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Abstract

BACKGROUND:Women demonstrate a memory advantage when cognitively healthy

yet lose this advantage to men in Alzheimer’s disease. However, the genetic underpin-

nings of this sex difference inmemory performance remain unclear.

METHODS:We conducted the largest sex-aware genetic study on late-life memory to

date (Nmales = 11,942; Nfemales = 15,641). Leveraging harmonized memory composite

scores from four cohorts of cognitive aging and AD, we performed sex-stratified and

sex-interaction genome-wide association studies in 24,216 non-Hispanic White and

3367 non-Hispanic Black participants.

RESULTS: We identified three sex-specific loci (rs67099044—CBLN2,

rs719070—SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633—

EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified

heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic

correlations betweenmemory and cardiovascular, immune, and education traits.

DISCUSSION: This study showed memory is highly and comparably heritable across

sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correla-

tions that related to late-life memory.
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Highlights

∙ Demonstrated the heritable component of late-life memory is similar across sexes.

∙ Identified two genetic loci with a sex-interaction with baselinememory.

∙ Identified an X-chromosome locus associated withmemory decline in females.

∙ Highlighted sex-specific candidate genes and pathways associated withmemory.

∙ Revealed sex-specific shared genetic architecture between memory and complex

traits.

1 BACKGROUND

Alzheimer’s disease (AD) is a global health crisis, affecting more than

50 million people worldwide, with AD cases expected to steeply

increase to over 150 million people by 2050.1 Notably, AD is char-

acterized by a neuropathological cascade lasting decades, resulting

in neurodegeneration and cognitive impairment.2 One of the earliest

and most detectable clinical manifestations of both aging and AD

is changes in memory performance. Those with AD demonstrate

impairment for verbal and non-verbal memory in a pattern that is

distinguishable from both cognitively unimpaired controls and other

memory-related disorders.3–6 Individuals in prodromal AD exhibit

difficulties with acquisition of new information, which can be detected

with immediate and delayed recall memory tasks.3 Furthermore,

episodic memory tests can isolate distinct cognitive trajectories for

those who will go on to develop AD up to 12 years before clinical AD

diagnosis, and these changes trackwith neuropathological changes.4–6

Recent literature has highlighted robust sex/gender differences in

memory performance throughout the life course including in aging and

AD. In clinically healthy individuals, women (women—based on self-

report) on average have an advantage on episodic and verbal memory

tasks, measured by such tests as the California Verbal Learning Test

and theWeschlerMemory Scale.7,8 Thesememory advantages emerge

at a young age in women and persist into adulthood,7,8 and this advan-

tage is consistent across the literature.9 In contrast, men (men—based

on self-report), on average perform better at tasks requiring visu-

ospatial ability, such as analysis of figure tasks.7,8 A meta-analysis on

visuospatial ability highlighted the consistencyof the advantage inmen

across studies, beginning at adolescence and increasing in magnitude

with age.10 Furthermore, sex differences in cognitive performance

change with the onset of disease. While women with AD lose their

episodic and verbal memory advantages,11 men with AD appear to

maintain their visuospatial advantage.12 Taken together, sex/gender

differences in memory performance are complex, with contributions

from factors such as age, type of memory task, and disease stage.

Genetic studies have started to uncover the genetic architecture

of memory performance in older adults, identifying loci that may con-

tribute to variability in memory. One major challenge surrounding

large-scale genomic studies of memory performance is that different

neuropsychological test batteries are administered across studies.13,14

Even if the sameneuropsychological battery is administered, variability

may exist in theway a test item is assessedor coded across studies.13,14

These complexities surrounding studying memory result in a lower

generalizability of findings across studies, and prevents large, sys-

tematic meta-analyses on memory.13,14 Our group has addressed this

challenge by leveraging modern, psychometric techniques to harmo-

nize memory scores across cohort studies. As a result, we have robust

memory composite scores across many time-points that are on the

same metric across multiple cohorts of cognitive aging and AD, as well

as genotype data for nearly 27,000 of these individuals. Additionally,

we have a published pipeline for the genetic study of sex differences in

AD endophenotypes.15 Together, this uniquely positions our group to

conduct large, sex-aware genetic analyses on memory performance in

older adults. We hypothesize that a large genetic component of mem-

ory performance in older adults will be shared across sexes, but we

believe that some genetic drivers will differ across sexes.

2 METHODS

Please see Figure 1 for an overview of the harmonized memory

endophenotype and of our analytical workflow.

2.1 Participants

We leveraged four well-characterized cognitive aging and AD cohorts:

Adult Changes in Thought (ACT), Alzheimer’s Disease Neuroimaging

Initiative (ADNI), National Alzheimer’s Coordinating Center (NACC),

and Religious Orders Study (ROS)/Rush Memory and Aging Project
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(MAP)/Minority Aging Research Study (MARS). ACT16 began in Seat-

tle in 1994, recruiting cognitively unimpaired individuals in the area.

The current number of enrolled participants is now at 4960. ADNI

(https://adni.loni.usc.edu) began in 2004 and includes four phases:

ADNI-1, ADNI-2, ADNI-GO, and ADNI-3, all of which were included

in this study. Participants recruited for ADNI were a mix of cogni-

tively unimpaired, mild cognitive impairment (MCI), and AD dementia,

and were followed to track pathological and disease progression over

time. NACC17–21 began in 1999 and is comprised of data measured

by 42 Alzheimer’s Disease Research Centers (ADRCs); 15 ADRCs

were leveraged for this analysis. The goal of NACC is to standard-

ize a large database of clinical and neuropathological research data.

ROS22 began in 1994 and recruited older Catholic nuns, priests,

and bothers in orders without known dementia. MAP22 started in

1997 and recruited older individuals without known dementia in the

Chicago area. Both studies are longitudinal, epidemiological clinical-

pathological studies of aging and AD. MARS23 began in 2004 and

recruited older AfricanAmerican individuals without known dementia.

All ROS/MAP/MARS participants completed informed and repository

consents. ROS, MAP, and MARS studies share a large common core

of data that can be merged at the item level. Please see Table 1 for

participant characteristics.

2.2 Clinical diagnosis determination

ACT, ADNI, NACC, and ROS/MAP/MARS have their own enrollment

criteria (see Section 2.1 Participants), but in all studies a clinical diag-

nosis of dementia and AD dementia followed standard criteria of the

joint working group of the National Institute of Neurological and Com-

municative Disorders and Stroke and the Alzheimer’s Disease and

Related Disorders Association. ADNI, ROS/MAP, and NACC provide

an MCI designation for those who have signs of cognitive impair-

ment on neuropsychological testing but do not meet full criteria for

dementia. ACT does not identify individuals with MCI. To harmonize

diagnostic coding across studies, we mapped study-specific diagnostic

codes to either (1) cognitively unimpaired, (2) MCI, or (3) AD. For this

study, baselinevisitwas selected tomakediagnostic determinations for

diagnosis-stratified genetic analyses (see Section 2.5.4). Given the vari-

able coverage ofMCI across studies, we alsomapped a binary classifier

as either cognitively unimpaired or cognitively impaired (ie, eitherMCI

or AD) that was used in the diagnosis-stratified analyses.

2.3 Cognitive harmonization

Qualified neuropsychologists and behavioral neurologists (authors

A.J.S., J.M., E.H.T.) categorized test item-level data into memory, execu-

tive functioning, language, or visuospatial functioningdomains (or none

of these). These experts evaluated each test item to ensure that scoring

was equivalent across studies, and recoded scoring to match when

necessary (eg, higher score = always better performance, irrespective

of study). Additionally, the recoding process involved collapsing miss-

RESEARCH INCONTEXT

1. Systematic review: Women have a memory advantage

that they lose to men with Alzheimer’s disease (AD), but

the genetic architecture of this sex difference has yet to

be elucidated. This study leveraged harmonized memory

scores andgenetic data from four cohorts of aging andAD

to conduct the most comprehensive sex-aware genetic

analysis on late-life memory to date.

2. Interpretation: We showed that memory performance

is comparably heritable across sexes, and we identified

three sex-specific genetic loci that relate to memory.

Additionally, we identified sex-specific candidate genes

and pathways relating tomemory, including targets previ-

ously associated with sex hormones, the X-chromosome,

and neurodevelopment.

3. Future directions: Although the genetic contribution to

late-life memory may be similar across sexes, some of

the genetic drivers appear to differ by sex. Our study

emphasizes the importance of investigating AD cogni-

tive endophenotypes in a sex-specific manner, to identify

novel targets that may best suit each sex.

ing data into as few categories as possible. Then, a confirmatory factor

analysis was performed in each cohort for each domain, leveraging

the last visit for each individual, to determine a composite score that

best captured domain variance. The best single factor or bi-factor

model was chosen for each domain based on acceptable ranges for

three fit statistics: confirmatory fit index, Tucker-Lewis Index, and

root mean square error of approximation. Supplemental materials for

our published harmonization methods paper include study-specific fit

statistics for each domain, all of which are in the “good” to “excellent”

range.14

Next, in order to facilitate co-calibration, common items across test

protocols were selected, and placed into a confirmatory factor anal-

ysis to ensure equivalency across studies (and confirmed equivalent

by author E.H.T.). Once confirmed, these common items, denoted as

“anchor items,” were selected as anchors across studies. Co-calibration

was performed using a confirmatory factor analysis model where the

anchor itemswere restricted to have the sameparameters across stud-

ies. Parameters were allowed to vary by study for all items that were

specific to a particular study. Finally, all visits were included in one

mainmodelwith all estimated itemparameters fixed to generate factor

scores for each participant at each visit. The resulting domain compos-

ite scores were on the same metric across studies (Figure 1C). Thus,

the final distribution of factor scores for each study was on a z-score

scalewith amean=0and standarddeviation=1,where+1or−1point

meant the same across studies. Formore information on cognitive har-

monization, see a recent paper byMukherjee and colleaguesdescribing

the harmonization protocol at length.14

https://adni.loni.usc.edu


EISSMAN ET AL. 1253

F IGURE 1 Overview of this study’s genome-wide sex-aware cross-ancestral analysis on late-life memory performance. (A) Analytical
workflow overview. (B) Ancestry, diagnosis, and sex strata workflow. (C) Histogram highlighting the harmonizedmemory endophenotype at
baseline cognitive visit for each cohort. ACT, Adult Changes in Thought; ADNI, Alzheimer’s Disease Neuroimaging Initiative; GWAS, genome-wide
association studies; ROS/MAP/MARS, Religious Orders Study/Memory and Aging Project/Minority Aging Research Study; XWAS, X-wide
association studies.

2.4 Autosomal and X-chromosome genetic data
quality control and imputation

Raw genetic data were collected on the genotyping arrays outlined

to follow: ACT data were collected on the Infinium Global Screening

Array-24 BeadChip. ADNI data were collected on four arrays: Illumina

Human610-Quad BeadChip, Illumina HumanOmniExpress BeadChip,

Illumina Omni 2.5 M, and Illumnia Global Screening Array v2. NACC

genetic data acquisition is describedon theirwebsite: https://naccdata.

org/nacc-collaborations/partnerships. ROS/MAP/MARS data were

collected on three arrays: Global Screening Array-24 v3.0 BeadChip,

Affymetrix GeneChip 6.0, and some data were obtained from the

Alzheimer’s Disease Genetics Consortium genome-wide association

studies (GWAS) datasets. We performed a standardized quality

control and imputation pipeline on raw genotypes, which we will out-

line below. For quality control, we made non-Hispanic White (NHW)

and non-Hispanic Black (NHB) determinations based on self-reported

race/ethnicity and based on a principal component analysis, which also

facilitated ancestry-specific outlier removal.

First, we applied a series of variant-level filters, removing variants

that had >5% missingness or a minor allele frequency (MAF) of <1%.

Second, we applied a series of sample-level filtering, removing sam-

ples that had >1% missingness, related individuals, individuals with

mismatched self-reported and genetically determined sex, and indi-

viduals with excessive heterozygosity (p < 10−7). For X-chromosome

variants, genetic data were compared between sexes, and variants

with differential missingness were filtered (p < 10−7). We conducted

a Hardy-Weinberg equilibrium (HWE) exact test, filtering out vari-

ants with p < 10−6. We phased and imputed the cleaned genetic

data on the Trans-Omics for Precision Medicine imputation server

(hg38).24–26 Raw imputed data were filtered for an imputed r2 < 0.8

and duplicated/multi-allelic variants. Then original genotypes were

merged back into the imputed data and another HWE exact test was

performed in the respective datasets. All variants were subsequently

filtered forMAF< 1%.

All imputed, cleaned chip-specific datasets from each cohort were

merged into one final dataset. First, we compared samples across chips

for duplicate samples, and checked concordance across those dupli-

cated samples. If concordance was >99%, the sample on the chip with

greater coverage was typically retained. Each chip was then compared

and filtered for reference allele mismatches and MAF differences

of >10%. Then, clean imputed data were merged across chips for each

cohort. We next assessed the merged datasets for cryptic relatedness,

removing related individuals, and for genetic ancestry outliers, filtering

out ancestry-specific outliers.

2.5 Statistical analyses

2.5.1 Single nucleotide polymorphism-heritability
tests

We next performed single nucleotide polymorphism (SNP)-heritability

analyses (with GCTA27) in a diagnosis- and sex-stratified manner,

restricting the sample first to cognitively unimpaired and then to cog-

nitively impaired participants. This exploratory analysiswas completed

https://naccdata.org/nacc-collaborations/partnerships
https://naccdata.org/nacc-collaborations/partnerships
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TABLE 1 Participant characteristics.

Non-HispanicWhite

(N= 24,216) Non-Hispanic Black (N= 3367) Cross-ancestry (N= 27,583)

Men Women Men Women Men Women

N (total) 11,062 13,154 880 2487 11,942 15,641

Baseline characteristics

Age at first cognitive visit (mean years± SD) 74.35± 7.73 74.56± 8.13 72.79± 7.27 73.39± 7.62 74.24± 7.71 74.37± 8.06

Education (mean years± SD) 16.36± 3.06 15.39± 2.85 14.33± 3.43 14.41± 3.16 16.21± 3.13 15.23± 2.92

Memory score (mean score± SD) 0.16± 0.83 0.36± 0.90 0.04± 0.79 0.24± 0.80 0.15± 0.82 0.34± 0.88

Longitudinal characteristics

Number of visits (mean± SD) 7.40± 4.29 8.29± 4.67 6.93± 3.50 7.80± 4.07 7.37± 4.25 8.22± 4.59

Years of follow-up (mean years± SD) 3.84± 3.95 4.42± 4.32 3.52± 3.38 3.98± 3.74 3.82± 3.93 4.36± 4.24

Memory decline score (mean slope± SD) −0.09± 0.10 −0.07± 0.10 −0.08± 0.09 −0.06± 0.08 −0.09± 0.10 −0.07± 0.10

Clinical diagnosis at first cognitive visit

N (%) normal cognition (out of those diagnosed) 4950 (44.75%) 7839 (59.59%) 391 (44.43%) 1384 (55.65%) 5341 (44.72%) 9223 (58.97%)

N (%)MCI/AD (out of those diagnosed) 4478 (40.48%) 3987 (30.31%) 373 (42.39%) 869 (34.94%) 4851 (40.62%) 4856 (31.05%)

APOE carrier status

N (%) ɛ2 carrier (out of those that haveAPOE data) 1329 (12.01%) 1623 (12.34%) 173 (19.66%) 457 (18.38%) 1502 (12.58%) 2080 (13.30%)

N (%) ɛ4 carrier (out of those that haveAPOE data) 4154 (39.35%) 4766 (36.23%) 415 (47.16%) 1047 (42.10%) 4569 (38.26%) 5813 (37.17%)

Abbreviation: APOE, apolipoprotein E;MCI/AD, mild cognitive impairment.

to deconvolve some of the phenotypic heterogeneity present in the

overall sample that includes individuals with and without dementia.

While it is well established that memory performance is a heritable

trait, andADdementia is a heritable trait, wewere interested in decon-

volving the late-life memory performance data to better understand

whether there are any sex differences in the heritability of memory

performance (leveraging a published formula28) in the absence of base-

line cognitive impairment (to simplify the sample to individuals at a

similar diagnostic starting point) andwhether there are sex differences

in the heritability ofmemory performance following a clinical diagnosis

of dementia (acting as amarker of disease progression).

2.5.2 Memory endophenotype selection

In this study, wewere interested in leveragingmemory performance as

an endophenotype for AD. Memory was the selected endophenotype

because it (1) increases precision by focusing on a single, consistently

measured quantitative metric; and (2) allows for increased statistical

power due to longitudinal data that more accurately represent the

continuum of change across the diagnostic spectrum. In particular, we

were interested in “late-life memory,” defined in this study as memory

performance after age60. Thus, our target populationwasolder adults,

who as a subgroup are more likely to experience preclinical memory

changes or AD-related decline.

To study memory performance, we selected both baseline memory

and memory decline measures outlined as follows. First, we extracted

baseline memory scores for each participant, based on their first

cognitive visit. This served as our baseline memory phenotype for

subsequent GWAS and post-GWAS analyses. Second, we calculated

memory slopes for each participant who had at least two cognitive vis-

its, using all datapoints available for each of these participants. Slopes

were calculatedwith a null linearmixed effectsmodel, letting slope and

intercept vary for each participant. The interval term used in our lin-

earmixed effects regressionmodel is quantified as years from baseline

for each observation for each participant, so the extracted slope from

the model represents a standardized metric of annual change in mem-

ory performance for each participant. The individual memory slopes

served as our memory decline phenotype for subsequent GWAS and

post-GWAS analyses.

2.5.3 Genome-wide and X-wide association studies
among all participants

Prior to performing GWAS, cryptic relatedness was assessed across

all four cohorts, and related individuals were typically removed from

the larger cohort. Baseline memory and memory decline GWAS

were performed with PLINK’s29 linear association tool with addi-

tive variant coding. All GWAS described were performed in males,

in females, and with a sex-interaction. Covariates included base-

line age and the first five genetic ancestry principal components,

and additionally the sex-interaction GWAS contained an SNP-by-sex

interaction term. We performed GWAS in ACT, ADNI, NACC, and

ROS/MAP/MARS separately. Within each cohort, GWAS were per-

formed among NHW and among NHB participants separately. X-wide

association studies (XWAS) were performed identically to the GWAS,

except that male genotypes were coded as 0/2 (instead of 0/1) to
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account for X-chromosome dosage differences between males and

females.

2.5.4 GWAS and XWAS subgroup analyses

Within each ancestry group, we additionally performed sex-stratified

and sex-interaction GWAS and XWAS subgroup analyses, by first

limiting the sample to cognitively unimpaired and then limiting to cog-

nitively impaired participants. Clinical diagnosis determinations are

outlined above in Section 2.2, and the distributions of memory scores

within each diagnosis group are displayed in Figures S1 and S2. These

stratified analyses allowed us to explore genetic effects contributing to

memory performance in the absence of cognitive impairment aswell as

in the context ofMCI/AD.

2.5.5 Sensitivity analyses

For all genome-wide significant variants, we performed a two-part

sensitivity analysis. First, we conducted post hoc SNP-interaction anal-

yses. Thus, for each significant variant, we had a series of three

linear models that had SNP-by-ancestry-by-sex, SNP-by-diagnosis-

by-sex, and SNP-by-ancestry-by-diagnosis-by-sex interaction terms,

respectively. Second, we checked the association of genome-wide sig-

nificant variants in the diagnosis-stratified subgroup analyses (please

see Section 2.5.4).

2.5.6 Within-ancestry genome-wide meta-analyses

Male, female, and sex-interaction individual cohort GWAS were meta-

analyzed implementing a fixed-effects model with beta and standard

error input (eg, GWAMA v2.2.2.).30 Meta-analyses were performed

within each ancestry group and furthermore within each diagnostic

category mentioned above. Meta-analysis results were restricted to

SNPs present in three or four (out of four) cohorts. Results were fur-

ther filtered to retain SNPs with a stratum specificMAF of>1%. These

filtered meta-analysis results were leveraged for the cross-ancestry

meta-analyses (see next section).

2.5.7 Cross-ancestry genome-wide meta-analyses

We additionally performed cross-ancestry meta-analyses. To do this,

we took each within-ancestry genome-wide meta-analysis described

above (ie, for NHW and NHB) and meta-analyzed those with a fixed-

effects approach.30 SNPs were retained if they were present in both

ancestry groups.

2.5.8 Expression quantitative trait locus analysis

All genome-wide significant variants were queried in the follow-

ing expression quantitative trait loci (eQTL) databases: GTEx

(https://gtexportal.org/), BRAINEAC (http://www.braineac.org),

eQTLGen Consortium (whole blood; https://www.eqtlgen.org),

Brain xQTLServe (http://mostafavilab.stat.ubc.ca/xqtl/), Brain-

Seq (dorsolateral prefrontal cortex [DLPFC] and hippocampus;

http://eqtl.brainseq.org), and MetaBrain (https://www.metabrain.nl).

The eQTL significance threshold was set a priori at p < 0.05. For

each eQTL, p-values were determined by the given p-values in each

database for the given tissue(s).

2.5.9 Functional annotation of top genetic loci

When applicable, we conducted variant mapping with the Functional

Mapping and Annotation of Genome-Wide Association Studies online

software tool (FUMA; https://fuma.ctglab.nl/).31,32 All SNPs in linkage

disequilibrium (LD) with the top SNP in the locus, irrespective of

their p-values, were also considered for annotation. In brief, FUMA

performs three types of mapping: (1) positional, (2) eQTL, and (3)

chromatin. The chromatin mapping looks for regions in the locus that

are enriched in topologically associated domains, measured by Hi-C

assays. Furthermore, FUMA checks to see if these enriched regions

in the topologically associated domains overlap with promoters or

enhancers of genes across multiple cell types and tissues.

2.5.10 Gene-set analyses

Prior to conducting gene-set analyses, we removed a 1Mb region

up- and downstream of the apolipoprotein E [APOE] gene from our

meta-analysis results, to allow for investigation of genes and pathways

contributing to memory beyond APOE. Next, we performed male,

female, and sex-interaction gene- and pathway-based tests with

the Multi-marker Analysis of GenoMic Annotation (MAGMA v1.09)

analytical tool33 on both the within-ancestry and the cross-ancestry

filtered meta-analysis results. MAGMA gene-set analyses consist of

permutation-like tests to determine if a set of SNPs or a gene-set is

associated with a gene or a biological pathway, respectively, more than

would be expected by random chance. Gene annotations were curated

leveraging our genetic data files and Genome Reference Consortium

Human Build 38 gene locations. Pathway annotations were compiled

from gene sets from the Molecular Signatures Database34 v.7.0. All

gene- and pathway-based tests were adjusted for multiple compar-

isons with the false discovery rate (FDR) procedure with an a priori

significance threshold set at FDR< 0.05.

2.5.11 Genetic correlation tests

Prior to conducting genetic correlation analyses, we removed a 1Mb

region up- and downstream of APOE from our meta-analysis results,

to allow us to investigate the sex-specific genetic architecture of

memory beyond the APOE locus. We leveraged our male, female,

and sex-interaction NHW meta-analysis filtered results to perform

https://gtexportal.org/
http://www.braineac.org
http://www.braineac.org
https://www.eqtlgen.org
http://mostafavilab.stat.ubc.ca/xqtl/
http://eqtl.brainseq.org
https://www.metabrain.nl
https://fuma.ctglab.nl/
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genetic correlation tests between our GWAS and GWAS of other

complex traits. Genetic correlation estimates were calculated with the

GENOVA.35 When correlation estimates were unstable due to sample

size limitations of the original GWAS, genetic covariance estimates

were used instead. Genetic correlations/covarianceswere adjusted for

LD inflation with ancestry-specific LD-scores, calculated based on the

1000 Genomes (European) reference genetic dataset. All genetic cor-

relation (or covariance) values were adjusted for multiple comparisons

with theFDRprocedurewith significance set apriori asFDR<0.05.We

calculated genetic correlations with a curated set of 65 complex traits.

3 RESULTS

Our study included a total of 27,583 participants, comprised of 24,216

NHW individuals (54.3% female) and 3367 NHB individuals (73.4%

female). Participant characteristics are presented in Table 1. Females

were 59% cognitively unimpaired, 37% APOE ɛ4 carriers, with a mean

age of 74 years at baseline. Males were 45% cognitively unimpaired,

38% APOE ɛ4 carriers, with amean age of 74 years at baseline.

3.1 Sex-aware heritability calculations of memory
performance by ancestry and by sex

We calculated heritability estimates for memory performance in each

sex as well as in both sexes combined, and we did this among NHW

individuals and among NHB individuals. All heritability estimates can

be found in Table 2. Heritability estimates in both sexes for NHW

participants ranged from 0.14 to 0.17 for baseline memory and 0.10

to 0.15 for memory decline. Across sexes for NHW individuals, esti-

mates trended a bit higher for males, but there were no statistically

significant differences between sexes. Additionally, among NHW par-

ticipants of each sex, baseline memory heritability estimates were

higher when estimated among cognitively unimpaired individuals, and

memory decline heritability estimates were higher when estimated

among cognitively impaired individuals. Heritability estimates forNHB

participants in both sexes (and sex-stratified) appeared a bit higher

than NHW for baseline memory, albeit the standard errors were quite

large suggesting that estimates were less stable. For memory decline

among NHB individuals, several of the heritability estimates were too

small (andunstable) to interpret, likelydue to small sample sizes. In con-

trast with the NHW results, heritability estimates appeared to trend

higher among NHB females compared to NHBmales, but no estimates

significantly differed by sex.

3.2 Sex-stratified and sex-interaction
genome-wide significant loci among a cross-ancestry
sample of individuals spanning the AD diagnostic
spectrum

All top variant associations (p < 1 × 10−5) from the NHW, NHB, and

cross-ancestry meta-analyses can be found in Tables S1–S6.

In the cross-ancestry meta-analysis among individuals across the

AD diagnostic spectrum, we identified a significant sex-interaction

at a chromosome 18 locus whereby the minor allele was asso-

ciated with baseline memory (Figure 2A; top SNP: rs67099044;

MAF = 0.16; βinteraction = 0.10; pinteraction = 2.15 × 10−8). Notably,

this SNP was also nominally significant in each sex and had a

flipped effect across sexes (βmales = −0.05, pmales = 2.66 × 10−4;

βfemales = 0.04, pfemales = 2.20 × 10−4). The top SNPs in this locus

(rs67099044, rs34049053) are intronic variants within a long, non-

coding RNA, LOC107985179. When stratifying by ancestry, this locus

significantly interacted with sex in NHW individuals (βinteraction = 0.16,

pinteraction = 1.47 × 10−8). Similar to the cross-ancestry analysis, the

locus was nominally significant in each sex, and had a flipped effect

across sexes (βmales = −0.05, pmales = 2.42 × 10−4; βfemales = 0.04,

pfemales = 3.08 × 10−4). Sensitivity analyses revealed that there

was a significant three-way SNP-by-sex-by-diagnosis interaction

(pinteraction =0.04),whereby cognitively unimpaired individuals seemed

to drive the observed sex-interaction with baseline memory (cogni-

tively unimpaired: βsex-interaction = 0.08, psex-interaction = 4.38 × 10−7;

cognitively impaired: βsex-interaction = 0.03, psex-interaction = 0.41). In

addition, variant annotation revealed that this locus is enriched in

Hi-C chromatin loops in multiple cell types/tissues, one of which is

neural progenitor cells, and that theHi-C chromatin loops overlapwith

promoter regions for a wide-variety of genes, including CBLN2.

For memory decline among a cross-ancestry sample spanning the

AD diagnostic spectrum, we identified a female-specific association

with a previously published AD risk locus on chromosome 2, BIN1 (top

SNP rs6733839; MAF = 0.40; βfemales = −0.01, pfemales = 3.70 × 10−9;

βmales =−3.60×10−3, pmales =6.73×10−4), but therewas no evidence

of a sex-interaction (pinteraction = 0.17). Additionally, sensitivity analy-

ses did not reveal any additional effectmodifications by diagnosis or by

ancestry.

3.3 Sex-stratified and sex-interaction
genome-wide significant loci within diagnosis strata

In our cross-ancestry meta-analysis among individuals without cog-

nitive impairment, we identified a significant sex-interaction with

baseline memory in an intronic variant within SCHIP1/IQCJ-SCHIP1

(Figure2B; rs719070on chromosome3;MAF=0.18; βinteraction=0.09;

pinteraction = 7.03 × 10−9). In the sex-stratified GWAS, this SNP was

also significant genome-wide among cognitively unimpaired males

(βmales = −0.07, pmales = 1.41 × 10−9), but not among female counter-

parts (βfemales =0.01, pfemales =0.14). Sensitivity analyses revealed that

there was a significant three-way SNP-by-diagnosis-by-sex interaction

(pinteraction=0.03), anda significant three-waySNP-by-ancestry-by-sex

interaction (pinteraction = 1.80× 10−3), whereby cognitively unimpaired

NHW and NHB males each appeared to drive the observed memory

association. In addition to being an intron variant within SCHIP1, func-

tional annotation (eg, FUMA) showed that the top variant in this locus

is enriched in Hi-C chromatin loops in multiple cell types/tissues for

SCHIP1.
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TABLE 2 Sex-specific heritability of memory performance.

Non-HispanicWhite Sex differences test

Phenotype diagnosis Both sexes Men Women z-score p-value

Baselinememory All diagnoses β= 0.17 (SE= 0.01)

p<<< 0.01

β= 0.16 (SE= 0.03)

p= 8.93× 10–12
β= 0.17 (SE= 0.03)

p= 1.94× 10–14
0.24 0.81

Cognitively

unimpaired

β= 0.17 (SE= 0.03)

p<<< 0.01

β= 0.25 (SE= 0.06)

p= 6.74× 10–9
β= 0.21 (SE= 0.04)

p= 2.65× 10–13
−0.55 0.58

Cognitively

impaired

β= 0.14 (SE= 0.04)

p= 9.44× 10–9
β= 0.20 (SE= 0.07)

p= 6.87× 10–6
β= 0.11 (SE= 0.07)

p= 8.73× 10–3
−0.91 0.36

Memory decline All diagnoses β= 0.14 (SE= 0.02)

p<<< 0.01

β= 0.20 (SE= 0.04)

p= 2.26× 10–10
β= 0.12 (SE= 0.03)

p= 2.12× 10–6
−1.60 0.11

Cognitively

unimpaired

β= 0.10 (SE= 0.03)

p= 1.01× 10–9
β= 0.14 (SE= 0.06)

p= 2.23× 10–5
β= 0.09 (SE= 0.04)

p= 2.83× 10–4
−0.69 0.49

Cognitively

impaired

β= 0.15 (SE= 0.05)

p= 1.92× 10–7
β= 0.31 (SE= 0.09)

p= 1.54× 10–5
β= 0.21 (SE= 0.09)

p= 5.04× 10–5
–0.79 0.43

Non-Hispanic Black Sex differences test

Phenotype diagnosis Both sexes Men Women z-score p-value

Baselinememory All diagnoses β= 0.27 (SE= 0.09)

p= 4.36× 10–5
β= 0.19 (SE= 0.18)

p= 6.81× 10–2
β= 0.21 (SE= 0.12)

p= 1.75× 10–2
0.09 0.93

Cognitively

unimpaired

β= 0.28 (SE= 0.15)

p= 2.64× 10–3
β= 0.14 (SE= 0.33)

p= 2.96× 10–1
β= 0.37 (SE= 0.20)

p= 8.29× 10–3
0.60 0.55

Cognitively

Impaired

β= 0.07 (SE= 0.21)

p= 3.96× 10–1
β= 1× 10–6 (SE= 0.41)

p= 5.00× 10–1
β= 0.15 (SE= 0.26)

p= 3.08× 10–1
0.31 0.76

Memory decline All diagnoses β= 0.19 (SE= 0.11)

p= 2.61× 10–2
β= 0.14 (SE= 0.32)

p= 3.50× 10–1
β= 0.19 (SE= 0.14)

p= 4.47× 10–2
0.14 0.89

Cognitively

unimpaired

β= 0.15 (SE= 0.17)

p= 1.37× 10–1
β= 1× 10–6 (SE= 0.52)

p= 5.00× 10–1
β= 0.24 (SE= 0.21)

p= 8.61× 10–2
0.43 0.67

Cognitively

impaired

β= 1E-06 (SE= 0.26)

p= 5.00× 10–1
β= 1× 10–6 (SE= 0.48)

p= 5.00× 10–1
β= 1× 10–6 (SE= 0.34)

p= 5.00× 10–1
0.00 1.00

Furthermore, we identified a locus of nominal significance in

the cross-ancestry X-wide meta-analysis (rs5935633: MAF = 0.07;

βfemales = −0.01, pfemales = 2.77 × 10−3; βmales = −3.46E x10−3,

pmales = 0.26) that reached genome-wide significance among cog-

nitively impaired NHB participants, whereby this X-chromosome

locus was significantly associated with memory decline among

females (Figure 3; top SNP rs5935633; MAF = 0.12; βfemales = −0.04,

pfemales = 3.55 × 10−8) but not among males (βmales = −2.29 × 10−3,

pmales = 0.74). The female-specific association did not reach genome-

wide significance in the cross-ancestry meta-analysis of cognitively

impaired participants, likely because the association was null among

NHW participants. Sensitivity analyses showed that the four-way

SNP-by-ancestry-by-diagnosis-by-sex interaction was significant

(pinteraction = 0.03), whereby the observed association seemed to be

specific to cognitively impaired NHB females. Interestingly, the top

variant in this locus, rs5935633, is an intron variant within EGFL6 and

is an eQTL for TCEANC in theDLPFC and forOFD1 in the hippocampus.

3.4 Gene-set analyses identify candidate genes
and biological pathways significantly associated with
memory performance in a sex-specific manner

All top genes and pathways (p < 0.05) from the NHW, NHB, and cross-

ancestry gene-set analyses can be found in Tables S7–S18.

In the cross-ancestry analysis, we identified Gene Ontology bio-

logical pathways (Figure 4) that were associated with baseline mem-

ory only among females: Heparan Sulfate Proteoglycan Biosynthetic

Process Polysaccharide Chain Biosynthetic Process (pmales = 0.86,

p.FDRmales = 1.00; pfemales = 1.82 × 10−6, p.FDRfemales = 0.02); Hep-

aran Sulfate N-Acetylglucosaminyltransferase Activity (pmales = 0.78,

p.FDRmales = 0.99; pfemales = 8.87 × 10−6, p.FDRfemales = 0.04); Hep-

aran Sulfate SulfotransferaseActivity (pmales =0.82, p.FDRmales =0.99;

pfemales = 9.39 × 10−6, p.FDRfemales = 0.04); and Heparin Biosynthetic

Process (pmales = 0.99, p.FDRmales = 1.00; pfemales = 1.48 × 10−5,

p.FDRfemales = 0.045).
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F IGURE 2 Sex-specific genetic loci associated with late-life memory performance. (A) Genome-widemeta-analysis on baselinememory in a
cross-ancestral sample, highlighting a significant locus with a sex-interaction on chromosome 18 (rs67099044); the right plots are regional plots in
males (left) and in females (right) surrounding rs67099044. (B) Genome-widemeta-analysis on baselinememory among cognitively unimpaired,
cross-ancestral individuals, highlighting a significant locus with a sex-interaction on chromosome 3 (rs719070); the right plots are regional plots in
males (left) and in females (right) surrounding rs719070.

We also identified one biological pathway with a sex-interaction

with baseline memory among cognitively unimpaired individuals—

Reactome Interleukin-6 Signaling (pinteraction = 1.50 × 10−6,

p.FDRinteraction = 0.02)—and this pathway was nominally signifi-

cant among the cross-ancestry sample of cognitively unimpairedmales

(pmales = 4.10 × 10−4). Additionally, this pathway had a nominally

significant sex-interaction in both NHW (pinteraction = 0.01) and NHB

(pinteraction = 0.01) cognitively unimpaired individuals.

3.5 Some complex traits have sex-specific shared
genetic architecture with memory performance

All genetic correlations were conducted among NHW individuals only,

and all genetic correlation results can be found in Tables S19–S24.

We evaluated shared genetic architecture between a curated set

of 65 GWAS of complex traits and our sex-stratified meta-analyses on

memory performance. All correlations reported below are for individ-

uals spanning the AD diagnostic spectrum and survived adjustment for

multiple comparisonswith the FDR procedure (FDR< 0.05). Five traits

were significantly associated with baseline memory among males and

16 traits were significantly associated among females. Of traits surviv-

ing FDR correction in at least one sex, 95% confidence intervals did

not overlap between sexes for five traits: anxiety disorder, educational

attainment, insomnia, risky behavior, and heart rate variability (HRV),

suggestive of true sex effects (Figure 5A). Anxiety disorder was sig-

nificantly and negatively correlated among females and not correlated

among males; educational attainment was significantly and positively

correlated in both sexes, but stronger among females; insomnia was

significantly and negatively correlated among females and nominally

significant and positively correlated among males; risky behavior was

significantly and positively correlated in males and not correlated in

females; and finally, HRVwas nominally significant and negatively cor-

related amongmales and significantly and positively correlated among

females.

We observed two traits associated with memory decline among

males and 20 traits associated with memory decline among females.

Of traits surviving FDR correction in at least one sex, 95% confidence

intervals did not overlap between sexes for three traits—primary

sclerosing cholangitis, HRV, and ulcerative colitis—suggestive of

true sex effects (Figure 5B). Primary sclerosing cholangitis was not

correlated among females and significantly and positively corre-

lated among males; HRV was nominally significant and negatively

corelated among males and significantly and positively corre-

lated among females; and ulcerative colitis was not correlated

among males and significantly and positively correlated among

females.

4 DISCUSSION

We completed the largest and most comprehensive analysis of sex-

specific genetic predictors of late-life memory performance to date.

We observed that memory is comparably and highly heritable across
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F IGURE 3 X-chromosome locus associated with late-life memory decline. (A) Nominally significant cross-ancestry X-chromosome locus that
reached genome-wide significance among cognitively impaired non-Hispanic Black (NHB) females. Top variant, rs5935633, is plotted by sex
among non-HispanicWhite (NHW) participants (left) and NHB participants (right). (B) Regional plot in NHBmales (left) and in NHB females (right)
surrounding rs5935633.

ancestry and sex, and we highlighted novel genetic variants, candi-

date genes,molecular pathways, and genetic correlations that relate to

memory in a sex-specific manner. Our results suggest that the genetic

contribution to memory is comparable across sexes, but the molecu-

lar drivers of memory vary substantially. In particular, genetic drivers

of the X-chromosome and sex hormones appear to be relevant among

females, while genetic drivers relevant to neurodevelopment appear to

be relevant amongmales.

4.1 Memory performance is comparably and
highly heritable across sexes

We calculated SNP-heritability estimates stratified by ancestry

and by sex (Table 2). Although estimates trended higher in males

among NHW and higher in females among NHB, estimates did not

significantly differ by sex, consistent with a previous twin study

evaluating sex differences in memory heritability.36 In our study,

narrow-sense heritability estimates were slightly lower (≈0.10 to

0.25 compared to 0.30 to 0.81 in twin studies),37–39 perhaps due to

the older age and high phenotypic heterogeneity in our sample.40 In

support of that possibility, we noticed that our heritability estimates

for baseline memory were higher when estimated among the more

homogenous sample of cognitively unimpaired individuals. We have

observed this in prior AD endophenotype GWAS by our group.15,41

Overall, our results add strong evidence that memory performance is

highly heritable with a comparable genetic component across sex and

ancestry.

4.2 Heparan sulfate signaling and the
X-chromosome are implicated as sex-specific genetic
drivers of memory

We found that heparan sulfate signaling pathways associated with

baselinememory among a cross-ancestry sample of females (Figure 4).

Heparan sulfate signaling has been implicated in the AD neu-

ropathological cascade and in female-related disorders. First, hep-

aran sulfate signaling has a hypothesized role in amyloidosis,42,43

and genes that contribute to the heparan pathways are upregulated

in the AD brain.44 Second, heparan sulfate signaling is implicated

in female sex biology. Heparan sulfate is related to the menstrual
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F IGURE 4 Sex-specific biological pathways associated with late-life memory performance. (A) Bar chart displaying the -log10 p-values of the
top biological pathways (p< 1E-03) associated with baselinememory among cross-ancestral females. (B) The 95% confidence intervals of the top
biological pathways associated with baselinememory in cross-ancestral females (pink) with corresponding confidence intervals in cross-ancestral
males (blue), with shapes denoting level of significance. GO, GeneOntology.

cycle45 and the onset of labor.46 Increased heparan sulfate proteogly-

cans are linked to polycystic ovary syndrome47 and preeclampsia.48

Lastly, heparan signaling is involved with embryo implantation49 and

oocyte patterning.50 In our results, upregulation of these heparan

signaling pathways were associated with better memory perfor-

mance among females but not among males (Figure 4). One notable

significant gene-level association, NDST3, contributed to the hep-

aran sulfate pathway signal among females. NDST3 is involved in

microtubule acetylation, and notably microtubule deacetylation is a

hallmark of neurodegenerative disorders.51 Indeed, atypical expres-

sion of NDST3 is observed in multiple neurodegenerative disorders,

including AD.51

In a recent sex-awareADendophenotypeGWASstudybyourgroup,

we hypothesized that female-specific genomic findings may be driven

by (1) X-chromosome, (2) sex hormones, or (3) both.15 Thus, it is note-

worthy that we identified a hormone-related target (heparan sulfate

signaling) and an X-chromosome candidate (EGFL6; Figure 3). EGFL6

is involved in cell-cycle regulation, craniofacial development,52 and

female cancers.53,54 The top variant in the locus, rs5935633, was a

hippocampal eQTL for OFD1 and a DLPFC eQTL for TCEANC. TCEANC

and OFD1 are additional sex-specific candidate genes, as one study

showed that TCEANC escapes X-inactivation across multiple species,55

andOFD1mutations lead to neurological-related phenotypes.56

Overall, our results again underscore the importance of analyzing

the X-chromosome when looking for sex-specific effects and highlight

the heparan sulfate signaling pathway as a potential novel female-

specific genetic driver of memory performance. While we highlight

some evidence that the heparan sulfate effect may be modulated by

sex hormones, further work will be needed to replicate and evaluate

this hypothesis.
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F IGURE 5 Sex-specific genetic correlations with late-life memory performance. (A) Genetic correlations between baselinememory and
complex traits by sex (among non-HispanicWhite [NHW] participants), with males in blue, females in pink, and shapes denoting level of
significance. All traits displayed are false discovery rate (FDR)-significant in at least one sex. (B) Genetic correlations betweenmemory decline and
complex traits by sex (amongNHWparticipants), withmales in blue, females in pink, and shapes denoting level of significance. All traits displayed
are FDR-significant in at least one sex. ADHD, attention-deficit/hyperactivity disorder; ICV, total intracranial volume; RMSSD, root mean square of
successive R-R interval differences; SDNN, standard deviation of the N-N intervals.

4.3 Genetic correlations between complex traits
and memory performance differ by sex

We examined the shared genetic architecture between memory per-

formance and complex traits (Figure 5) and identified traits that

significantly differed by sex. We observed evidence of female-specific

genetic correlations between memory and immune traits, consistent

with our previous findings,15 and a slightly stronger genetic correlation

between memory and educational attainment among females, consis-

tent with the stronger association between educational attainment

and dementia amongwomen in the literature.57,58

One sex-specific genetic correlation we found interesting was the

correlation between memory decline and HRV. Among females, we

saw an expected genetic correlation (Figure 5B) such that genetic sus-

ceptibility towards worse HRV was associated with a faster rate of

memory decline, a direction of effect consistent with the literature,

where reduced HRV is associated with worse cognition,59 particularly

among women.60 In contrast, among males we observed a counter-

intuitive genetic correlation such that genetic susceptibility towards

worse HRV was associated with a slower rate of memory decline,

although the male-stratified correlation did not survive correction for

multiple comparisons (Figure 5B). The male-stratified results are also

in contrast to our previously published male-specific association with

cognitive resilience.15

Upon further investigation, local genetic correlations61 highlighted

that the regions driving this study’s sex-specific association were RGS6

(chromosome 14), which is implicated in HRV62 and is dysregulated

in AD,63 as well as CD33 (chromosome 19), which is a known AD risk

gene.64 The present results suggest that genetic drivers of HRV in

females may be particularly relevant to memory decline in cognitive

aging and AD, but more work is needed to deconvolve the complex

interplay between sex, HRV, neuropathology, and cognition.

4.4 Sex-specific variant associations with baseline
memory performance

We identified a cross-ancestry, genome-wide significant locus (chro-

mosome 18; top variant, rs67099044) that had a sex-interaction with

baseline memory (Figure 2A). Functional annotation of this locus

revealed a candidate gene,CBLN2, which is involved in synaptogenesis.

There was also nominal eQTL evidence for CBLN2 in the brain. CBLN2

has been previously implicated in neurodevelopmental disorders,

such as autism and Tourette’s syndrome,65,66 and a prior sex-specific



1262 EISSMAN ET AL.

association was observed with bilirubin concentrations.67 While there

was evidence of this locus’s involvement in the brain and potential

sex-specific effects ofCBLN2, this locus needs to be replicated in future

sex-aware genetic studies.

We also identified a cross-ancestry, genome-wide significant chro-

mosome3 locus. The top variant in this locuswas rs719070, an intronic

variant within SCHIP1/IQCJ-SCHIP1 that was significant among cog-

nitively unimpaired males and had a significant sex-interaction

(Figure 2B). SCHIP1 and IQCJ-SCHIP1 are both hypothesized to be

involved with axon growth during brain development68 and with the

nodes of Ranvier in the adult brain.69–71 Additionally, IQCJ-SCHIP1was

previously implicated in neurodevelopmental disorders such as autism

and language deficit disorders71,72 and is highly expressed in the fetal

brain.69 Future work will need to be done to replicate our study’s

finding and confirm the causal gene in the region.

4.5 Strengths and limitations

Our study had many strengths but was not without limitations.

We leveraged four deeply phenotyped cohorts, each with years of

longitudinal follow-up. Each participant had harmonized memory

composite scores, although we were unable to evaluate subcompo-

nents of memory, such as episodic memory. As Kremen and colleagues

stated,73 individual memory tasks may be driven by different genetic

factors, which we were unable to fully address in this study.73 Future

studies will need larger sample sizes in order to harmonize memory

subcomponents (eg, episodic memory) and investigate the genetic

factors driving each of these individual subcomponents. Furthermore,

most of our findings in this study were baseline memory associations

driven by preclinical individuals. The relative lack of significant findings

for longitudinal memory may be due, in part, to the substantial inter-

individual variability in cognitive trajectories, especially among those

with MCI/AD. Furthermore, there is no gold standard for analyzing

longitudinal phenotypes in the context of GWAS. Therefore, advanced

modeling techniques and larger sample sizes with less phenotypic

heterogeneity are needed to detect genetic factors contributing to

memory change in AD. Additionally, in this analysis, we had data from

NHW and NHB individuals, and leveraged a cross-ancestral approach.

Although we were somewhat underpowered to detect NHB-specific

effects, as sample sizes continually grow for more diverse cohorts,

we will be able to include more ancestries and diverse samples. Fur-

thermore, with few published genomic studies on the X-chromosome

and AD, a strength of this study was inclusion of the X-chromosome,

albeit we were a bit underpowered to detect its effects. Finally, we

did not have a replication sample for our top sex-specific variant

associations.

5 CONCLUSIONS

We conducted the largest sex-aware, cross-ancestral genetic study on

late-life memory performance to date. From this study, we identified

three sex-specific loci, including one X-chromosome locus. We identi-

fiedmultiple sex-specific candidate genes and sex-vulnerablebiological

pathways both with ties to neurodevelopment and female-related dis-

orders. Overall, our study suggests that although much of the genetic

architecture of late-life memory performance is shared across sexes, a

sex-specific genetic component to memory does exist, providing excit-

ing targets for future intervention. Our findings highlight the benefits

of characterizing sex-specific genes and pathways and their relation to

cognitive aging and AD.
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APPENDIX

Data used in preparation of this article were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu). As such, the investigators within the ADNI

contributed to the design and implementation of ADNI and/or

provided data but did not participate in analysis or writing of this

report. A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf
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