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Abstract

INTRODUCTION: We studied how biomarkers of reactive astrogliosis mediate the

pathogenic cascade in the earliest Alzheimer’s disease (AD) stages.

METHODS: We performed path analysis on data from 384 cognitively unimpaired

individuals from the ALzheimer and FAmilies (ALFA)+ study using structural equation

modeling to quantify the relationships betweenbiomarkers of reactive astrogliosis and

the AD pathological cascade.

RESULTS: Cerebrospinal fluid (CSF) amyloid beta (Aβ)42/40 was associated with Aβ
aggregation on positron emission tomography (PET) and with CSF p-tau181, which was
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in turn directly associated with CSF neurofilament light (NfL). Plasma glial fibrillary

acidic protein (GFAP) mediated the relationship between CSF Aβ42/40 and Aβ-PET, and
CSF YKL-40 partly explained the association between Aβ-PET, p-tau181, and NfL.
DISCUSSION: Our results suggest that reactive astrogliosis, as indicated by different

fluid biomarkers, influences the pathogenic cascade during the preclinical stage of AD.

While plasma GFAP mediates the early association between soluble and insoluble Aβ,
CSF YKL-40 mediates the latter association between Aβ and downstream Aβ-induced
tau pathology and tau-induced neuronal injury.

KEYWORDS

AD cascade, astrogliosis, biomarkers, chitinase-3-like protein 1 (YKL-40), glial fibrillary acidic
protein (GFAP), preclinical Alzheimer’s disease, structural equationmodeling

Highlights

∙ Lower CSF Aβ42/40 was directly linked to higher plasmaGFAP concentrations.

∙ Plasma GFAP partially explained the relationship between soluble Aβ and insoluble
Aβ.

∙ CSF YKL-40 mediated Aβ-induced tau phosphorylation and tau-induced neuronal

injury.

1 BACKGROUND

There is increased recognition that glial cells play an active role in the

pathogenesis of Alzheimer’s disease (AD).1,2 Astrocytes are important

regulatorsof thebrain’s inflammatory response to injury andhavebeen

shown to become activated in reaction to the deposition of misfolded

protein aggregates.3 Moreover, several studies have demonstrated

that reactive astrocytes surround amyloid beta (Aβ) plaques and tau

deposits early in AD4–6 and shown a strong correlation between astro-

cyte reactivity and increased accumulation of AD pathology.7–9 These

activated astrocytes in turn release pro-inflammatory molecules such

as cytokines and chemokines, which may contribute to neurotoxic

effects and exacerbate the progression of AD.4,10,11 However, the spe-

cific impact of reactive astrogliosis on key pathological events early in

the AD continuum remains uncertain. A deeper understanding of how

central disease mechanisms are mediated by activated astrocytes may

provide us with insight into pathogenic mechanisms underlying AD.

Two robust fluid biomarkers for measuring astrocyte reactivity in

vivo are glial fibrillary acidic protein (GFAP) and chitinase-3-like pro-

tein 1 (YKL-40),12 both of which have consistently been found to be

elevated in the dementia phase of AD.13–15 Recentwork has suggested

that changes in astrocytes arise very early in the course of AD, prior

to frank neurodegeneration and cognitive impairment, demonstrating

an upregulation of GFAP and YKL-40 levels in Aβ-positive cognitively
unimpaired (CU) individuals.16–22 In particular, plasma GFAP, rather

than GFAP in cerebrospinal fluid (CSF), has demonstrated superior

performance in detectingAβ-positive CU individuals.17,23,24 Moreover,

somestudies havehypothesized that astrogliosismayevenprecede the

formation of amyloid plaques.25–27

This Aβ-induced astroglial response could in turn impact down-

stream pathological events, including further aggregation of Aβ, tau
pathology, neuronal damage, and cognitive decline.4,28–30 However,

the impact of reactive astrocytes on disease progression has been

shown to be very heterogeneous, and reactive astrocytesmay respond
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differently depending on disease stage, specific pathology, biomarker,

brain region, and genetic background.31–34 Therefore, we aimed to

study how two astrocyte biomarkers (plasma GFAP and CSF YKL-40),

probably reflecting different astrocyte phenotypes, mediate the early

pathogenic cascade in the preclinical stages of AD. Through structural

equationmodeling (SEM),weaimed to analyze the relationships among

multiple pathological hallmarks of AD, including biomarkers of amyloid

pathology (CSF Aβ42/40 and Aβ-positron emission tomography [PET]),

tau pathology (CSF p-tau181), neuronal damage (CSF NfL), and cog-

nitive performance simultaneously, and test whether and how these

relationships are affected by reactive astrocytes. This may help us

untangle the complex interplay among pathological changes occurring

in the earliest stages of AD.

2 METHODS

2.1 Study participants

Participants were selected from the ALFA+ study, a longitudinal

research cohort of CU individuals aged 45 to 74, enriched for a family

history of AD or Apolipoprotein E (APOE) ε4 carriership. All partic-

ipants scored above pre-established cut-off values on the following

neuropsychological tests:Mini-Mental State Examination (≥26),Mem-

ory ImpairmentScreen (≥6), TimeOrientationSubtest of theBarcelona

Test II (≥68), verbal semantic fluency (naming animals ≥12), and a

Clinical Dementia Rating (CDR) of 0. A more detailed description of

the study protocol can be found in Molinuevo et al. (2016).35 The

study was approved by an independent ethics committee ‘Parc de

Salut Mar’, Barcelona, and is registered at Clinicaltrials.gov (Identifier:

NCT02485730).

2.2 Fluid biomarker sampling and analysis

CSF samples were obtained by lumbar puncture following a stan-

dardized protocol36 and then collected in 15-mL polypropylene tubes

(Sarstedt catalogue no. 62.554), aliquoted into 0.5-mL polypropylene

tubes (Sarstedt catalogue no. 72.730.005), and frozen at−80◦Cwithin

2 h after lumbar puncture. Blood samples were collected using a 20-

or 21-g needle gauge into a 10-mL EDTA tube (BD Hemogard, 10mL,

K2EDTA, catalogue no. 367525).37 Tubes were gently inverted five to

10 times and centrifuged at 2000 × g for 10min at 4◦C. The super-

natant was aliquoted in volumes of 0.5mL into sterile poly(propylene)

tubes (Sarstedt Screw CapMicro Tube, 0.5mL, PP, ref. no. 72.730.105)

and immediately frozen at −80◦C. The samples were processed at

room temperature. The time between collection and freezing of both

CSF and plasma samples was< 30min.

CSF p-tau181 was measured using the electrochemiluminescence

Elecsys immunoassay on a fully automated cobas e601 module (both

Roche Diagnostics International Ltd., Rotkreuz, Switzerland). CSF

Aβ40, Aβ42, NfL, and YKL-40 were measured using the Roche Neu-

roToolKit immunoassays (Roche Diagnostics International Ltd.) on a

RESEARCH INCONTEXT

1. Systematic review: We reviewed the literature using

PubMed and previously published reviews. Recent pub-

lications investigating astrocyte biomarkers and describ-

ing the biological mechanisms underlying AD are cited

throughout themanuscript.

2. Interpretation: Our results indicate that astrocyte reac-

tivity, as measured by increased plasma GFAP and CSF

YKL-40 concentrations, is associated with the build-up of

Aβ plaques and downstreamneurodegenerative events in

the earliest stages of the AD continuum.

3. Future directions: Longitudinal studies across the full

spectrum of AD are needed to increase our understand-

ing of how the influence of astrogliosis on the progression

of ADmay change over time and differ by disease stage.

cobas e411 or e601 analyzer. Plasma GFAP was quantified on the

Simoa HD-X (Quanterix, Billerica, MA, USA) using the commercial

single-plexassay.AllCSFandplasmameasurementswereperformedat

the Clinical Neurochemistry Laboratory, Sahlgrenska University Hos-

pital, Mölndal, Sweden. A-T+ individuals, as determined by a CSF

Aβ42/40 ratio > 0.071 (A−) and CSF p-tau181 > 24 pg/mL (T+), were

removed from further analysis as they were considered to reflect

non-AD pathological changes.22

2.3 Image acquisition and processing

Amyloid PET scans were acquired on a Siemens Biograph mCT scan-

ner, following a cranial computed tomography (CT) scan for attenuation

correction. Four frames (4 × 5 min) were collected 90 to 110 min

after the injection of 185 MBq [18F]flutemetamol.38 An OSEM3D

algorithm with eight iterations and 21 subsets was used to recon-

struct the images with a point spread function and time-of-flight

corrections into a 1.02 × 1.02 × 2.03-mm matrix. The averaged PET

images were co-registered to the corresponding T1-weighted (T1w)

magnetic resonance imaging (MRI) images. Three-dimensional (3D)

high-resolution T1w turbo field echo (TFE) images (voxel size 1 mm3

isotropic, TR/TE/TI: 6.16/2.33/450ms, flip angle= 12◦) were obtained

using a 3T scanner (Ingenia CX, Philips Healthcare, Best, The Nether-

lands). The T1-weighted images and co-registered PET images were

then warped to Montreal Neurological Institute (MNI) space with

SPM12. The standardized uptake value ratio (SUVR) was calculated in

MNI space using the standard target region (https://www.gaain.org/

centiloid-project) with thewhole cerebellum as a reference region.We

then transformed the SUVR values into the centiloid (CL) scale using

a previously calibrated conversion equation.39,40 Aβ-PETwas available
for a subset of participants (n= 195).

https://www.gaain.org/centiloid-project
https://www.gaain.org/centiloid-project
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2.4 APOE genotyping

Total DNAwas obtained from the blood cellular fraction by proteinase

K digestion followed by alcohol precipitation. APOE genotype was

obtained from the allelic combination of the rs429358 and rs7412

variants. All participants were classified as APOE ε4 carriers or APOE

ε4 non-carriers.

2.5 Neuropsychological evaluation

In this study, a modified version of the Preclinical Alzheimer Cognitive

Composite (PACC) score was used,41 which consisted of the Free and

Cued Selective Reminding Test (total immediate recall),42 the Logical

Memory test of the Wechsler Memory Scale (total delayed recall),43

the WAIS-IV Coding subtest,44 and semantic fluency (animals within

1 min).45 All raw test scores were standardized into z-scores using

the mean and standard deviation (SD) from CU A-T- participants as a

reference and then averaged into a composite score.

2.6 Statistical analysis

Non-normally distributed CSF and plasma biomarkers were log10-

transformed. Biomarker values three times outside the interquartile

range below Q1 or above Q3 were considered outliers and were

removed from further analysis.

To investigate the association between astrocyte phenotypes and

pathological hallmarks of AD, we applied linear regression analysis

using astrocyte biomarkers as predictors and individual core AD and

neurodegeneration biomarkers as outcomes while adjusting for age,

sex, and APOE ε4 carriership. Additionally, raw associations between

allmodel parameterswere examinedbyperforming a cross-correlation

using Pearson’s r.

To model a potential mediating role of reactive astrogliosis (ie, ele-

vations in plasma GFAP and CSF YKL-40) on the association between

biomarkers in theADcascade (ie, changes in amyloid, tau, and neuronal

injury biomarkers), we built a path model. Our model was hypothesis-

basedwith reference to the current literature and followed theamyloid

neuropathological cascadepathway.29,46–48 Toquantify complexmulti-

variate relationships in our AD cascade model simultaneously, we used

SEM. In contrast to standard regression modeling in which all variable

coefficients are calculated separately, each structural equation coef-

ficient is computed while considering the direct and indirect effects

between all biomarkers. Therefore, SEMmakes it possible to test more

complicatedmediationmodels in a single analysis. Ourmodel is hierar-

chical in nature and structured in seven levels: (I) covariates age, sex,

and APOE ε4 carriership; (II) CSF Aβ42/40 ratio as an initial pathological
trigger; (III) astrocytic biomarkers, which may serve as potential medi-

ators along all associations in this cascade; (IV) Aβ-PET global CL level;
(V) CSF p-tau181 level; (VI) NfL concentration in CSF; and finally (VII)

cognitive performance as measured by the PACC. In SEM, a variable

can appear as a predictor in several equations as well as the outcome

in others. The direct effect of a predictor variable on a higher-level out-

come can be interpreted as the net effect of a predictorwhen adjusting

for the other predictors (ie, variables of preceding levels) in the equa-

tion, and is visualized by an arrow in the pathmodel. The indirect effect

is the effect mediated by the reactive astrocyte variables.

All variables in the model were standardized (z-score), so that 1

SD change in the independent variable predicts 1 SD change in the

dependent variable (while holding theother variables in themodel con-

stant) and to allow for direct comparisons of beta estimates. Themodel

parameters (effects) were computed by maximum likelihood estima-

tion. Effects were considered significant at p < 0.05 false discovery

rate (FDR) corrected. The 95% confidence interval (CI) of the parame-

ters was estimated usingMonte Carlo bootstrapping (1000 iterations).

Model fit was evaluated by a comparative fit index ≥ 0.90, which indi-

cates that the model accounts for most of the variance in the data

and by a root mean square error of approximation statistic < 0.05,

indicating low residual values not accounted for by themodel.49 All sta-

tistical analyses were carried out using R version 4.2.2, with the lavaan

package for SEM analysis.50

3 RESULTS

The sample characteristics are summarized in Table 1. There were a

total of 384CUparticipants, 61%ofwhomwere female, and 54%were

APOE ε4 carriers; the mean age was 61 years old. The average Mini-

Mental State Examination (MMSE) scorewas 29.2 (range 27.0 to 30.0),

and centiloid values ranged from−21.15 to 63.10,with amean value of

4.39.

TABLE 1 Participant characteristics.

Total (N= 384)

Age (y) 61.1 [49.6 to 73.4]

Sex, F 235 (61.2%)

Education (y) 13.5 (3.5)

MMSE 29.2 [27.0 to30.0]

PACC (z-score) 0.00 [−2.01 to 1.40]

APOE ε4 carrier 208 (54.2%)

Aβ-PET (CL)* 4.39 [−21.15 to 63.10]

PlasmaGFAP (pg/mL) 94.8 (44.4)

CSF Aβ42/40 0.07 (0.02)

CSF YKL-40 (pg/mL) 145.3 (51.7)

CSF p-tau181 (pg/mL) 307.7 (141.6)

CSFNfL (pg/mL) 80.7 (25.7)

Note: Data is presented asmean (SD), mean [range], orN (%); * n= 195.

Abbreviations: Aβ, β-amyloid; APOE, apolipoprotein E; CL, centiloid;

CSF, cerebrospinal fluid; F, female; GFAP, glial fibrillary acidic pro-

tein; MMSE, Mini-Mental State Examination; NfL, neurofilament light;

PACC, Preclinical Alzheimer Cognitive Composite; PET, positron emission

tomography; p-tau, phosphorylated tau; y, years; YKL-40, chitinase-3-like

protein 1.
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F IGURE 1 Scatterplots showing the relation between astrocyte biomarkers (ie, YKL-40 and GFAP) with biomarkers of the AD cascade (ie,
Aβ42/40, Aβ-PET, p-tau181, NfL, PACC). All models included age, sex, and APOE ε4 allele status. Abbreviations: Aβ, β-amyloid; CL, centiloid;
CSF, cerebrospinal fluid; GFAP, glial fibrillary acidic protein; NfL, neurofilament light; PACC, Preclinical Alzheimer Cognitive Composite;
PET, positron emission tomography; p-tau, phosphorylated tau; YKL-40, chitinase-3-like protein 1.

TABLE 2 Linear regression analysis: Individual associations
between CSF YKL-40 and plasmaGFAPwith AD cascade biomarkers.

CSF YKL-40 PlasmaGFAP

CSF Aβ42/40 −0.00005 (0.00002)* −0.00016 (0.00002)****

Aβ-PET (CL) 0.09 (0.02)*** 0.15 (0.02)****

CSF p-tau181 1.29 (0.14)**** 0.99 (0.17)****

CSFNfL 0.22 (0.02)**** 0.09 (0.03)**

PACC −0.0015 (0.0007)* 0.0008 (0.0008)

Note: Data are represented as beta (standard error); betas are unstandard-
ized. All models included age, sex, APOE ε4 allele status.
Abbreviations: Aβ, β-amyloid; CL, centiloid; CSF, cerebrospinal fluid; GFAP,

glial fibrillary filament protein; NFL, neurofilament light; PACC, Preclin-

ical Alzheimer Cognitive Composite; p-tau, phosphorylated tau; YKL-40,

Chitinase 3-like 1.

* p< 0.05; ** p< 0.01; *** p< 0.001; **** p< 0.0001.

Linear regression analysis of the relationship of astrocyte biomark-

erswith coreADandneurodegeneration biomarkers (Figure 1; Table 2)

revealed that higher CSF YKL-40 was associated with higher Aβ cen-
tiloid values, higher CSF p-tau181, and higher CSF NfL. Higher CSF YK-

L40 was also weakly associated with a lower Aβ42/40 ratio and worse

cognitiveperformance.HigherplasmaGFAPwasassociatedwith lower

CSF Aβ42/40, higher Aβ-PET load, and higher CSF p-tau181 and showed
a weaker association with higher CSF NfL. In addition, plasma GFAP

showed no significant association with cognitive performance or with

CSF YKL-40 after adjusting for age, sex, and APOE ε4 carriership.

Additional analysis using a subset of participants (n = 195) with all

biomarker measurements available showed similar results (Figure S1).

3.1 Structural equation model

The results of our path model are shown in Figure 2, which displays

all significant direct associations between the biomarkers. All possible

(ie, significant and non-significant) associations and their correspond-

ing estimateswith 95%CI are shown inTable 3.Weobserved that older

age (β = −0.24; 95% CI = −0.32 to −0.15) and particularly APOE ε4
carriership (β = −0.74; 95% CI = −0.92 to −0.56) showed a direct sig-

nificant association with lower CSF Aβ42/40 ratio. Moreover, older age

(β = 0.36; 95% CI = 0.27 to 0.45) and early Aβ pathology, as indicated
by lower CSF Aβ42/40 ratio (β=−0.33; 95%CI=−0.43 to−0.23), were

directly related to increased plasma GFAP. Older age (β = 0.37; 95%

CI = 0.27 to 0.47), higher Aβ load on PET (β = 0.21; 95% CI = 0.10

to 0.33), higher CSF p-tau181 (β = 0.31; 95% CI = 0.22 to 0.39), and

increased CSF NfL (β = 0.18; 95% CI = 0.07 to 0.27) were directly

associated with higher CSF YKL-40. There was a strong direct effect

of lower CSF Aβ42/40 ratio (β = −0.54; 95% CI = −0.68 to −0.40) on

elevated Aβ-PET and, to a lesser extent, from plasma GFAP (β = 0.17;

95% CI = 0.03 to 0.31) and from CSF YKL-40 (β = 0.19; 95% CI = 0.06

to 0.33) on Aβ-PET. Furthermore, a direct association was observed

between CSF p-tau181 and CSF Aβ42/40 (β=−0.26; 95% CI=−0.40 to

−0.13), Aβ-PET load (β = 0.31; 95% CI = 0.13 to 0.48), and CSF YKL-

40 (β = 0.40; 95% CI = 0.30 to 0.50). In addition, older age (β = 0.20;

95% CI = 0.11 to 0.30), male sex (β = 0.57; 95% CI = 0.41 to 0.74),

higher CSF p-tau181 (β = 0.18; 95% CI = 0.06 to 0.31), and higher CSF

YKL-40 (β= 0.31; 95%CI= 0.20 to 0.41) were directly associatedwith

increased CSF NfL. Finally, older age (β = −0.19; 95% CI = −0.28 to

−0.11) was directly associated with worse cognitive performance, as

measured by the PACC score. Note that in SEM, all tested associations

are corrected for parameters of preceding levels. A descriptive cross-

correlation matrix across all model parameters separately is provided

in Supplementary Figure 2.

3.2 Mediation effects

We observed that part of the relationship between CSF Aβ42/40
and Aβ-PET load could be explained by plasma GFAP (Figure 2;
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F IGURE 2 Path analysis showing the impact of CSF YKL-40 and plasmaGFAP on Amyloid-Tau-Neurodegeneration and cognition. Cognition
wasmeasured by the Preclinical Alzheimer Cognitive Composite (PACC) score. Arrows show the direct effects of significant associations at p< .05
FDR-corrected between all biomarker relationships (z-score) from the structural equationmodel. The beta estimates represent the unique
contribution of a specific variable to the change in a dependent variable after controlling for the effects of all variables of preceding levels in the
model.

Proportion mediated 5%; β = −0.06; 95% CI = −0.11 to −0.01). Fur-

thermore, CSF YKL-40 mediated the association of Aβ-PET with CSF

p-tau181 (Proportionmediated 8%; β= 0.08; 95%CI= 0.04 to 0.14), as

well as the association of CSF p-tau181 with CSFNfL (Proportionmedi-

ated 9%; β = 0.09; 95% CI = 0.06 to 0.14). Since no direct association

between CSF Aβ42/40 and CSF YKL-40 was observed, no CSF Aβ42/40
induced mediation by CSF YKL-40 on other biomarkers in the cascade

waspresent. Similarly, plasmaGFAPshowednodirect relationshipwith

CSF p-tau181, and thus no mediation by GFAP on the effect of CSF

Aβ42/40 on CSF p-tau181 was established.

4 DISCUSSION

Our structural equation model revealed that plasma GFAP and CSF

YKL-40 are important mediators of key events in the AD cascade

and strongly contribute to the progression of AD at an early stage

of the disease. We observed that the earliest abnormalities in CSF

Aβ42/40 triggered an upregulation of GFAP in the blood. The associa-

tion between CSF Aβ42/40 and Aβ-PET was partially explained by this

increase inplasmaGFAP. This suggests that astroglia, particularly those

that release GFAP, may have a role in the early balance between sol-

uble and insoluble Aβ aggregates. Furthermore, we observed that the

release of YKL-40 into the CSF occurred slightly later in the patho-

logical cascade and was linked with Aβ-induced tau phosphorylation

and tau-induced axonal damage. These results further support the evi-

dence that reactive astrogliosis is an early event in AD and a significant

component of the pathological cascade driving neurodegeneration.

Our results are in agreement with increasing evidence that sug-

gests that astrocyte changes occur very early in the course of AD.

Furthermore, they indicate that distinct stagesof theearly pathological

cascade in preclinical AD are associatedwith GFAP and YKL-40 upreg-

ulation, which show differential responses to pathological stimuli. This

is in line with previous studies showing distinct astrocyte biomarker

signatures in response to Aβ and tau pathology,31 as well as across

disease progression.51

A strong relationship between Aβ aggregation and GFAP, in blood

as well as in CSF, has been frequently demonstrated.23,51,52 We add

to these findings by showing for the first time, to our knowledge, that

changes in plasma GFAP are partly responsible for the relationship

between soluble Aβ and increased fibrillar Aβ deposition on PET. Pre-

vious studies demonstrated that a rise in Aβ oligomers was highly

associated with astrocyte reactivity.25,26,53 Furthermore, it has been

shown that astrocytes are involved in the clearance and degradation

of Aβ,54,55 with evidence suggesting that astrocytes can internalize Aβ
oligomers and protofibrils but may eventually become overwhelmed

and fail to clear Aβ effectively.Moreover, when astrocytes break down,

they release theAβ they have accumulated, actively contributing to the

overall accumulation of Aβ plaques.56–58 Taken together, this implies

that astrocytes’ protective mechanisms become impaired in AD and

rather gain a neurotoxic function instead.11,25

Recently, Bellaver et al. (2023)9 reported that reactive astrocytes

were a prerequisite for the phosphorylation of tau in Aβ-positive
CU patients. Although we used a different study population and

approach, that is, binary versus continuous astrocyte measurements,

we demonstrated compatible results and provided more granular-

ity on the underlying mechanism. Our results suggest that increased

astrocyte reactivity may influence the balance between soluble and

insoluble Aβ and that this formation of Aβ plaques in turn triggers tau
phosphorylation in preclinical AD.
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TABLE 3 Structural equationmodel coefficients of Figure 2
displaying all direct and indirect effects of the pathmodel.

Biomarker β (95%CI) p value

Cognition (PACC)

NfL 0.014 (−0.074 to 0.114) 0.974

p-tau181 −0.015 (−0.118 to 0.091) 0.974

Aβ-PET 0.027 (−0.120 to 0.155) 0.974

YKL-40 −0.078 (−0.173 to 0.018) 0.358

GFAP 0.031 (−0.045 to 0.113) 0.974

Aβ42/40 0.025 (−0.080 to 0.123) 0.974

Sex, male 0.100 (−0.049 to 0.243) 0.511

Age −0.192 (−0.280 to−0.109) <0.001*

APOE ε4 carrier 0.098 (−0.04 to 0.235) 0.471

NfL

p-tau181 0.182 (0.057 to 0.305) 0.015*

Mediated by YKL-40 0.094 (0.055 to 0.138) <0.001*

Aβ-PET 0.076 (−0.065 to 0.225) 0.505

YKL-40 0.306 (0.196 to 0.406) <0.001*

GFAP 0.072 (−0.009 to 0.154) 0.225

Aβ42/40 0.027 (−0.090 to 0.133) 0.796

Sex, male 0.570 (0.410 to 0.739) <0.001*

Age 0.202 (0.107 to 0.304) <0.001*

APOE ε4 carrier 0.009 (−0.150 to 0.176) 0.939

p-tau181

Aβ-PET 0.305 (0.133 to 0.481) 0.002*

Mediated by YKL-40 0.082 (0.041 to 0.139) 0.002*

YKL-40 0.398 (0.302 to 0.497) <0.001*

GFAP 0.059 (−0.036 to 0.150) 0.294

Aβ42/40 −0.261 (−0.404 to−0.131) <0.001*

Sex, male 0.055 (−0.117 to 0.208) 0.564

Age −0.061 (−0.154 to 0.030) 0.276

APOE ε4 carrier 0.002 (−0.171 to 0.170) 0.999

Aβ-PET

YKL-40 0.194 (0.059 to 0.328) 0.008*

GFAP 0.170 (0.034 to 0.312) 0.030*

Aβ42/40 −0.541 (−0.677 to−0.402) <0.001*

Mediated by GFAP −0.055 (−0.106 to−0.009) 0.043*

Sex, male −0.061 (−0.296 to 0.171) 0.635

Age 0.010 (−0.119 to 0.129) 0.896

APOE ε4 carrier −0.104 (−0.328 to 0.130) 0.430

YKL-40

NfL 0.177 (0.067 to 0.274) 0.004*

p-tau181 0.309 (0.220 to 0.392) <0.001*

Aβ-PET 0.206 (0.103 to 0.325) 0.001*

Aβ42/40 −0.085 (−0.196 to 0.033) 0.193

Sex, male −0.188 (−0.396 to 0.036) 0.113

(Continues)

TABLE 3 (Continued)

Biomarker β (95%CI) p value

Age 0.370 (0.269 to 0.466) <0.001*

APOE ε4 carrier −0.112 (−0.306 to 0.106) 0.368

GFAP

NfL 0.008 (−0.03 to 0.115) 0.965

p-tau181 0.014 (−0.065 to 0.089) 0.823

Aβ-PET 0.107 (−0.001 to 0.225) 0.124

Aβ42/40 −0.327 (−0.429 to−0.228) <0.001*

Sex, male −0.084 (−0.266 to 0.090) 0.430

Age 0.361 (0.274 to 0.446) <0.001*

APOE ε4 carrier −0.167 (−0.367 to 0.030) 0.142

Aβ42/40
Sex, male 0.091 (−0.102 to 0.271) 0.430

Age −0.235 (−0.315 to−0.152) <0.001*

APOE ε4 carrier −0.743 (−0.922 to−0.562) <0.001*

Note. Structural equation model showing standardized coefficients with

bootstrapped 95% confidence intervals. Model shown in Figure 2. N = 384

(Aβ-PET n = 195). P values adjusted for multiple comparisons using false

discovery rate were considered significant at p< 0.05.

Abbreviations: Aβ, β-amyloid; APOE, apolipoprotein E; CI, confidence

interval; GFAP, glial fibrillary acidic protein; NfL, neurofilament light;

PACC, Preclinical Alzheimer Cognitive Composite; PET, positron emission

tomography; p-tau, phosphorylated tau; YKL-40, chitinase-3-like protein 1.

CSF concentrations of YKL-40 have been thought to mainly reflect

a response to tau pathology rather than Aβ, and strong correla-

tions with tau pathophysiology have also been found in preclinical

stages.19,22,31,59,60 A growing body of studies have demonstrated a

positive association of CSF YKL-40 levels with markers of neuronal

injury, including cortical atrophy, CSF t-tau, and NfL in early stages of

AD.16,21,28,61 These findings suggest that CSF YKL-40 is particularly

related to tau pathology and neuronal injury and support the hypoth-

esis that reactive astrocytes actively contribute to the disruption of

neuronal functioning.4,62–64 Moreover, some studies, including our CU

cohort, have suggested YKL-40 may be involved in a non-amyloid-

related pathway, demonstrating elevated CSF levels of YKL-40 in

A+T+ and A−T+ individuals, but not in A+T− individuals.16,22,31 How-

ever, in the current study we observed that fibrillar deposits of Aβ
could trigger the expression of YKL-40, and associations between

YKL-40 levels and Aβ-PET were also previously reported.65,66 YKL-

40 immunoreactivity was demonstrated to be independent of tau in a

recent post mortem study,60 suggesting that the astrocytic responses

by GFAP and YKL-40 might be more complex than an amyloid-tau

dichotomy.67

In line with previous reports, we observed no direct association

between APOE ε4 carriership or sex with astrocyte biomarkers.15,18,21

However, as reported in previous studies, higher CSF NfL concen-

trations were observed in men.68,69 Furthermore, aging contributed

significantly to both YKL-40 and GFAP concentrations, as reported

previously.16–18,21 Finally, we found that age was the only factor that
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was directly related to cognitive performance, while several previous

studies did found an association between GFAP and YKL-40, both in

blood and CSF, and cognition.30,70,71 The cross-sectional nature of this

study, the early stage on the AD continuum as reflected by the very

low mean CL values, and the limited variance in test scores of cog-

nitively normal participants may explain this finding. Additionally, it

is important to note that in the current structural equation model,

the association between astrocytosis and cognition is adjusted for the

effect of Aβ, tau pathology, and NfL.
Our findings, together with previous evidence, indicate that

astrogliosis contributes to the pathogenesis of AD through multiple

routes/pathways, which can be observed at early asymptomatic stages

of AD. Astroglial response may occur in different stages of preclinical

AD: the aggregation of Aβ, the formation of tau tangles, and neuronal

damage. It can be speculated that once astrocyte activation is induced,

there is a releaseof pro-inflammatorymolecules andneuronal dysfunc-

tion, which in turn reactivates astrocytes. Eventually, this astroglial

responsemaycontribute toneurodegenerative changes independently

of Aβ plaque pathology.4,72,73 Taken together, these findings suggest

that interventions targeting astrocyte dysfunction involved inAβ clear-
ing in early preclinical stagesmay ultimately prevent or delay the onset

of AD dementia.

There are some limitations to this study. First, the data were col-

lected cross-sectionally from CU individuals only. This prevented us

from being able to make any claims on the causality of the patholog-

ical events. Longitudinal studies across the entire AD continuum are

needed to provide information on how the interaction between reac-

tive astrocytes andADpathologymarkersmaychangeover time,which

is important considering the indications that the role of reactive astro-

cytes in disease progression likely varies across disease stages.51,72

Second, our path model provides a simplified view of the AD patholog-

ical cascade and is by no means a saturated depiction of its complex

pathophysiology. To illustrate, multiple lines of evidence suggest an

important interaction betweenmicroglia and astrocytes that likely acts

in a coordinated manner to promote the progression of AD.74 The

strengths of this study include the well-characterized cohort and the

fact that the SEM approach allowed us to examine all direct and indi-

rect effects on each variable in a single model, rather than studying

all relationships separately. This is essential in a multifactorial disease

such as AD, in which a complex cascade of connected events ultimately

contributes to progression.

In conclusion, we provide evidence that the astrocytosis biomarkers

plasmaGFAP andCSFYKL-40 increase very early in theAD continuum

and mediate several associations between key pathogenic events that

occur during this disease stage. These results substantiate the notion

that reactive astrocytes in reaction to AD pathology are active players

in promoting downstream neurodegenerative events.
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