noise, classical image processing software identifies all 
signal-containing pixels and their intensity, and groups neighbour-
ing pixels into objects using object-based correlations (Help! How 
does the Robust Background method work? | Carpenter-Singh Lab). 
The measured morphological features are then extracted from each 
object (cell or subcellular structure). Given this image processing 
pipeline, Cell Painting features primarily represent numerical data 
from image analysis (often aggregated to the treatment level for 
machine learning tasks), rather than directly reflecting the underly-
ing biological processes or molecular interactions.(Help! How does 
the Robust Background method work? | Carpenter-Singh Lab) 
Therefore, interpreting the Cell Painting data and making informed 
decisions about drug safety, toxicity, efficacy, or the underlying 
mechanisms and cellular processes based on such data remains 
challenging. This suggests that integrating Cell Painting features 
with some a priori knowledge about the biological effects of differ-
ent chemical or genetic perturbations may result in improved pre-
dictive power of models derived from Cell Painting data.

An orthogonal strategy that considers a priori knowledge about 
the biological effects is the Cell Health assay, a set of two image-
based assays (Chessel and Carazo Salas, 2019) that collectively cap-
ture a broad range of biological pathways. The Cell Health assay thus 
records measurable characteristics from cellular responses to differ-
ent treatments (or environmental conditions, pathological states, etc.; 
Markowetz, 2010; Szalai et al., 2019) which determine the overall con-
dition, functionality, and viability of cells (Riss et al., 2016), including 
the different stages of the cell cycle. Following a similar premise, a 
study by Way et al. (2021) used the Cell Health assay and CRISPR/
Cas9 to genetically perturb a small subset of 118 gene perturbations 
across three cell lines. Recording the effects of these genetic pertur-
bations using carefully chosen reagents for specific cellular processes 
(e.g., apoptosis, DNA damage, etc.) allowed them to define 70 Cell 
Health readouts that can be used to quantify and model cellular re-
sponses to different treatments (Way et al., 2021). The Cell Health 
readouts are directly related to mechanisms and cellular function and 
can be used to predict the mechanism of action (MOA) of the pertur-
bation and derive functional conclusions. However, unlike the hypoth-
esis-free Cell Painting assay, the Cell Health assay requires specifically 
targeted reagents focused on individual measurement and is difficult 
to scale for high throughput applications.

Recent advancements in data integration methodologies have 
demonstrated the potential of connecting distinct data modalities 
to enhance interpretability. This is common in gene set enrichment 
analysis where methods such as the χ2 test have been used which 
combine a set of gene expression features connected by annota-
tions to a common pathway into a gene-set level statistic (Hung 
et al., 2012). Another example is the Gene Ontology transformed 
gene expression profiles of small molecule perturbations developed 
using Principal Angle Enrichment Analysis (PAEA; Clark et al., 2015; 
Wang et al., 2016). Other studies have combined prior knowledge 
of pathways and gene expression data to identify latent variables 
(inferred using models) to elucidate underlying patterns in gene sets 
that are unique compared with the input gene expression data 
(Basili et al., 2022). The application of contrastive learning has also 
emerged, such as CLOOME, aiming to bridge the gap between 
image-based representations and chemical structures by embed-

ding them into the same representation space (Sanchez-Fernandez 
et al., 2023). In this context, our work introduces a method specifi-
cally tailored for classical features derived from the Cell Painting 
using softwares such as CellProfiler, with an emphasis on data-based 
feature grouping. Unlike extant approaches that predominantly aim 
to improve target prediction, our methodology aims to establish a 
novel interpretative space, facilitating a deeper comprehension of 
cellular biology phenomena.

Here, we address the limitations of both Cell Painting and Cell 
Health assays by integrating their capabilities. We propose a new 
feature space, called the BioMorph space, that provides a function-
informed framework for interpreting Cell Painting features in the cell 
biology context. We used publicly available Cell Painting data and 
Cell Health data (Way et al., 2021) to define this BioMorph space. To 
demonstrate the use of the BioMorph space, we used the Cell Paint-
ing features from chemical perturbations (Bray et al., 2017) to predict 
a range of nine broad biological activities from ToxCast, such as 
apoptosis, cytotoxicity, oxidative stress, and ER stress. We then 
mapped important Cell Painting features from these models into 
BioMorph terms. Identifying the BioMorph terms that contribute 
most strongly to model performance helped generate MOA hypoth-
eses, some in agreement with the existing literature and some novel. 
Taken together, our proposed method offers several potential ad-
vantages, including improved interpretability of cell morphology 
features, enhanced understanding of cellular mechanisms and MOA, 
and more interpretable predictions of drug toxicity and efficacy. 
All BioMorph datasets generated from this study are available at 
https://broad.io/BioMorph.

RESULTS AND DISCUSSION
We developed a structured framework for mapping Cell Painting 
features to a more biologically synthesized BioMorph space. We 
used feature selection, linear regression, and Random Forest clas-
sifiers on the publicly available Cell Painting and Cell Health data-
sets (Way et al., 2021) for a set of 119 CRISPR perturbations (for 
further details see Materials and Methods). This mapping was then 
used to interpret models predicting biological activity using a da-
taset containing morphological profiles of 30,000 small molecules 
produced using the Cell Painting assay (Bray et al., 2017). Mapping 
those Cell Painting features that contribute the most to the perfor-
mance to the BioMorph space led to an improvement in interpret-
ability and allowed us to generate hypotheses on the cause of 
cellular effects.

Development of the BioMorph space through the 
integration of Cell Painting and Cell Health assays
We mapped the groups of Cell Painting features into five levels 
within the BioMorph space as shown in Figure 1 (see Materials and 
Methods for technical details and Supplemental Table S1 and Sup-
plemental Figure S1 for all terms). These levels were chosen to lever-
age the maximum information from the Cell Health assay and in-
clude the Cell Health assay type (Level 1), Cell Health measurement 
type (Level 2), specific Cell Health phenotypes (Level 3), Cell process 
affected (Level 4), and the subset of Cell Painting features (Level 5). 
The first level, the Cell Health assay type, represents results from one 
of the two screening assays used to measure the Cell Health param-
eters, for example, the viability assay or the cell cycle assay. The 
second level, Cell Health measurement type, describes the various 
aspects of Cell Health measured in that assay, such as cell death, 
apoptosis, reactive oxygen species (ROS), and shape for viability as-
says, and cell viability, DNA damage, S phase, G1 phase, G2 phase, 
early mitosis, mitosis, late mitosis, and cell cycle count for cell cycle 
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and DNA damage assays. The third level, specific Cell Health phe-
notypes, describes specific assay readouts that capture different 
aspects of the phenotype, such as the fraction of cells in G1, G2 or 
S-phase cells. The fourth level, the Cell process affected, contains 
information on the type of Cell process affected that caused the 
change in morphological characteristics, for example, effects of 
chromatin modifier, DNA damage, metabolism, etc. Finally, the fifth 
level, Cell Painting features, is the subset of Cell Painting image-
based features that map to the combination of the previous four 
levels. These five levels formed the basis of the BioMorph space.

To build the BioMorph space we focused on the overlap of per-
turbations between Cell Painting and Cell Health assay containing 

827 Cell Painting features and 70 continuous Cell Health endpoints. 
We used an all-relevant feature selection method Borutapy (Kursa 
and Rudnicki, 2010; Figure 2, step A) to detect a subset of Cell Paint-
ing features that contain information important for predicting each 
of the 70 Cell Health labels. Further, we trained a baseline Linear 
Regression model (Figure 2, step B) and determined which subsets 
of Cell Painting features are relatively better predictors for each of 
the 70 Cell Health labels. Meaningful models were built for 34 Cell 
Health labels which resulted in corresponding 34 subsets of Cell 
Painting features. Next, for each of the Cell Health labels, we used 
Borutapy to select subsets of Cell Painting features that could distin-
guish a particular CRISPR perturbation from the negative controls 
(Figure 2, step C). Lastly, we trained a baseline Random Forest Clas-
sifier (Figure 2, step D) to predict which of the sets of selected Cell 
Painting features perform better at differentiating negative controls 
from respective CRISPR perturbations with a Matthews Correlation 
Coefficient (MCC) >0.50. This led to 412 subsets (combinations of 
the various levels above) of informative Cell Painting features which 
were used to define 412 BioMorph terms (Supplemental Figure S1; 
Supplementary Table S1 lists all the terms and their description). 
Thus, each BioMorph term integrates a unique combination of infor-
mation derived from the perturbations and Cell Health labels in the 
Cell Health assay and a subset of Cell Painting features.

For example, the BioMorph term “viability_apoptosis_vb_per-
cent_dead_only_Chromatin Modifiers” records a morphological 
change that includes information about the “fraction of caspase 
negative in dead cells” (level 3) associated with apoptosis 
(level 2), cell viability (level 1), and the effect of CRISPR knockout 
of a gene associated with a chromatin modifier benchmarked 
against the negative control (level 4) for which a particular set of 
Cell Painting features (level 5) contained a signal to distinguish 
from negative control. This multilevel approach allows for a more 
nuanced understanding of cellular health and its relation to spe-
cific biological mechanisms. In the example given above, the 
caspase-negative dead cells are a readout for cells that have un-
dergone nonapoptotic cell death (Tait and Green, 2008). Further-
more, the term associates this form of cell death with the effects 
of the CRISPR knockout of a gene associated with a chromatin 
modifier, which is consistent with existing evidence that certain 
inhibitors that affect chromatin modifications, such as histone 
deacetylase (HDAC) inhibitors, can initiate nonapoptotic cell 
death mechanisms (Shao et al., 2004). Therefore, this specific Bio-
Morph term captures signals associated with these biological 
characteristics and MOA.

BioMorph space retains all information for biological activity 
from the original Cell Painting features
We first ensured that BioMorph space contains all information from 
the original Cell Painting readouts, which we found to be the case 
as shown in Supplemental Figure S2. We used Random Forest clas-
sifiers using 398 BioMorph terms directly as features (p values from 
a χ2 test on the groups of Cell Painting features; although there 
were 412 terms defined, only 398 terms out of these were noninfi-
nite and continuous and used for modelling). We compared these 
classifiers to the models trained on all 827 Cell Painting features. 
Supplemental Table S2 shows the mean Area Under Curve-Receiver 
Operating Characteristic (AUC) and mean balanced accuracy from 
the 20 internal test sets of the repeated nested cross-validation 
(Parvandeh et  al., 2020) for all nine biological activities. Overall, 
models using Cell Painting features (mean AUC = 0.60) achieved a 
similar performance compared with models using BioMorph terms 
(mean AUC = 0.61; as shown in Supplemental Figure S2 with a 

FIGURE 1: A map of the BioMorph space. A general representation 
of the hierarchy of levels is shown (with examples) for each BioMorph 
term that is organised from Cell Painting features (level 5) and 
containing information on Cell Health (level 3) associated with 
measurement type (level 2) under an assay type (level 1) associated 
with Cell process affected (level 4). Further terms in Supplemental 
Figure S1 with all terms listed in Supplemental Table S1.
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paired t test). Thus, transforming important Cell Painting features 
from models into the BioMorph space made these models more 
interpretable without any loss in performance compared with mod-
els using BioMorph terms directly.

Incorporating information about phenotypic characteristics 
(Cell Health phenotype; level 3) enhances the ability to 
connect Cell Painting features (level 5) to biological activity 
from ToxCast
To compare the ability of Cell Painting features alone, or when inte-
grated with Cell Health phenotypes (level 3), to predict biological 
activity, we used 56 cytotoxicity and cell stress response assays from 
a public dataset called ToxCast (Exploring ToxCast Data | US EPA). 
We generated predictions for nine biological activities (for the map-
ping 56 assays into nine activity labels see Judson et  al., 2016): 
(1) upregulation of apoptosis (apoptosis up); (2) cytotoxicity as mea-
sured using beta-lactamase activity as a viability reporter (Riss et al., 
2016; cytotoxicity BLA); (3) cytotoxicity measured using SulfoRhoda-
mine B assays that quantify cellular density based on the protein con-
tent (Riss et al., 2016; cytotoxicity SRB); (4) ER stress; (5) heat shock; 
(6) microtubule upregulation; (7) upregulation of mitochondrial dis-
ruption; (8) upregulation of oxidative stress; and (9) decrease in prolif-
eration. We cross-referenced these nine biological activities with 
public Cell Painting profiles to focus on a dataset of 658 structurally 
unique compounds. For each of the nine biological activities, we 
trained Random Forest classifiers using 827 Cell Painting features to 
build predictive models and calculated feature importance for each 
Cell Painting feature. For eight out of nine biological activities (mito-
chondrial disruption was excluded because its models recorded 

AUC < 0.50 and were not interpreted), the Cell Painting features most 
contributing to the eight models were mapped into BioMorph terms 
revealing interesting details about the associations between morpho-
logical features, phenotypic characteristics and cellular processes, 
as shown for the endpoint “ER stress” in Figure 3 for illustrative 
purposes. In this example, the BioMorph space terms that contain 
the highest percentage overlap with the Cell Painting features associ-
ated with the ER stress revealed potential secondary mechanisms of 
“ER stress” biological activity, such as G2 cell cycle arrest (level 3) and 
the JAK/STAT signalling pathway (level 4), both in agreement with 
the literature (Bourougaa et al., 2010; Meares et al., 2014).

At the level of phenotypic characteristics, the five most-contrib-
uting Cell Health phenotypes (level 3) for the eight biological pro-
cesses are shown in Figure 4 (with a comprehensive analysis across 
various levels of BioMorph terms given in Supplemental Table S3). 
For the biological process of apoptosis, the most-contributing Cell 
Health phenotype (level 3) was the fraction of cells containing more 
than three γH2AX spots per cell, indicating DNA damage (Figure 4). 
This finding is consistent with our understanding of apoptosis as a 
coordinated response to DNA damage (Wang, 2001). In terms of 
cytotoxicity predictions, we observed that the performance of pre-
dicting results of BLA assays was improved when the BioMorph 
terms that incorporate Cell Health phenotypes (level 3) related to 
DNA damage for cells in S and G2 phases (Figure 4), in agreement 
with the well-established effect of DNA damage on cell cycle arrest. 
On the other hand, SRB assays measure protein content, which is 
affected by overall cell death, including nonapoptotic cell death, 
and we observed that Cell Painting features contributing to model 
performance here incorporated caspase-negative death Cell Health 

FIGURE 2: Schematic representation of methodology to generate BioMorph terms mapped from CRISPR perturbations 
measured by the Cell Painting assay and Cell Health assay. Further details on all terms are in Supplemental Figure S1 
with all BioMorph Space listed in Supplemental Table S1.
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FIGURE 3: The subset of most-contributing Cell Painting features (level 5) for the model predicting ER stress and the 
BioMorph terms enriched from this subset (BioMorph terms that contain the highest percentage overlap with these Cell 
Painting features). This revealed potential secondary mechanisms of biological activity such as G2 cell cycle arrest and 
the JAK/STAT signalling pathway was the most enriched Cell Health phenotype (level 3) and Cell process (level 4), 
respectively, for ER stress.

phenotypes (Figure 4). The Cell Health phenotypes (level 3) that 
contributed the most to the biological activities of ER stress, heat 
shock, and proliferation decrease were related to high γH2AX activ-
ity (based on the feature related to the fraction of G2 cells with 
>3 γH2Ax spots within nuclei, Figure 4), indicating DNA damage. 
This is consistent with previously reported observations that ER 
stress and heat shock cause cell cycle arrest at both G1/S and G2/M 
phases (Brewer et  al., 1999; Kühl and Rensing, 2000; Bourougaa 
et al., 2010). For the biological activity of microtubule upregulation, 
the most-contributing Cell Health phenotypes (level 3) were the 
overall DNA damage and the fraction of caspase-negative dead 
cells, in agreement with their roles in cell death (Kim, 2022). Finally, 
for the biological activity of oxidative stress, the most contributing 
Cell Health phenotype (level 3) was the average nucleus roundness, 
which is consistent with the significant crosstalk between DNA dam-
age, oxidative stress, and nuclear shape alterations (Barascu et al., 
2012). Taken together, we found that the BioMorph space (level 3 
Cell Health phenotypes) effectively captured biologically relevant 
information, allowing for a more nuanced understanding of how bi-
ological processes overall affect specific cellular processes. This is 
particularly advantageous compared with using Cell Painting fea-
tures directly where no measurements on cell cycle phase or cell 
processes are made directly.

Integrating information about the Cell process affected 
(level 4) enhances insights into mechanisms of biological 
activity
In addition to the information about phenotypic characteristics, the 
BioMorph space also includes information about specific cellular 
processes responsible for the alterations in cell morphology, which 
in turn can help to identify potential targets and biological pathways 
that, when modulated, could lead to desired phenotypic changes. 
Therefore, we examined information from affected cellular pro-
cesses (level 4 of the BioMorph Space) for each of the eight biologi-
cal activities. The top five enriched Cell processes associated with 
each of the eight biological activities are shown in Figure 5, with a 
comprehensive analysis across various levels of BioMorph terms 
given in Supplemental Table S3. For each of the eight endpoints, we 
found consistent agreement between the top enriched Cell pro-

cesses and the existing literature. For example, in the case of apop-
tosis endpoint, the top three enriched processes were ROS, recep-
tor tyrosine kinase (RTK) and mitogen-activated protein kinase 
(MAPK) pathways (Figure 5), which agrees with the existing literature 
(Howard et  al., 2003; Redza-Dutordoir and Averill-Bates, 2016; 
Yue and López, 2020). The JAK/STAT signalling pathway was the 
most enriched Cell process for ER stress (Figure 5), aligning with its 
role in ER stress-induced inflammation (Meares et al., 2014). Simi-
larly, the most enriched processes for the other endpoints (Figure 5), 
that is, Hippo signaling pathway for Cytotoxicity BLA, cyclosporine 
binding protein for Cytotoxicity SRB, DNA damage for heat shock 
response, apoptosis and hypoxia for oxidative stress, and Hippo 
pathways for proliferation, are all in agreement (Zaghloul et  al., 
1987; Yu and Guan, 2013; Wang et al., 2015; Kantidze et al., 2016; 
McGarry et al., 2018). Collectively, these findings illustrate the high 
level of agreement between BioMorph terms and well-established 
biological knowledge. They also highlight how integrating informa-
tion about biological processes (level 4 in BioMorph space) allows 
for more mechanistic interpretations and predictions.

BioMorph terms can be used to generate hypotheses 
for a compound’s mechanisms of action
We next investigated how BioMorph terms can reveal more specific 
mechanisms of action of a compound causing a particular biological 
activity. To this end, we analysed 56 predicted true positive com-
pounds across nine biological activities and analysed the SHapley 
Additive exPlanations (SHAP; Scott Lundberg, 2018) values of Cell 
Painting features (a positive SHAP value for a feature indicates a 
positive impact on prediction, leading the model to predict toxicity 
in this case). These contributing Cell Painting features were mapped 
to the BioMorph terms, along with the two most-contributing Cell 
Health phenotypes (level 3 of the BioMorph) and Cell process af-
fected (level 4 of the BioMorph). We were able to identify relation-
ships between specific compounds and their impact on cellular 
health (see Table 1 for a selection of illustrative compounds dis-
cussed below; and Supplemental Table S4 for the complete set of 
54 compounds analysed). For example, for melatonin, an “apopto-
sis up” compound, we noted that the most contributing Cell Paint-
ing features were related to BioMorph terms for DNA damage 
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(as indicated by the presence of more than three γH2AX spots within 
the cells) and the fraction of cells arrested in the S phase, which is 
most likely due to increased ROS. In the case of melatonin, the 
effects on the cell cycle via ROS generation have been previously 
reported (Song et al., 2018). In general, we observed that BioMorph 
space can help generate hypotheses to uncover secondary effects 
that might otherwise be overlooked, and examples listed in Table 1 
and shown in Figure 6 speak to the granularity of the BioMorph 
space information. In the case of ER stressors, piromidic acid, clo-
zapine, bisphenol A diglycidyl ether, and emetine, the top two most 
contributing Cell Health phenotypes and top two Cell processes 
affected were mostly different. This highlights that each compound 

FIGURE 4: Top five specific Cell Health phenotypes (level 3) enriched by contributing Cell 
Painting features (as per feature importance) for each Random Forest model for eight different 
biological activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d) ER stress, (e) 
heat shock, (f) microtubule upregulation, (g) oxidative stress, and (h) proliferation decrease. 
Models for mitochondrial disruption recorded AUC < 0.50 and were not interpreted.

may exhibit the same bioactivity (e.g., “ER 
stress”) but cause it by affecting different 
targets/pathways and having distinct MOAs. 
The most contributing BioMorph terms for 
piromidic acid are related to cell viability 
(such as the number of cells and roundness 
of living cells); whereas emetine, a protein 
synthesis inhibitor, was linked to the fraction 
of cells in the S-phase of the cell cycle, 
which agrees with the secondary activity in 
early S-phase related to inhibition of DNA 
replication (Schweighoffer et al., 1991). On 
the other hand, compounds linked to heat 
shock responses (alfadolone acetate, suxi-
buzone, and diflorasone) exhibited the 
same features and were associated with 
Hippo pathway-related terms, the round-
ness of the nucleus, and DNA damage in 
the S phase. This agrees with the estab-
lished role of the Hippo pathway in promot-
ing cell survival in response to various stress-
ors (Di Cara et al., 2015) while the shape of 
the nucleus (senescent cells can be charac-
terized by flattened, enlarged or irregular-
shape nuclei as shown by Zhao and Dar-
zynkiewicz, 2013 and Heckenbach et  al., 
2022) and vulnerability of early S-phase cells 
to mild genotoxic stress are common mech-
anisms of heat stress effects (Verbeke et al., 
2001; Velichko et al., 2015). We also noted 
similarities among the level 3 and level 4 
BioMorph space terms associated with 
compounds that cause proliferation de-
crease (raclopride, nimodipine, and ketan-
serin). These compounds are associated 
with hypoxia and apoptosis, suggesting that 
these compounds may act via increasing 
levels of ROS, which leads to oxidative 
stress (McGarry et al., 2018). For the com-
pounds causing an upregulation of microtu-
bules, bifemelane was linked to BioMorph 
terms related to cell death as well as chro-
matin modifiers and DNA damage in the S 
phase consistent with its known role in en-
hancing the synthesis of cytoskeletal pro-
teins (Asanuma et al., 1993) and regulating 
dynamic chromosome organization (Spichal 
and Fabre, 2017). Taken together, we show-
case how identifying the BioMorph terms 
having the greatest contribution to predict-

ing a compound’s biological activity, we can gain insights into not 
only primary but secondary biological processes affected by the 
compounds as well. These predictions can then be used to formu-
late mechanistic hypotheses and inform drug discovery and devel-
opment efforts.

Limitations of mapping Cell Painting into BioMorph terms
This proof-of-concept study demonstrates the potential benefits of 
mapping Cell Painting features into BioMorph terms to address a 
serious challenge for the field of image-based profiling: making 
sense of complex combinations of image-based features that are not 
readily interpretable. We find that BioMorph does provide a more 
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interpretable and biologically relevant representation of data. How-
ever, there are several limitations relevant to this iteration of Bio-
Morph space. BioMorph space was built using robust but limited 
data; therefore, using larger datasets of CRISPR perturbations and 
Cell Painting/Cell Health datasets would improve the organization of 
BioMorph space. Additionally, the associations between Cell Paint-
ing features and BioMorph terms are not absolute; these would need 
to be updated if alternative feature extraction strategies are used, for 
example, updated versions from CellProfiler (Stirling et al., 2021) or 

FIGURE 5: Top five Cell process affected (level 4) terms enriched by contributing Cell Painting 
features (as per feature importance) for each Random Forest model for eight different biological 
activities (a) apoptosis up, (b) cytotoxicity BLA, (c) cytotoxicity SRB, (d) ER stress, (e) heat shock, 
(f) microtubule upregulation, (g) oxidative stress, and (h) proliferation decrease. Models for 
mitochondrial disruption recorded AUC < 0.50 and were not interpreted.

deep learning-based feature extraction 
(Pawlowski et al., 2016; Caicedo et al., 2022) 
such as in the JUMP-Cell Painting dataset 
(Chandrasekaran et al., 2023), and we advise 
caution against using these groupings di-
rectly if the feature extractions differ from the 
current study. Finally, we evaluated our Bio-
Morph space for nine broad biological activi-
ties; generalization to other cellular mecha-
nisms and biological processes would 
require assays that are focused on other 
readouts, such as those related to particular 
types of toxicity, or tailored to particular 
cell types like neurons or cardiomyocytes. 
Despite these limitations, the study intro-
duces an algorithm to map Cell Painting fea-
tures into BioMorph terms and explores the 
application of this new BioMorph space in 
interpreting predictive models, generating 
hypotheses for small molecule biological ac-
tivity, MOA, and toxicity.

SIGNIFICANCE
In this work, we demonstrated a strategy to 
map Cell Painting features into BioMorph 
terms to enable a better understanding of 
the relationships between compound-in-
duced cellular perturbations and nine differ-
ent biological activities. We could correctly 
identify potential secondary mechanisms of 
biological activities such as ER stress and cell 
cycle arrest at the G2 phase (Bourougaa 
et al., 2010) as well as mechanisms of action 
of dual-function compounds such as eme-
tine, which is a well-known protein synthesis 
inhibitor, but also acts at an early S-phase to 
inhibit DNA replication (Schweighoffer et al., 
1991). These are biological effects that can 
often be overlooked; however, the BioMorph 
space allows for a more comprehensive 
understanding of these mechanisms, for un-
covering hidden relationships and generat-
ing new hypotheses by connecting them to 
specific phenotypes and cellular processes.

Recently, overwhelming evidence has 
accumulated for the strong performance of 
deep learning methods over classical fea-
tures for computer vision tasks, such as 
microscopy image segmentation and clas-
sification (Lafarge et al., 2019; Chow et al., 
2022; Moshkov et  al., 2022; Wong et  al., 
2023). Hofmarcher et  al. (2019) demon-
strated that for bioactivity prediction, 

CNNs trained directly on image data outperformed fully con-
nected neural networks that relied on computed CellProfiler fea-
tures. The study attributed this improvement to better cell seg-
mentation, sparse signal detection, and single-cell level image 
analysis when using CNN models directly on imaging data com-
pared with CellProfiler features that rely on aggregate statistics. In 
the more specific task of identifying relationships among reagents 
using image-based profiling, extracting features using deep learn-
ing has recently begun to pull ahead of classically defined features. 
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Recent studies employed innovative training strategies that have 
further boosted deep learning performance by as much as 29% 
compared with CellProfiler features when evaluated based on 
mean average precision (mAP) for classifying chemical perturba-
tions (Kim et al., 2023). Most recently, because our study was com-
pleted, both convolutional neural networks and vision transform-
ers-based masked autoencoders were shown to outperform weakly 
supervised models (Kraus et al., 2023; Wong et al., 2023). Remark-
ably, some of these models achieved performance improvements 
of up to 28% in deducing established biological relationships in 
image-based data based on ground truth annotations from data-
bases like StringDB and Reactome (Kraus et al., 2023). Interpret-
ability in machine learning models using image data is often crucial 
for biologists who use such models to understand the cause of 
these predictions such as in understanding mechanisms of com-
pound toxicity in drug discovery (Dara et al., 2022). Interpreting 
deep learning-extracted features is an active area of research (Sel-
varaju et al., 2016; Wong et al., 2022). We recognized the potential 
challenges in interpreting biological meaning for CellProfiler fea-
tures (Lundberg et al., 2021), and in this work, we aimed to im-
prove the interpretability of these features by defining a BioMorph 
space for them. BioMorph is applied to enhance the clarity and 
comprehensibility of classical image features derived from CellPro-
filer (Stirling et al., 2021; the most commonly available features in 

public and private Cell Painting data) while retaining the potential 
to be applied to other features, such as those extracted by deep 
learning. Currently, there are several deep learning-based feature 
extractor protocols such as CNN-based feature extraction (Stei-
gele et al., 2020), DeepProfiler (cytomining/DeepProfiler: Morpho-
logical profiling using deep learning), and WS-DINO (Cross-Zamir-
ski et  al., 2022) among others. In the future, as a standardized 
protocol/software for extracting features via deep learning be-
comes more established across industry and academia, these fea-
tures might be integrated with Cell Health assays to form a Bio-
Morph space to enhance the comprehension of the biological 
insights embedded within deep learning-derived features.

Mapping Cell Painting features into BioMorph terms offers sev-
eral advantages over using CellProfiler-derived Cell Painting fea-
tures directly. First, we improved interpretability by using a more 
biologically interpretable feature space; we identified relationships 
between compound mechanisms of action and their impact on cell 
morphology. For example, the use of BioMorph space identified 
relevant pathways such as the JAK/STAT signalling pathway’s promi-
nence in ER stress (Meares et al., 2014). These insights are not pos-
sible with Cell Painting features alone, which have no information on 
biological pathways. Second, we could pinpoint the specific cell 
processes and stages of the cell cycle affected by a compound, a 
task not possible with the Cell Painting features, which do not 

Common name
Biological 
Process

Specific Cell Health 
phenotypes (most 

impacted)

Specific Cell Health 
phenotypes (2nd most 

impacted)
Cell process 

affected (most)

Cell process 
affected 

(2nd most)

Melatonin apoptosis up The fraction of cells con-
taining more than three 
gH2AX spots within all 
cells:

Fraction of EdU positive 
cells (S-phase of the cell 
cycle)

ROS MAPK

Piromidic acid ER stress Total number of cells Cell Roundness RTK ER Stress/UPR

Clozapine ER stress Fraction of G1 cells Fraction of caspase 
negative in dead cells

Chromatin Modifiers ER Stress/UPR

Bisphenol A 
diglycidyl ether

ER stress Fraction of G2 cells Total number of cells JAK/STAT WNT

Emetine ER stress Fraction of EdU positive 
cells (S-phase of the cell 
cycle)

The fraction of cells 
containing more than three 
gH2AX spots within all cells

ROS Chromatin 
Modifiers

Alfadolone 
acetate

heat shock Average nucleus 
roundness

The fraction of >3 γH2Ax 
spots in S phase cells

Hippo Chromatin 
Modifiers

Suxibuzone heat shock Average nucleus 
roundness

The fraction of >3 γH2Ax 
spots in S phase cells

Hippo Chromatin 
Modifiers

Diflorasone 
diacetate

heat shock Average nucleus 
roundness

The fraction of >3 γH2Ax 
spots in S phase cells

Hippo Chromatin 
Modifiers

Bifemelane microtubule up Fraction of caspase 
negative in dead cells

EdU incorporated (average 
intensity per cell) in S phase 
cells

Hippo Chromatin 
Modifiers

Raclopride proliferation 
decrease

Fraction of caspase 
negative in dead cells

Width/Length Hypoxia Apoptosis

Nimodipine proliferation 
decrease

Fraction of caspase 
negative in dead cells

Width/Length Hypoxia Apoptosis

Ketanserin proliferation 
decrease

Number of G1 cells Fraction of caspase 
negative in dead cells

Hypoxia Apoptosis

TABLE 1: Top two contributing Cell Health phenotypes (level 3) and Cell process affected (level 4) from BioMorph space for a selection of 
illustrative true positives predicted by the models for biological activity. See Supplemental Table S4 for the complete set of 54 compounds.
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contain direct information on which cell cycle stage is impacted. 
Finally, we could facilitate hypothesis generation by identifying the 
BioMorph terms that contribute most significantly to compound 
activity. These targeted hypotheses can guide the future validation 
of compounds. Taken together, the BioMorph space represents a 
more integrative and comprehensive method for analysing cellular 
MOA and can enable the development of more effective strategies 
for identifying and mitigating toxic effects.

MATERIALS AND METHODS
Cell Painting Dataset for CRISPR Perturbations
We used the Cell Painting pilot dataset of (CRISPR) knockout pertur-
bations from the Broad Institute (Way et al., 2021). Here, the authors 
used a Cell Painting assay for three different cell lines (A549, ES2, 
and HCC44) and each cell line used 357 perturbations representing 
119 clustered regularly interspersed short palindromic repeats 
(CRISPR) knockout perturbations (further details in Supplemental 
Table S5). They further generated median consensus signatures for 
each of the 357 perturbations. This led to a dataset of 949 morphol-
ogy features (and metadata annotations) for 357 consensus profiles 
(119 CRISPR perturbations × 3 cell lines). Among these, only 827 Cell 
Painting features were in intersection with the Cell Painting dataset 
for compound perturbations (described below) used in this proof-of-
concept study. The Cell Painting dataset for CRISPR Perturbations is 
released publicly at https://zenodo.org/records/10011861.

Cell Health assays for CRISPR Perturbations
We used the Cell Health assay developed by the Broad Institute 
containing 70 specific Cell Health phenotypes (Way et al., 2021). 

The authors used seven reagents in two Cell Health panels to stain 
cells for the same 119 CRISPR perturbations for three different cell 
lines (A549, ES2, and HCC44). We used median consensus signa-
tures for the 357 consensus profiles (119 CRISPR perturbations × 
3 cell lines) as above. This dataset is released publicly at https://
zenodo.org/records/10011861.

Cell Painting Dataset for Compound Perturbations
The Cell Painting assay used in this proof-of-concept study, from the 
Broad Institute, contains cellular morphological profiles of more than 
30,000 small molecule perturbations (Bray et al., 2017). The morpho-
logical profiles in this dataset are composed of a wide range of fea-
ture measurements (shape, area, size, correlation, texture, etc.). The 
authors in this study normalized morphological features to compen-
sate for variations across plates and further excluded features having 
a zero median absolute deviation (MAD) for all reference cells in any 
plate. Following the procedure from Lapins and Spjuth (2019), we 
subtracted the average feature value of the neutral DMSO control 
from the compound perturbation average feature value on a plate-
by-plate basis. We standardised the InChI (International Chemical 
Identifier) [Goodman et al., 2021]) using RDKit (RDKit) and for each 
compound and drug combination, we calculated a median feature 
value. Where the same compound was replicated for different doses, 
we used the median feature value across all doses that were within 
one SD of the mean dose. Finally, we obtained 1783 median Cell 
Painting features for 30,404 unique compounds. This dataset is pub-
licly released at https://broad.io/biomorph. Among these, only 827 
Cell Painting features were common with the dataset for CRISPR Per-
turbations which were used in this proof-of-concept study.

FIGURE 6: For the compound clozapine, which is an ER stressor, SHAP values indicate a list of the most-contributing 
Cell Painting features (Level 5) to model performance for ER stress. Organising this to BioMorph terms allows 
interpretation: clozapine can induce cell cycle arrest in the G0/G1 phase.

https://zenodo.org/records/10011861
https://zenodo.org/records/10011861
https://zenodo.org/records/10011861
https://broad.io/biomorph
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Biological activity from ToxCast assay with Cell Painting 
annotations
Toxicity and biological activity-related data were collected from 56 
cytotoxicity and cell stress response assays from 56 ToxCast (Explor-
ing ToxCast Data | US EPA; Wu et al., 2018) for nine broad biological 
processes (for the mapping between 56 ToxCast assays and nine 
biological processes see Judson et al., 2016): apoptosis up, cytotox-
icity BLA, cytotoxicity SRB, ER stress, heat shock, microtubule 
upregulation, mitochondrial disruption up, oxidative stress up, and 
proliferation decrease (Judson et  al., 2016). Compound SMILES 
were converted to standardised InChI using RDKit (RDKit). To gener-
ate consensus endpoint labels, the presence of positive activity 
(toxicity) in at least one assay related to the biological activity was 
considered sufficient to mark the compound active in the consensus 
endpoint. Thus, consensus endpoints for each of the nine biological 
activities were generated from the 56 ToxCast assays. We calculated 
the intersection of the Cell Painting profiles for compound perturba-
tions (above) and nine biological activity (ToxCast) assays using the 
standardised InChI. Cell Painting features were standardised by re-
moving the mean and scaling to unit variance. This resulted in a 
complete dataset of 658 structurally unique compounds with 827 
Cell Painting features and nine biological activity consensus hit calls 
that were used in this proof-of-concept study. The dataset, referred 
to as containing biological activities in this study, is publicly released 
at https://zenodo.org/records/10011861.

Mapping Cell Painting terms into BioMorph space
The overlap of Cell Painting and Cell Health assay for gene pertur-
bations (Way et al., 2021) contained 827 Cell Painting features (that 
were also present in the Cell Painting experiments on compound 
perturbations from Bray et al., 2017) and 70 continuous Cell Health 
endpoints (e.g., the number of late polynuclear cells, which mea-
sures the shape in a cell cycle assay) for 354 consensus profiles (118 
CRISPR perturbations × 3 cell lines, the empty well was removed). 
As shown in Figure 2 step A, for feature selection, we used an all-
relevant feature selection method, Borutapy (Kursa and Rudnicki, 
2010) implemented using the Python package Boruta (Boruta · 
PyPI) with a Random Forest Classifier estimator of maximum depth 
5 and the number of estimators determined automatically based 
on the size of the dataset using “auto”. Using Borutapy, we de-
tected a subset of Cell Painting features that contain information 
for each of the 70 Cell Health regression labels. Further, we trained 
a baseline Linear Regression model as implemented in scikit-learn 
(scikit-learn: machine learning in Python – scikit-learn 1.2.0 docu-
mentation; Figure 2, step B) with an 80–20 random train-test split 
to predict which subsets of Cell Painting features are relatively bet-
ter predictors of Cell Health phenotype. Thirty-seven of the 70 Cell 
Health models (with R2 > 0.25) were selected for further analysis. 
This results in 34 subsets of Cell Painting features (one set for each 
of the 34 Cell Health labels). Next, for each of the 34 Cell Health 
labels and the 354 consensus profiles, we separated subsets of 
Cell Painting data for the negative control CRISPR Perturbation 
(which consisted of 30 datapoints of LacZ, Luc, and Chr2 CRISPR 
perturbations) and other CRISPR perturbations affecting various 
known cell processes (such as chromatin modifiers, ER Stress/UPR, 
metabolism, etc.). For each of these pairs (negative control and 
CRISPR perturbations), we used Borutapy (Boruta · PyPI; Figure 2, 
step C) to detect a further subset from the subset of Cell Painting 
features which contained a signal on whether the datapoint is a 
negative control or the CRISPR Perturbation. We train a baseline 
Random Forest Classifier (Figure 2, step D), as implemented in 
scikit-learn (scikit-learn: machine learning in Python –- scikit-learn 

1.2.0 documentation), with an 80–20 random train test split to pre-
dict which sets of selected Cell Painting features perform relatively 
better at differentiating negative controls from the CRISPR pertur-
bation (MCC > 0.50). This led to 412 subsets of informative Cell 
Painting features which are then indicators of 412 BioMorph terms. 
We used a χ2 test to determine the BioMorph term p value for each 
of the 412 combinations (Figure 2, step E) from standard scaled 
subsets of Cell Painting features.

Further using this mapping, any dataset with Cell Painting fea-
tures can be mapped into BioMorph terms. The dataset of biological 
activities with 827 Cell Painting features were grouped into these 412 
combinations and their BioMorph term p value was calculated. We 
then standardised these BioMorph terms using a standard scalar (as 
implemented in scikit-learn: machine learning in Python –- scikit-learn 
1.2.0 documentation), and only columns with noninfinite continuous 
p values were retained (with other columns dropped). This resulted in 
398 BioMorph terms for the biological activity dataset. The dataset is 
now released at https://zenodo.org/records/10011861. For the Bio-
Morph dataset for all 30,000 compounds, please see https://broad 
.io/BioMorph.

Comparing models using Cell Painting and BioMorph terms 
as features
To ensure that the BioMorph terms contain all information from the 
original Cell Painting readouts, we compared models using only 827 
Cell Painting features and models using the 398 BioMorph terms di-
rectly as features (although there were 412 terms defined, only 398 
terms out of these were non-infinite and continuous and used for 
modelling). For each of the nine biological activities, we used five 
times repeated fourfold nested cross-validation and a Random Forest 
Classifier (as implemented in scikit-learn: machine learning in Python 
–- scikit-learn 1.2.0 documentation). First, the data was split into four 
folds using a stratified split on biological activity labels where 25% of 
the data was reserved for the test set and 75% remaining used for 
training. Using this training data, we trained two models, one using 
the 827 Cell Painting features, and the other using 398 BioMorph 
terms (p values from subsets of Cell Painting features; although there 
were 412 terms defined, only 398 terms out of these were noninfinite 
and continuous and used for modelling). We optimised these mod-
els using a fivefold cross-validation with stratified splits and a random 
halving search algorithm (with hyperparameter space given in Sup-
plemental Table S6 and as implemented in scikit-learn: machine 
learning in Python – scikit-learn 1.2.0 documentation). The optimised 
model was fit on the entire training data and cross-validation predic-
tions are used to determine the optimal threshold using the J statistic 
value (Youden, 1950). We then used this threshold to determine the 
predictions for the test set predictions. A single loop of nested cross-
validation results in four test sets, which are repeated five times thus 
giving 20 individual test set predictions.

Model training with Cell Painting features
To evaluate the use of BioMorph space, we now used a fixed held-
out test set. For each of the nine biological activities, we used a 
stratified split on biological activity labels such that 75% of the data 
was used in cross-validation training and 25% as held-out test data. 
We trained Random Forest classifiers (as implemented in scikit-
learn: machine learning in Python – scikit-learn 1.2.0 documenta-
tion) using 827 Cell Painting features and a random halving search 
algorithm (as implemented in scikit-learn: machine learning in 
Python – scikit-learn 1.2.0 documentation) to optimise the hyperpa-
rameters (with the hyperparameter space given in Supplemental 
Table S6). Similar to above, the optimised model was fit on the 

https://zenodo.org/records/10011861
https://zenodo.org/records/10011861
https://broad.io/BioMorph
https://broad.io/BioMorph
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entire training data and cross-validation predictions are used to de-
termine the optimal threshold using the J statistic value that consid-
ers both true and false positive rates. This optimal threshold is then 
used on the predicted probabilities of the held-out test data to ob-
tain the final held-out test data predictions.

Feature importance and interpretation in BioMorph terms
First, we used feature importance from the Random Forest classifier 
(as implemented in scikit-learn: machine learning in Python – 
scikit-learn 1.2.0 documentation) to determine the features that 
contributed the most to model importance. This gave us important 
features per biological activity (at an endpoint/biological activity 
level). Second, we evaluated SHAP values (Lundberg and Lee, 
2017), as implemented in the shap (Scott Lundberg, 2018) python 
package, for each compound predicted as true positive in the held-
out test set. We used true positives only, as these are the predic-
tions for which the feature importance value (from SHAP) is valid. 
This gave us the important features per toxic compounds in the 
held-out test set for each biological activity (at a compound level). 
We then selected the Cell Painting features (from model importance 
values at the endpoint level or SHAP values at a compound level) 
that were greater than two standard deviations of all features as the 
most important or contributing features. These features were 
mapped into the BioMorph space by determining whether the fea-
tures related to the individual levels of the BioMorph term were 
present among the important features selected above. At the level 
of Cell process affected (level 4), the percentage enrichment was 
determined as the percentage of Cell Painting features that were 
present among the defined subset of Cell Painting features (level 5). 
For an overall enrichment value (used for Figure 3 and Figure 4) for 
each specific Cell Health phenotype term (level 4) or Cell process 
affected (level 5), we used the mean of enrichment of all BioMorph 
terms where the corresponding level 3 or level 4 term appeared. For 
detailed enrichment analysis, we determined enrichment of the 
level (lvX) to be the percentage of the immediate lower level (lvX–1) 
with enrichment ≥ 10% progressively from specific Cell Health phe-
notypes (level 3) to Cell Health assay type (level 1). This is released 
per biological activity in Supplemental Table S3.

Evaluation Metrics
To evaluate models in this proof-of-concept study we used Balanced 
Accuracy which considers both sensitivity and specificity, the AUC-
Receiver Operating Characteristic and Mathew’s correlation con-
stant (MCC) as implemented in scikit-learn (scikit-learn: machine 
learning in Python – scikit-learn 1.2.0 documentation).

Statistics and Reproducibility
We have released the datasets used in this proof-of-concept study 
which are publicly available at https://broad.io/biomorph and 
https://zenodo.org/records/10011861. We released the Python code 
for the models which are publicly available at https://github.com/
srijitseal/BioMorph_Space.
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