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Abstract

This editorial summarizes advances from the Clearance of Interstitial Fluid and Cere-

brospinal Fluid (CLIC) group, within the Vascular Professional Interest Area (PIA) of

the Alzheimer’s Association International Society to Advance Alzheimer’s Research

and Treatment (ISTAART). The overarching objectives of the CLIC group are to: (1)

understand the age-related physiology changes that underlie impaired clearance of

interstitial fluid (ISF) and cerebrospinal fluid (CSF) (CLIC); (2) understand the cellular

and molecular mechanisms underlying intramural periarterial drainage (IPAD) in the

brain; (3) establishnovel diagnostic tests forAlzheimer’s disease (AD), cerebral amyloid

angiopathy (CAA), retinal amyloid vasculopathy, amyloid-related imaging abnormal-

ities (ARIA) of spontaneous and iatrogenic CAA-related inflammation (CAA-ri), and

vasomotion; and (4) establish novel therapies that facilitate IPAD to eliminate amyloid

β (Aβ) from the aging brain and retina, to prevent or reduceAD andCAApathology and

ARIA side events associated with AD immunotherapy.
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1 AGING, ARIA, AND CAA-RELATED
INFLAMMATION

Fluid and solutes are eliminated from the brain along the base-

ment membranes of capillaries and arteries as intramural periarterial

drainage (IPAD). This clearance mechanism fails with increasing age,

possession of apolipoprotein E4 (APOE ε4) genotype and cardiovascu-

lar risk factors such as a high fat diet.1,2 Disturbances in the clearance

of interstitial fluid (ISF) and cerebrospinal fluid (CSF) from the brain

also is suggested to contribute to the development of amyloid-related

imaging abnormalities (ARIA).3–5 Immune complexes can form after

immunotherapy and may also block IPAD.6,7 Increasing evidence sug-

gests that this phenomenonmaybe causally linked to theoccurrenceof

both ARIA associatedwith raised CSF concentrations of anti-amyloid β
(Aβ) autoantibodies spontaneously occurring in patients with cerebral
amyloid angiopathy (CAA)-related inflammation (CAA-ri)8 and ARIA

associated with a class of anti-Aβ disease-modifying immunotherapies

with monoclonal antibodies (mAbs) in for Alzheimer’s disease (AD).3–5

In this framework, therapy-induced ARIA are becoming increasingly

recognized as the iatrogenic manifestation of CAA-ri.8,9

ARIA is an umbrella term used to generally define the detection

of two types of (sub)acute image abnormalities on magnetic reso-

nance imaging (MRI): (i) ARIA-edema (ARIA-E), defined as cortical

hyperintensities in the brain parenchyma or sulcal effusion in the lep-

tomeninges/sulci, on T2 weighted fluid-attenuated inversion recovery

(FLAIR) sequences; (ii) ARIA-hemorrhage (ARIA-H), defined as micro-

hemorrhages or cortical superficial siderosis, on T2* or susceptibility

weighted imaging (SWI).10 Notably, the term ARIA is not intended to

provide any information concerning the associated manifestations of

clinical symptoms.

Current data indicate that high immunotherapy drug dosing, APOE

ε4, and background CAA burden at the start of treatment are the

main risk factors for the occurrence of radiographic ARIA-E events

detected in 12% to 40% of recent clinical trial participants.11,12 A

recentmeta-analysis of phase III randomized control trials also showed

that although the incidence of ARIA was high for all drugs, except for

Solanezumab, only Aducanumab caused both the greatest brain Aβ
reduction and the greatest risk forARIA.13 This finding is in accordance

with the “ARIA paradox” ethiopathogenic model, which posits that

Aβ mobilization achieved by mAbs targeting plaques may be causally

linked to both efficacy and ARIA risk in a dose-dependent fashion.14

Although the optimal balance between dose regimens to minimize

risk of ARIA and maximize efficacy has yet to be determined, this is

generating concerns over the potential of mAbs to aggravate CAA

at the sites of greater plaque removal8,15 (Figure 1). Moving beyond

ARIA incidence, describing individual ARIA cases based on longitudinal

biomarker variations will be instrumental in solidifying our under-

standing of ARIAmechanisms and risk factors.With respect to CAA-ri,

the integration of multimodal and multiparametric longitudinal test-

ing for CSF and imaging biomarkers revealed a specific regional and

temporal association between focal areas of microglia activation and

ARIA-E only in patients with coexisting CAA and AD pathology, with

subsequent in-timepresentationofARIA-Hafter the firstARIA-E index

event.8

In clinical trials, the precise pathophysiology of ARIA is not

fully understood, but several mechanisms have been postulated.4,16

Therapy-induced ARIA is associated with mAbs that rely on Fc

receptor-mediated phagocytosis of Aβ aggregates by immune cells.17

Therefore, an exaggerated inflammatory response of vessel-adjacent

immune cells, such as microglia and perivascular macrophages, may

mailto:l.kelly@soton.ac.uk
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locally perturb the integrity of the cerebrovascular wall, leading to

leakage of fluid and/or blood products into the brain parenchyma or

sulci.18 In addition, the drug-mediated breakdown of parenchymal Aβ
aggregates and their subsequent mobilization along IPADmay further

increase the Aβ vascular burden and exacerbate CAA-related pathol-

ogy in some individuals,19,20 while also altering the integrity of the

vascular wall. It has been suggested that the cerebral blood vessels

affected by ARIA may be able to recover and withstand continued

dosing.21 It remains unclear to what extent the location and speed of

Aβ removal as well as the degree of Aβ burden, in particular the sever-
ity of CAA, increase the risk of ARIA and its severity and why some

individuals experience asymptomatic ARIA.

The aforementioned ARIA mechanisms were recently translated

into the first semi-mechanistic, in the silico model of ARIA-E, the vas-

cular wall disturbance (VWD) model.22 The VWDmodel hypothesized

that high local rates of Aβ removal (parenchymal or vascular) can

trigger the ARIA-E onset, as long as they are not counterbalanced

by the rate of an intrinsic vascular repair process. The VWD model

successfully described individual-level time-courses of ARIA-E and

highlighted the need to identify additional biomarkers and individual

characteristics that could explain the variable presentation of ARIA-

E; for example, biomarkers able to (i) distinguish between the vascular

and parenchymal Aβ burden or (ii) differentiate between individuals

with fast and slow vascular repair processes.

With the first anti-Aβ therapies in AD being recently granted accel-

erated approval by the US Food and Drug Administration (FDA) and

possibly others on their path to approval, an unprecedented era of

ARIA information is emerging.5,11,15,23 The data collected within the

setting of anti-Aβ clinical trials should make it possible to evaluate

the correlation between the location of ARIA events, the regional

changes in Aβ burden and the regional presence of both hemorrhagic

and non-hemorrhagic markers of CAA.8,24,25 Such an integrated analy-

sis will help clarify the relative risk of ARIA associated with the local

vascular load of Aβ and its removal. Although less common, ARIA-

E recurrent events, in particular their location will cast light on the

intrinsic recovery ability of vessels affected by ARIA and ultimately

increase confidence to restart therapy after the resolution of ARIA-E.8

Post mortem neuropathological follow-up of individuals with and with-

out ARIA will complement the image-based assessments by increasing

confidence in diagnosis and providing insights about ARIA-induced

neuropathological alterations of the blood vessels.26 The lack of ARIA-

Eanimalmodels andhumansamples fromclinical trials for independent

research is still representing one of the main road blocks to fill current

knowledge gaps in our understanding of ARIA.

The last 10 years of research has provided compelling evidence in

the commonalities between CAA-ri and therapy-induced ARIA, sug-

gesting the latter is the iatrogenic manifestation of CAA-ri, a rare

autoimmune encephalopathy characterized by raised CSF levels of

anti-Aβ autoantibodies, spontaneous ARIA-E events and focal areas of
activatedmicroglia in patients with coexisting AD and CAA.8,9,27

Large longitudinal cohorts registries and biorepositories of well-

defined patients with CAA-ri, such as the iCAB International Network,

as well as future registry of patients treated with mAbs, such as

RESEARCH INCONTEXT

1. Systematic review: This work reviews (using traditional

sources, such as PubMed) the current understanding

and evidence for the clearance of interstitial and cere-

brospinal fluids (CSFs) from the brain. The authors are

part of an international group hosted by the vascular

professional interest area of Alzheimer’s Association.

2. Interpretation: Our findings lead to a series of work-

ing hypotheses regarding the pathogenesis of amyloid-

related imaging abnormalities (ARIA), biomarkers, and

new therapeutic strategies for Alzheimer’s disease.

3. Future directions: Future directions should concentrate

on (a) clarifying the role of a novel PET tracer [11C]-

Butanol as an in vivo marker of drainage of cerebral

interstitial fluid; (b) establishing an experimental model

for ARIA in correlation with the human CAA-ri; (c) clari-

fying the pathways for drainage of cerebral proteins into

the nose; (d) implementing retinal biomarkers into clini-

cal practice and (e) developing therapeutic strategies to

facilitate intramural periarterial drainage.

the ALZ-NET, will be essential for gathering data from clinical prac-

tice, both to advance current recommendations limits for treatment

decisions and outcome interpretations.8

The priority and urgency in studying the mechanistic aspects of

ARIA are further motivated by the fact that we are still searching for

best-in-class biomarkers to fill current knowledge gaps and most clin-

icians still have little experience with the use of immunotherapeutic

drugs in patients with AD and CAA.

New research studies aimed to advance current understanding

on ARIA-E pathophysiological mechanisms and biomarkers, including

those disentangling potential associations between autoantibody lev-

els, micro-glial reactivity, Aβ deposition, and impairment of the IPAD

clearance pathways, should be top research priorities.

Given the biological complexity of ARIA, a multimodal and mul-

tiparametric approach in large longitudinal cohorts of samples from

clinical practice will be the only way to reach this aim, thus increasing

generalizability and facilitating the validation of emerging candidate

biomarkers, including:

1. MRImarkers and rating systems for CAA and ARIA-E

2. CSF and plasma testing for autoantibodies, APOE, astrocyte and

microglial reactivity, and blood-brain barrier damage biomarkers.

In this framework, CSF testing for anti-Aβ autoantibodies maymeet

the specific requirement of companion diagnostic biomarkers to assess

risk stratification, drug tailoring, and dosemonitoring in order tomain-

tain a therapeutic window for the safe and effective clearance of Aβ
withminimal occurrence of ARIA.8,9,15,28
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F IGURE 1 The possible mechanism bywhich immune complexes disrupt IPAD. In (A), antigens (peptides) in the extracellular space interact
with IgG extravasated from the circulation resulting in immune complex formation and fixation of complement C3. The immune complexes formed
block the arterial basementmembranes that represent the IPAD pathway. In (B), the drainage of peptides such as Aβ is blocked by the presence of
immune complexes or pre-existing CAA in the arterial basementmembranes

2 FUTURE OF IMMUNOTHERAPY

Lessons learned from other complex diseases underscore the impor-

tance of starting immunotherapy in asymptomatic individuals in the

initial stages of disease, ensuring that vascular health is optimal. This

also opens the opportunity to use emerging techniques to harness the

innate immune system. Examples include using different helper T-cell

peptide epitopes (UBITh technology),29,30 to elicit an enhanced B-cell

responsewhile avoiding harmful pro-inflammatory T-cell responses, or

alternative adjuvants such as CpG 1018 made up of short, unmethy-

lated cytosine-phosphate-guanine oligodeoxynucleotides targeting

microglia.31,32 However, both active and passive anti-Aβ immunother-

apies have their advantages and disadvantages,33–35 and it is probable

that both approacheswill be utilized in the future. The use of novel and

sensitive biomarker methods to detect signs of the neurodegenerative

process long before the symptoms occur will certainly facilitate the

advancement of immunotherapies through clinical development and

potentially provide means to prevent or slow AD progression. There

are now exciting promising trials for synucleinopathies.36 There is a

need for sensitive, specific biomarkers that detect the neuropathology

early, before clinical signs and symptoms. In the case of AD, biomarkers

need to be able to determine the health of the walls of cerebral blood

vessels and, therefore, their ability to cope with IPAD and clearing

immune complexes.

3 VESSEL-WALL CELL DYSFUNCTION
MECHANISMS AND NOVEL THERAPEUTIC
STRATEGIES FOR CAA/AD DISCUSSED DURING
CLIC 2022

Vascular cells are crucial to maintain neurovascular unit function and

proper brain clearance of solutes, including Aβ and debris. Indeed, vas-
cular dysfunction is one of the earliest events in AD pathogenesis,

and contributes to the failure of clearance pathways such as IPAD.

In particular, it has been shown that cells composing the blood-brain

barrier (such as endothelial and smooth muscle cells) are affected

by Aβ deposits such as those characterizing CAA. This results in

the activation of mitochondrial dysfunction pathways, with release

of hydrogen peroxide, loss of mitochondrial membrane potential and

cytochrome C release from the mitochondria, resulting in the instiga-

tion of pro-apoptotic mechanisms.37–39 Increases in blood-brain bar-

rier permeability and defects in angiogenesis have also been reported

after challenge of cerebral endothelial cells with multiple Aβ peptides,
including fragments and mutants.40 However, the specific molecular

mechanisms and possible strategies for prevention of endothelial and

smoothmuscle cell dysfunction in AD and CAA are not yet clear. Novel

studies from the Fossati Group highlighted carbonic anhydrases as a

possible therapeutic target to prevent mitochondrial dysfunction and

cell death of cells composing the vessel wall.41–44
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4 CARBONIC ANHYDRASE INHIBITORS

Methazolamide, acetazolamide, and analogue carbonic anhydrase

inhibitors are FDA-approved agents for glaucoma, high altitude sick-

ness and other indications (they are also legacy diuretics). Carbonic

anhydrase inhibitors can cross the blood-brain barrier and are known

to stimulate cerebral blood flow. The group led by Silvia Fossati has

been the first to test carbonic anhydrase inhibitors cellular and ani-

mal models of AD andCAA, showing that these drugs prevent the toxic

effects of Aβ on endothelial, glial and neuronal cells and mitochondrial

dysfunction, improving cerebrovascular function and glial cell clear-

ance inTgSwDImice.45 Thesepositive effects aredue to theprevention

of the loss of mitochondrial ΔΨ (membrane potential), production of

mitochondrial reactive oxygen species and release of cytochrome C

induced by Aβ.
Current work suggests that these compounds may also prevent

smoothmuscle cell death andmitochondrial dysfunction in vitro and in

vivo. These properties, together with their known effects in increasing

vasoreactivity and stimulating cerebral blood flow,46–48 will possibly

facilitate IPAD and other brain clearance pathways.

5 RIVASTIGMINE

Mathematical modeling and experimental work has demonstrated

that the motive force for IPAD is derived from the spontaneous

contractions of arterial smooth muscle cells, a process known as

vasomotion.49,50 Arterial smooth muscle cells have cholinergic recep-

tors and in AD there is early degeneration and loss of the basal

forebrain nuclei of cholinergic supply.51 Cholinesterase inhibitors are

administered late in the disease process and their use has therefore

been limited to symptomatic treatment of neurodegenerative demen-

tias. Unpublished data from the Carare group suggests that early

treatment with dual cholinesterase inhibitor Rivastigmine results in an

improvement of IPAD clearance of tracer molecules. This interpreta-

tion is also suggested by a study showing that AD patients treatedwith

acetylcholinesterase inhibitors showed increased plasma levels of anti-

Aβ autoantibodies than untreated AD patients.52 This is in accordance

with the ARIA PARADOX model, which states that therapy-induced

ARIA are the iatrogenic exacerbation of the neuroinflammatory and

IPADmechanisms spontaneously occurring inCAA-ri.8 Efforts are now

underway to characterize the cholinergic and adrenergic receptors

of vascular smooth muscle cells and determine the effects of their

selective inhibition or augmentation as diseasemodification strategies.

6 CEREBROSPINAL FLUID

From the time of its discovery, significant debate has existed regarding

the major anatomical sites of CSF efflux from the central nervous sys-

tem (CNS).53 For the majority of the 20th century, it was understood

that CSF drains to the dural venous sinuses through structures known

as arachnoid villi or granulations. However, more recently, scientists

and clinicians have recognized an important, perhaps even predomi-

nant, role for lymphatic vessels in draining CSF from the subarachnoid

space. Recent tracer studies in rodents using magnetic resonance or

fluorescence imaging have shown that bulk outflow pathways exist

from the subarachnoid space around the brain to the lymphatic ves-

sels draining to deep or superficial cervical lymph nodes.54–56 The

rapid clearance of even micron-sized beads from the CSF to down-

stream lymph nodes57 indicates that pathways through or around the

arachnoid membrane (which is considered to be impermeable) must

exist. Recent efforts have concentrated on elucidating potential fluid

routes to the newly rediscovered dural lymphatic vessels55,58,59 or to

extracranial lymphatic vessels that are in close proximity to exiting cra-

nial nerves.54 With respect to the latter, much focus has been given

to efflux routes at the cribriform plate of the ethmoid bone, where

olfactory nerves exit through foramina to terminate at the olfactory

epithelium.60–62 It is currently debated whether lymphatic vessels tra-

verse the cribriform plate to access the subarachnoid space57,61,63

and/or if perineural routes around the olfactory nerves carry the fluid

and solutes to lymphatic vessels within the submucosa.64–66 Steven

Proulx and colleagues are currently elucidating the drainage path-

ways at this location using CSF infusions of PEGylated microbeads

into transgenic reporter mice expressing fluorescent proteins for the

leptomeninges and lymphatic vessels followed by confocal imaging of

decalcified sections. They show that open and direct pathways exist

throughbreaches in the arachnoid barrier forCSF to drain to lymphatic

vessels present on both the CNS and nasal mucosal sides of the cribri-

formplate.67 Further studies utilizing thesemethodswill elucidateCSF

drainage pathways around other nerves to lymphatic vessels, including

the optic, trigeminal, and spinal nerves. A diagrammatic summary of all

the drainage routes is presented in Figure 2, adapted from.68

Mony de Leon’s group previously reported using a tau PET tracer

([18F]-THK5117) that reduced CSF clearance and was detected in the

cribriform plate and nasal turbinates in subjects with AD.69 Recently

they tested a novel PET tracer [11C]-Butanol that has an advantage

of not binding to brain tissue, thus providing an unbiased estimate

of tracer flow and clearance through ISF and CSF compartments.70

In 26 cognitively normal individuals aged > 65years, they estimated

the time for 75% of the tracer entering the cribriform plate and nasal

turbinate region (AUC) to be cleared. The results show that tracer lev-

els remain elevated in ventricle, brain, and CSF drainage pathways up

to 45min after IV administration. In contrast, arterial and venous blood

levels peak and return to near asymptotic baseline levels within 5 min.

The clinical data demonstrate that ventricular tracer clearance and

turbinate clearance are highly correlated, p < 0.01. Importantly, indi-

viduals with brain Aβ deposits (n = 10) based on [11C]-PiB PET scan

show, relative to Aβ negative controls (n = 16), an increased time to

clear the tracer from the turbinates (Figure 3). These data replicate

the prior observation by the De Leon group that brain Aβ is associated
with slower nasal CSF clearance. Current studies are underway testing

the magnitude of these relationships in the brain and other CSF egress

pathways.
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F IGURE 2 Diagram to illustrate the drainage pathways for CSF
and interstitial fluid (ISF) to cervical lymph nodes. Reproducedwith
permission.68 CSF and ISF drain to lymph nodes by different and
distinct pathways. In humans, CSF drains into the blood of venous
sinuses throughwell-developed arachnoid villi and granulations (AG).
Lymphatic drainage of CSF occurs via nasal and dural lymphatics and
along cranial and spinal nerve roots (outlined in green). Channels that
pass from the subarachnoid space through the cribriform plate allow
passage of CSF (green line), T cells and antigen presenting cells (APC)
into nasal lymphatics (NL) and cervical lymph nodes (CLN). CSF from
the lumbar subarachnoid space drains to lumbar lymph nodes. ISF
from the brain parenchyma drains along basementmembranes in the
walls of cerebral capillaries and arteries (blue arrows) to cervical
lymph nodes adjacent to the internal carotid artery just below the
base of the skull. This narrow intramural perivascular drainage pathway
does not allow the traffic of APC. There is interchange between CSF
and ISF (convective influx/glymphatic system) as CSF enters the
surface of the brain alongside penetrating arteries

Douglas Ethell’s group has described subarachnoid evaginations

under the olfactory bulb that project into cribriform plate apertures,

connectingwith a cribrosewatershed.71 This watershed interconnects

large cribriform plate apertures with conduits that run from the Crista

Galli’s cistern to a manifold structure within the olfactory fossa’s back

wall. Tiny tubules from thewatershed project downward into the nasal

mucosa, releasing CSF into the submucosal space where lymphatic

vessels are present.72 In a study of more than 600 human cribriform

plates,72 Dr Ethell’s team also found age-dependent declines in poros-

ity that reduce CSF egress capacity and may explain why the loss of

F IGURE 3 The PET tracer [11C]-Butanol was used as a biomarker
for CSF clearance. The data show in elderly individuals with brain
amyloid deposits ([11C]-PiB imaging) that comparedwith controls,
nasal turbinate tracer drainage is slower. These data suggest that the
slowed ventricular CSF drainage found in neurodegenerative diseases
such as Alzheimer’s can be detected peripherally

smell is a common early sign in AD.73 The importance of CSF egress

along other cranial and spinal nerves is also worthy of investigation.

As the largest brainstem nerve, the trigeminal nerve (CN5) has affer-

ent and efferent branches that could accommodate microchannels for

CSF outflow.

7 IMPLICATIONS FOR NEW BIOMARKERS FOR
AD AND CAA

7.1 Retinal biomarkers

The neural retina shares a common embryonic origin with the brain

and is a structurally direct and physiologically intact extension of the

brain. Since both CNS compartments display structural and functional

resemblance and comprise similar neuronal, blood barrier, and glial cell

types,74–76 their susceptibility to common pathological processes is

not surprising. The retina is easily accessible for direct, non-invasive

imaging at ultra-high spatial resolution; hence, it may offer an unparal-

leled at affordable means to visualize and monitor CNS targets on the

microvascular, cellular, andmolecular levels in the clinical settings.

Growing evidence from multiple biochemical and histological stud-

ies indicated that the pathological features of AD manifest in the

retina of AD patients, including mild cognitive impairment (MCI)

and preclinical AD cases, with parallels between the pathology in

the brain and retina.77–81 Early research found degeneration of reti-

nal ganglion cells and their axonal projections.82 Koronyo-Hamaoui

and colleagues identified the pathological hallmarks, Aβ deposits and
neurofibrillary tangles, in post mortem retinas of AD patients, includ-

ing those with early-stage disease.83,84 Retinal Aβ42 accumulation
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seems to follow a similar trajectory to that of brain Aβ burden dur-

ing disease progression, and significantly correlated with the ABC and

BRAAK stages and the Mini-Mental State Examination (MMSE) cog-

nitive status.84–86 Additional studies also demonstrated the existence

of retinal Aβ and tau oligomers, various phosphorylated tau forms,

microgliosis, astrogliosis, and associated retinal neurodegeneration in

these patients.82–102 The proteome signatures of the AD retina and

brain were recently reported, with common changes especially found

between changes in the superior- and inferior-temporal retina and the

temporal cortex, including elevated inflammatory and apoptotic mark-

ers and deficiencies in oxidative phosphorylation and mitochondrial

markers.85 Likewise, numerous studies in animal models of AD have

demonstrated reported AD-related pathologies in the retina of these

models, including visual impairments, corresponding to the changes in

the brain for example.83,101,103–120

The first in vivo imaging of Aβ pathology in living AD patients was

demonstrated by the Koronyo-Hamaoui group together with Neuro-

Vision Imaging LLC, utilizing a modified confocal scanning laser oph-

thalmoscope following the oral administration of highly bioavailable

Longvida curcumin.84 Since then, additional teams showed the feasibil-

ity of detecting retinal Aβ deposits in human AD trials by non-invasive

retinal optical and hyperspectral imaging, in which the Aβ load was

greater inMCI and AD patients, as well as in brain Aβ-positive preclini-
cal patients, than in healthy control individuals.84,121–127 Importantly,

the extent of retinal Aβ burden correlated with cerebral Aβ–PET
load, hippocampal and whole gray matter atrophy, and the cognitive

deficit.121–125 As both retinal Aβ accumulation and retinal vascular

pathology77,101,102,110,128–130 were reported in patients with MCI and

AD patients, another imaging study explored the interplay between

retinal vascular geometric measures and retinal Aβ burden using reti-

nal fluorescence imaging. This pilot study found that a joint index of

retinal venular tortuosity and retinalAβburden significantly correlated
with verbal memory and Short Form-36 (SF-36) mental component

scores in MCI patients.124 This study suggests that a combined Aβ –
vascular indexes are better discriminators of cognitive function, with

the potential for use as outcome measures in AD and mixed dementia

trials.

Prior reports demonstrated that retinal vascular abnormalities may

be used as biomarkers of early or preclinical dementia, and retinal

microvascular changes in MCI and dementia have been described

applying various retinal vasculature imaging modalities, including

optical coherence tomography angiography, retinal fundus photogra-

phy, high-frequency flicker-light stimulation, and the retinal function

imager.77,79,124,131–136 Histologically, a wide range of vascular changes

has been described in the retina of MCI and AD patients.77,101,102,137

These changes include perivascular and vascular Aβ40 and Aβ42 accu-
mulations associatedwith pericyte and capillary loss and tight junction

damage. Early and progressive deficiency in vascular platelet–derived

growth factor receptor–beta (vPDGFRβ) alongwith pericyte apoptosis
were identified in the post mortem retinas of MCI and AD patients.101

The vPDGFRβ significantly correlated with retinal vAβ40 and vAβ42
load, CAA severity, and cognitive scores. In the APPSWE/PS1ΔE9-

transgenic model mice, retinal capillary and PDGFRβ losses and vas-

cular Aβ deposits were also detected and were associated with inner

blood-retinal barrier (BRB) tight-junction changes andBRB leakage.129

Notably, AD retinopathy was linked with color and contrast vision

deficits.107

Furthermore, Aβ40 was found to be deposited in the smooth mus-

cle layer of retinal arteries102 in a similar pattern to its deposition in

CAA. This intense retinal Aβ40 accumulation in arterioles that was far

less prevalent in retinal venules suggests a failure of Aβ clearance via
the IPAD pathway in the retina of MCI and AD patients. IPAD failure

in the brain is considered central to the pathogenesis of CAA, leading

to neuronal, and homeostatic dysfunctions, and often associated with

worsening cognitive impairments.

Tight junctions between endothelial cells are critical components

of the blood-brain barrier and inner BRB that are essential for main-

taining both cerebral and retinal homeostasis. A substantial decrease

in the markers of blood-brain barrier, zonula occludens-1 (ZO-1), and

claudin-5 was observed in the retinal vessels of MCI and AD patients

thatwas correlatedwith abundant arteriolarAβ40 deposition aswell as
with the severity of CAA in these patients.102 Similar to the findings in

the retina, degeneration of critical tight junction molecules as claudin-

5 and ZO-1 were described in cerebral capillaries of AD patients with

CAA and in the 5xFAD AD-model mice.138–140 The early loss of both

ZO-1 and claudin-5 in retinal blood vessels of MCI patients versus

cognitively normal controls suggests that the BRB damage appears

at the earliest stages of functional impairment in the AD continuum.

Notably, almost no claudin-5 expression in retinal blood vessels was

demonstrated in AD patients with moderate to severe CAA. Such find-

ings indicate a disrupted inner BRB during AD progression. Altogether,

exploring the manifestations of AD in the retina and its relationship

to brain pathology in order to develop non-invasive retinal imaging to

detect andmonitor AD is thus a priority.

The retina is connected to the brain through bundles of neuronal

axons forming theoptic nerve andby retinal and cerebral blood vessels,

whichmay facilitate transportation of abnormal Aβ and tau species and
further lead to the spread of AD pathology throughout the CNS.141

The blood-brain barrier is established by endothelial cells firmly joined

by tight junction proteins forming vessel walls, astrocyte end-feet,

and supporting pericytes in the basement membrane. Similarly, in the

retina, the BRB is comprised of an inner barrier with vascular endothe-

lial cells and an outer barrier with epithelial cells. Both include tight

junctions and supporting pericytes.142–144 It is well established that

compromised blood-brain barrier vascular networks in AD are likely

an important cause of cerebral Aβ deposition due to impaired Aβ
removal to the circulating blood.145–150 The retina and the brain do

not have traditional lymphatic vessels. It is believed that the ocular

and brain glymphatic fluid transport systems share similar character-

istics for waste clearance. These consist of a CSF influx along the

periarterial space, an efflux path along the perivenous space, and a

final collection site by the dural and cervical lymphatic vessels.151,152

Recent findings by Wang et al., suggest that the glymphatic path-

way, through astrocytic aquaporin-4 water channels in the retina,

facilitates the removal of metabolites and fluid from the intraocu-

lar space, as well as the efflux of Aβ tracers through the optic nerve
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and meningeal lymph vessels.151 Radial Müller cells spanning the neu-

roretina, as well as fibrous astrocytes along the optic nerve, express

abundant aquaporin-4, and the expression of aquaporin-4 in astrocyte

endfeet is diminished in AD pathogenesis.153 Furthermore, extensive

Müller degeneration has been reported in the AD retina.90 It has been

speculated that Aβ could be cleared from the retina via perivascular

transport, and pathological changes in AD may interfere with glym-

phatic flow, leading to neurotoxicity through Aβ accumulation.154 Aβ
build-up along the blood vessels during AD pathogenesis may reduce

the large, low-resistance perivascular spaces necessary for glymphatic

flux,155 thus creating a vicious cycle of Aβ accumulation, neuronal

death, and impaired glymphatic drainage. Koronyo-Hamaoui and col-

leagues recently demonstrated substantial amounts of retinal vascular

and perivascular Aβ deposition in AD transgenic mice, as well as in

the retina of MCI and AD patients, compared to cognitively normal

subjects.156 Aβ deposits were found in perivascular regions near per-

icytes, in the lumen adjacent to an endothelial cell, inside pericytes,

and in the vascular wall (tunica media, tunica adventitia, and intima).

These findings suggest that Aβ deposition around and inside the blood
vessels may impede glymphatic drainage, resulting in aberrant Aβ
accumulation.

Overall, given that vascular amyloidosis and tight junction deficien-

cies have been detected in the AD retina, future studies should aim

to determine whether BRB permeability is also altered in AD either

as a cause or effect of vascular amyloidosis. Indeed, studies in AD

patients have generally supported that these vascular abnormalities

in the retina can predict cognitive decline.157–159 Recent progress in

retinal amyloid imaging,122,123,137,160 the clinically available fundus

fluorescein angiography and OCTA microvascular imaging161–163 are

promising tools to aid in the detection of pathological vascular features

of AD in an outpatient clinical setting. In future practice, the recently

developed OCT-Leakage method to assess vascular circulation, BRB

permeability, and edema,164,165 together with the potential of pericyte

imagingbyadaptiveoptics166 should allow for a comprehensive assess-

ment of retinal Aβ and vascular pathology. Thesemethodologies, which

allow for a dynamic and in vivo assessment of evolving AD pathology

in conjunction with validated cognitive testing and advanced cere-

bral imaging techniques, may revolutionize AD diagnosis and provide

a novel way to track disease progression.

7.2 Biomarkers in the nose

Based on the observations from animal models and latest in vivo

studies revealing that cerebral proteins can be identified in the nasal

mucosa, there are now advanced efforts to develop sensitive and spe-

cific biomarker testing in the nose. As the olfactory bulb is one of

the first brain regions affected by AD, measuring brain-derived ana-

lytes closer to the area of neurodegeneration means more accurate

and earlier detection. Such non-invasive measurement also allows for

longitudinal monitoring of therapeutic treatment. Noselab, founded in

2020, has already developed a method for detecting several biomark-

ers including phospho-tau, total tau, Aβ−42 and Aβ−40 in nasal

secretion for diagnosing AD. Arethusta technology from Leucadia

Therapeutics claims to improve CSF flow across the cribriform plate

as a therapeutic measure for AD. These are two of a number of tech-

nologies being applied to identify low cost and non-invasivemarkers of

disease-related pathological measures withminimum barrier.

8 ZOOMING INTO PERIVASCULAR SPACES IN
THE BRAIN

The prefix peri means “around” or “about” whereas para indicates

“alongside”. Perivascular space (PVS) was first described by Johann

Henrich Pestalozzi as a space that existed between the adventitia and

the tunica media after observing hemorrhage collect in this space.

Soon after, these spaces were described as specific channels in the

subadventitial or intra-adventitial by Rudolf Virchow and Charles

Filippe Robin respectively.167 However, these spaces were never illus-

trated and it is not clear which tissues and spaces the authors were

referring to. Later works including those by Charles Weed estab-

lished direct connections of PVS and the subarachnoid space (SAS).168

Weed’s experimental technique was challenged and subsequently

Schaltenbrand and Bailey in reviewing the vast literature produced by

the early 1930s, observed that blood vessels in the brain were covered

by a “pia-arachnoid” layer of connective tissue. They termed the outer

pial boundary of blood vessels which is fused to the cortical glial mem-

brane as “pialglialmembran”, now known as the pial-glial membrane.169

This space between the pial-glial membrane and the tunica adventitia

was considered to be the true perivascular space by Woollam, which

terminated at the level of the capillaries.While controversies regarding

the precise anatomy of the perivascular space still persist, current view

holds that this space is bounded by the pial-glial membrane on the out-

side and the tunica adventia of penetrating arteries on the inside and is

not in direct communication with SAS surrounding the vessels.170 The

pial sheath reflects over the penetrating arterioles and is continuous

over the arteries on the surface of the cortex within the subarachnoid

space. The basement membranes of both the pia mater and the pial-

glial basement membrane and those of the outer vessel wall surround

the underlying tunica media, which creates a pathway for centrifugal

flow of ISF. This pathway also known as the IPAD, appears to drain

waste products that later reach the cervical lymphnodes.171,172 In con-

trast to a single layer of pia mater surrounding the cortical arteries

and arterioles, a double layer of leptomeninges has been identified sur-

rounding the penetrating lenticulostriate arteries in the basal ganglia

enclosing a true CSF filled space which is in direct connection with the

SAS.173,174

MRI is currently the only in vivo technique that holds promise in

illustrating anatomy of the perivascular spaces in the human brain but

also in providing an understanding of the entry and exit pathways using

approved tracers such as gadolinium-based contrast agents (GBCA).

The fluid within these spaces is isointense relative to CSF and appears

bright on T2 weighted sequences but dark on FLAIR sequence and on

T1 weighted images. MRI can clearly distinguish lacunar infarcts from

dilated perivascular spaces or dilatedVirchow-Robin spaceswithin the
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basal ganglia.175 In the past two decades, a clear correlation between

the number, size, and the location of dilated perivascular spaces in the

brain and several neurological diseases was found leading to the devel-

opment of scoring methods that have been widely validated.176–179

These scores are based on the appearance of PVS on T1, T2 weighted,

and FLAIR images. Dilated PVS in the basal ganglia are linked to cere-

brovascular pathologies such as stroke, cerebral haemorrhage, CAA,

hypertensive encephalopathy and small vessel disease.176,180–186 On

the other hand, dilation of PVS in the white matter of centrum semio-

vale were reported to be more frequent in patients affected with CAA

or dementia. More recently, dilation of PVS in the white matter has

also been found relevant in paediatric adrenoleukodystrophy, epilepsy,

multiple sclerosis, and cognitive impairment.187–193

MRI of brain tissue after intravenous injection GBCAs has been

employed in tracing CSF flow in the brain. GBCAs injected intra-

venously escape through fenestrated capillaries in the choroid plexi

and are transported in the ventricles along with CSF flow towards the

SAS.194 Imaging using heavily T2 weighted sequence clearly demon-

strates gadolinium induced changes in signal intensity within the CSF

spaces in the ventricles, in the SAS, around the perioptical subrachnoid

sheath and in the retina in rodents and humans.194–197 However, in all

these studies, post gadolinium imagingwasperformedat very long time

points and, therefore, lack the capacity to clearly demonstratewhether

gadolinium molecules enter via paravascular space or whether they

enter the pial-glial basement membrane (periarterial space). Dynamic

contrast enhanced perfusion weighted imaging has been employed in

rodents; however the lack of both temporal and spatial resolution does

not allow the depiction of a precise anatomical entry and exit pathway

of gadolinium ions.198 Intrathecal administration of GBCAs in normal

subjects and patients with normal pressure hydrocephalus also con-

firms the notion that GBCAs enter the brain parenchyma from the

CSF-filled SAS; however, the long imaging times do not allow for a

precise determination of entry and exit pathways of GBCAs.199

The percentage change in the signal intensity on post gadolinium

imaging of fluid within enlarged PVS in the basal ganglia is similar to

that obtained in the CSF filled SAS after 4 h of intravenous gadolinium

injection. However, the same is not true for fluid within the PVS in the

white matter of the centrum semiovale where signal intensity changes

only slightly, suggesting that dilated PVS in the basal ganglia and those

in the centrum semiovale contain fluids with different composition

and represent different drainage pathways.200,201 This difference is

likely due to the known histologic differences in the leptomeningeal

coverings around vessels in the two regions.173 It is noteworthy that,

although the capillary density is at least eight times higher in the cor-

tical gray matter with respect to white matter, dilated PVS are not

present in the cortex and are only seen within the white matter, again

pointing to the differential significance of dilated PVS in the basal

ganglia and the white matter.

While it is well-established that dilated PVS in the white matter

and the basal ganglia represent pathological changes in the brain, the

underlying pathophysiology is still hypothesized as either being a result

of a neuroinflammatory or a neurodegenerative process. We have

demonstrated that IPAD blockage can result in dilated PVS within the

white matter but not in the gray matter.202 Dilated PVS in the white

matter of the centrum semiovale can also result in a spectrum of pro-

tein elimination failure angiopathies characterized by accumulation of

insoluble proteinswithin the arterialwalls.6 This difference is likely due

to the known histologic differences in the leptomeningeal coverings

around vessels in the two regions.173

MR still lacks the spatial and temporal resolution necessary to

visualize membranes and spaces surrounding the vessel wall at rapid

time points and thereby to clearly distinguish Virchow-Robin spaces

from dilated periarterial spaces. Volumetric images are necessary to

increase the sensitivity and accuracy in determining the presence of

PVS.179,203 The challenges in identifying subtle change in signal inten-

sitywithin pathologically dilated PVS containing protein rich fluid need

to be addressed. GBCA based imaging should be considered within

minutes of its injection to identify the exact entry and exit pathway.204

9 CONCLUSION

In summary, we provide an update on the latest findings and chal-

lenges for understanding themechanistic sequela underlyingARIA and

its relationship to clearance pathways, such as IPAD. We posit that

the continued development of mechanistic models such a VWD and

those afforded by more precise spatiotemporal resolution on MRI,

biomarkers for clearance failure (e.g., retinal), and novel treatments for

preclinical testing such as CAIs should all be prioritized as key research

objectives for advancing AD and CAA disease-modifying therapeutics.
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Additional supporting information can be found online in the Support-

ing Information section at the end of this article.
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