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Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease that severely affects the activities of daily living in aged
individuals, which typically needs to be diagnosed at an early stage. Generative adversarial networks (GANs)
provide a new deep learning method that show good performance in image processing, while it remains to be
verified whether a GAN brings benefit in AD diagnosis. The purpose of this research is to systematically review
psychoradiological studies on the application of a GAN in the diagnosis of AD from the aspects of classifica-
tion of AD state and AD-related image processing compared with other methods. In addition, we evaluated the
research methodology and provided suggestions from the perspective of clinical application. Compared with
other methods, a GAN has higher accuracy in the classification of AD state and better performance in AD-related
image processing (e.g. image denoising and segmentation). Most studies used data from public databases but
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lacked clinical validation, and the process of quantitative assessment and comparison in these studies lacked
clinicians’ participation, which may have an impact on the improvement of generation effect and generalization
ability of the GAN model. The application value of GANs in the classification of AD state and AD-related image
processing has been confirmed in reviewed studies. Improvement methods toward better GAN architecture
were also discussed in this paper. In sum, the present study demonstrated advancing diagnostic performance
and clinical applicability of GAN for AD, and suggested that the future researchers should consider recruit-
ing clinicians to compare the algorithm with clinician manual methods and evaluate the clinical effect of the
algorithm.

Key words: generative adversarial network (GAN); Alzheimer’s disease (AD); mild cognitive impairment (MCI);
deep learning; computational psychoradiology; classification; magnetic resonance imaging (MRI); positron
emission tomography (PET)

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease
that mainly affects elderly individuals. It is characterized
by a decline in memory, cognitive function, and behav-
ioral function. AD severely affects the activities of daily
living of patients (Kimura et al., 2020). It is estimated that
the global prevalence of AD will increase 4-fold by 2050,
and that the total number of patients will exceed 100 mil-
lion (Brookmeyer et al., 2007). Mild cognitive impairment
(MCI) is a cognitive state that lies between that of normal
aging and early AD (Petersen, 2004). It can be divided into
two categories: stable MCI (sMCI) and progressive MCI
(pMCI). The pMCI patients progress to AD, while sMCI
patients remain stable and may even return to a healthy
state (Chong and Sahadevan, 2005; Davis et al., 2018).

At present, there is no effective drug for AD in clinical
practice. The focus of treatment has shifted to diagnos-
ing patients in the early stage of AD (Chong and Sahade-
van, 2005; Davis et al., 2018). Identifying whether the
patient is in a normal state of cognitive decline or has
AD, sMCI, or pMCI (classification of AD state) can help
to identify high-risk individuals and take targeted treat-
ment measures to delay disease progression. In addi-
tion, the processing of AD-related images (such as image
denoising and image segmentation) is also helpful for the
early diagnosis of AD.

In recent years, psychoradiological research has pro-
vided clinical evidence for the identification of diagnos-
tic and therapeutic neuroimaging biomarkers in patients
with psychiatric disorders (Lui et al., 2016). Computa-
tional psychoradiology with artificial intelligence has
been widely used in the diagnosis of AD. The diagno-
sis requires the input of more high-quality, processed
images. However, there are still many disadvantages to
image processing with existing deep learning methods
(Sorin et al., 2020). Therefore, a deep learning method that
can process images well is greatly needed.

A generative adversarial network (GAN) was proposed
by Goodfellow et al. in 2014. This is a deep learning gen-
erative model mainly used to process images (Goodfel-
low et al., 2014). Its main principle is the game between
the generator and the discriminator (Sorin et al., 2020).
The deep learning classification framework based on a
GAN can classify AD state (Bowles et al., 2018; Pan et

al., 2018; Yan et al., 2018; Wegmayr et al., 2019; Islam
and Zhang, 2020; Kim et al., 2020). GANs also have a
wide range of applications in AD-related image process-
ing (shown in Fig. 1). For example, GANs can denoise
low-dose positron emission tomography (PET) to obtain
high-quality images (Wang et al., 2018; Ouyang et al., 2019;
Wang et al., 2019). Accurate segmentation of brain images
by a GAN is conducive to feature location (Choi et al.,
2018; Shi et al., 2019; Kang et al., 2020). A GAN can con-
vert different image modalities (Choi et al., 2018; Kang
et al., 2018; Kang et al., 2020). These applications related
to image processing can provide high-quality processed
data for the feature extraction step in the AD state clas-
sification framework and improve the effect of the clas-
sification algorithm.

At present, some reviews have reported the role of
GANs in medical fields (Lan et al., 2020; Sorin et al., 2020).
Sorin et al. introduced the application of GANs in radiol-
ogy (Sorin et al., 2020). Lan et al. reported the application
of different types of GANs in biomedical informatics (Lan
et al., 2020). However, previous articles have little signif-
icance for the application of a GAN in AD. The aim of
this article is to systematically review psychoradiologi-
cal studies on the application of a GAN in the diagnosis
of AD from the aspects of the classification of AD state
and AD-related image processing compared with other
methods. In addition, we evaluated the research method-
ology (data, GAN architecture, quantitative assessment,
and comparison methods) from the perspective of
clinical practitioners and made suggestions for future
research.

Materials and Methods

This systematic review was conducted in accordance
with the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analyses) guide.

PICOS

P (participants): Patients with AD or MCI (no restrictions
on age or gender).

I (interventions): GAN-based algorithm.
C (comparison): Other computer algorithms or manual

methods.
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Figure 1: Schematic diagram of AD-related image processing by a GAN.

O (outcome): Outcomes of classification (e.g. classifica-
tion accuracy), outcomes of image processing [e.g.
PSNR, Dice similarity coefficient (DSC)].

S (study design): Psychoradiological studies on algorithm
design and application.

Literature search

Two researchers independently searched PubMed,
Cochrane Library, EMBASE, Web of Science, and IEEE
Xplore to find literature in English on the application of
a GAN in the diagnosis of AD before August 2020. The
following keywords were used for the search strategy:
Alzheimer, AD, dementia, mild cognitive, F-18-FDG, FDG-
PET, amyloid, Tau-PET, generative model, and generative
adversarial network.

Inclusion and exclusion criteria

Researchers selected the documents required for this
systematic review based on the following inclusion and
exclusion criteria:

Inclusion criteria
The inclusion criteria followed were: (i) the application
of a GAN in human AD; (ii) training and validation data
including AD or MCI patients; and (iii) studies including
quantitative assessment of the algorithm and compari-
son with other methods.

Exclusion criteria
The exclusion criteria followed were: (i) no access to the
full text; (ii) reviews, conference abstracts, comments,

etc.; (iii) literature not in English; (iv) studies using ani-
mal models; and (v) studies using a generative model but
not a GAN.

Two researchers independently screened the arti-
cles according to the inclusion and exclusion cri-
teria and extracted information as follows: general
information (title, author, year, journal, etc.), data
source, data type, modality of data, quantitative assess-
ment indicator, quantitative assessment result, method
compared, and comparison result. The information
mentioned was organized into a basic information sheet
of literature. After completion, two evaluators cross-
checked the information, and differing opinions were
resolved through negotiation.

Inclusion and exclusion process
Through the initial search, researchers obtained 225 arti-
cles. Twenty-three articles were obtained after removing
duplicate and irrelevant documents. The PRISMA flow
diagram is shown in Fig. 2. Among these 23 articles, eight
articles were excluded after full-text reading analysis.
These studies were excluded for the following reasons
(details are shown in Table 1): (i) using non-GAN gener-
ative models; (ii) training, validation or testing datasets
without AD or MCI patients’ data; and (iii) no quantitative
assessment and comparison with other methods (Hwang
et al., 2018; Armanious et al., 2019; Armanious et al., 2020;
Biffi et al., 2020; Kimura et al., 2020).

Fifteen articles met the inclusion criteria and were
included in the current systematic review (Baumgartner
et al., 2018; Bowles et al., 2018; Choi et al., 2018; Kang et
al., 2018; Pan et al., 2018; Wang et al., 2018; Yan et al., 2018;
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Figure 2: The PRISMA flow diagram.

Table 1: Reasons for exclusion when 23 full-text articles were screened.

Study Reason for exclusion

Armanious et al. (2019) No AD or MCI patients included in the data
Hwang et al. (2019) The generative model but not a GAN
Armanious et al. (2020) No AD or MCI patients included in the data
Biffi et al. (2020) The generative model but not a GAN
Kimura et al. (2020) No quantitative assessment and comparison with other methods
Liu et al. (2020) No comparison with other methods
Hu et al. (2020) No comparison with other methods
Roychowdhury et al. (2020) No quantitative assessment and comparison with other methods

Ouyang et al., 2019; Shi et al., 2019; Wang et al., 2019; Weg-
mayr et al., 2019; Islam and Zhang, 2020; Kang et al., 2020;
Kim et al., 2020; Oh et al., 2020). The relevant information
of the 15 articles was extracted. All studies were pub-
lished between 2017 and 2020.

Results

Among the included studies, nine studies were applied
to AD-related image processing (image denoising, image

segmentation, modality transfer, and data augmenta-
tion), and six studies were applied to the classification
of AD state.

AD-related image processing

Image denoising
Some studies have been devoted to the development
of a denoising framework for low-dose PET images,
and images denoised by a GAN achieve a higher peak
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Figure 3: PSNR and DSC of AD-related image processing compared with other methods.
Note: m-CCA, multilevel CCA; AcCNN, autocontext CNN; CCA, canonical correlation analysis; MVPL, models without perceptual loss; MWV,
models with perceptual loss computed from VGG16; UGN, UG-net; P2P, Pix2pix unet; HD, h-dense unet method; UN, U-net.

signal-to-noise ratio (PSNR), which is significantly bet-
ter than other methods (shown in Fig. 3). Details of the
included studies are shown in Table 2. Wang et al. applied
a three-dimensional conditional generation adversarial
network (3D c-GAN) to generate high-quality full-dose
PET images from low-dose PET images (Wang et al., 2018).
Compared with the existing convolutional neural net-
work (CNN), mapping-based sparse representation (m-
SR), and tripled dictionary learning (t-DL) methods, the
GAN method achieved the highest PSNR value, and the
lowest normalized mean squared error (NMSE) and stan-
dard uptake value (SUV) difference for the normal cog-
nition and the MCI groups. Different from their previ-
ous study, Wang et al. then applied a locally adaptive
multimode GAN (LA-GAN) model and used an autocon-
text model to more effectively use context information
(Wang et al., 2019). In addition, the generation of high-
quality PET images in this study is based on low-dose PET
images and corresponding magnetic resonance images.
Additionally, compared with the m-SR, t-DL, m-CAA, and

autoCNN methods, the GAN method achieved the high-
est PSNR and SSIM for the normal cognition and the MCI
groups. Ouyang et al. combined the perceptual loss in
the GAN structure. They trained an additional network
to judge the amyloid state, extracted the specific percep-
tual loss and added it to the GAN structure (Ouyang et
al., 2019). This can ensure high visual quality and correct
clinical information of amyloid protein. Compared with
the networks without perceptual loss and using VGG16
perceptual loss, this research method achieves the high-
est PSNR and lowest SSIM and RMSE.

Image segmentation
In terms of image segmentation, two studies using a
GAN for segmentation had higher segmentation accu-
racy than other studies when DSC was the outcome indi-
cator (shown in Fig. 3). Details of the included studies
are shown in Table 2. Shi et al. applied a GAN based
on an improved U-net generator to segment the hip-
pocampus from magnetic resonance images (Shi et al.,
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ré
ch

et
in

ce
p

ti
on

d
is

ta
n

ce
;1

-N
N

,t
h

e
1-

n
ea

re
st

n
ei

gh
bo

r
cl

as
si

fi
er

;S
U

V
R

,S
U

V
ra

ti
o;

C
A

E,
co

n
vo

lu
ti

on
al

au
to

en
co

d
er

.



232 Qu et al.

2019). Researchers compared the developed segmenta-
tion algorithm using the clinician manual method and
showed a good segmentation effect. Compared with the
CNN, UG-net and other methods, this research method
has the highest segmentation accuracy in each sub-
field and overall subfields. The overall DSC of all hip-
pocampal subfields reached 91.6%. Oh et al. applied a
cGAN based on the pix2pix framework to directly seg-
ment white matter in 18F-FDG PET/CT images (Oh et al.,
2020). It can be used for quantitative analysis of brain dis-
eases such as AD. Compared with other methods, this
method achieved the highest quality score [(2.6 ± 0.7) as
scored by five observers]. This method also achieves the
best performance in terms of DSC (0.817 ± 0.018), AUC-
PR (0.869 ± 0.021), recall (0.814 ± 0.029), and precision
(0.821 ± 0.036).

Baumgartner et al. applied the Wasserstein GAN
(WGAN) for visual attribution on real 3D neuroimaging
data from patients with MCI and AD (Baumgartner et al.,
2018). Visual attribution is a process in which the char-
acteristic image areas are labeled depending on the cat-
egory of the image (AD or MCI). The NCC score of the
method using synthetic data was 0.94 ± 0.07, and the
score of the method using real data was 0.27 ± 0.15. The
accuracy of visual attribution is higher than that of other
methods.

Data augmentation and modalities transfer
Details of the included studies are shown in Table 2.
Kang et al. used a cGAN to synthesize 18F-florbetaben
images (Kang et al., 2020). Researchers performed data
augmentation to solve the problem of insufficient data
in the development of AD-related deep learning frame-
works. Kang et al. applied a GAN to generate individ-
ual adaptive PET templates and performed accurate spa-
tial normalization of amyloid PET without using corre-
sponding 3D-MR images (Kang et al., 2018). This helps to
conduct objective evaluation and statistical analysis of
amyloid PET images. Compared with the method based
on the average template, the methods based on a GAN
and a CAE have higher mutual information and smaller
mean square error. Choi et al. used a GAN to generate
realistic structural magnetic resonance images from 18F-
florbetapir PET images and applied them to the quan-
tification of cortical amyloid load (Choi et al., 2018). The
SSIM values of the AD, MCI, and normal groups were
0.91 ± 0.04, 0.92 ± 0.04, and 0.91 ± 0.04, respectively. Com-
pared with other methods, the average/mean absolute
error (MAE) of the SUVR of this method is smaller.

Classification of AD state

Whether a patient is in a normal cognitive decline state
or has AD, sMCI, or pMCI is a concern for the classifica-
tion of AD state. Details of included studies are shown
in Table 3. A GAN has significant advantages over other
methods in terms of accuracy (shown in Fig. 4). Pan
et al. developed a two-stage deep learning framework
(Pan et al., 2018). The first step is to impute the PET

images according to the corresponding magnetic reso-
nance image by applying a 3D cycle-consistency GAN
(3D-cGAN). The second step is to develop a deep multi-
instance neural network as a classifier, using paired PET
and magnetic resonance images to differentiate between
people with and without AD. Pan et al. also classified MCI
in their second stage (Pan et al., 2018). The accuracy of
Pan’s method (AD vs. HC = 92.5% pMCI vs. sMCI = 79.06%)
is higher than three methods using hand-crafted fea-
tures (ROI, VGD, and LLEP), two methods using only mag-
netic resonance imaging (MRI) data (LDSIL and LDMIL),
and one method using real PET and MRI data (LM3IL-
C); the overall performance is better than other meth-
ods. Islam et al. also developed a two-stage deep learn-
ing framework with an accuracy of 71.45%, which is 10%
higher than the classification method trained with real
PET data (Islam and Zhang, 2020). Kim et al. used the
boundary equilibrium GAN (BEGAN) to extract features
of AD and normal cognition (Kim et al., 2020). Then, these
two disease states were classified. The BEGAN performs
better than the 2D-CNN method of Glozman et al. in
terms of classification accuracy (94.82%). The deep learn-
ing method of Wegmayr et al. can also be divided into
two stages (Wegmayr et al., 2019). The first stage simu-
lated the process of brain aging. Researchers input an
magnetic resonance image of an MCI patient (xt0), and its
corresponding image xt1 at time t1 (t1 = t0 +�) was out-
put. In the second stage, researchers input xt1 into the
MCI/AD classifier and calculated the probability of AD
(pAD). Then, they judged whether this MCI patient had
sMCI or pMCI by comparing the pAD with the thresh-
old (γ ). The accuracy (73%), precision rate (68%), recall
rate (75%), and F1 score (71%) of this method are bet-
ter than those of the other methods. Yan et al. applied a
conditional GAN (cGAN) to generate 18F-florbetapir PET
images from corresponding magnetic resonance images,
and its MCI classification accuracy was higher than that
of the traditional data augmentation method (82 vs. 75%)
(Yan et al., 2018).

In addition, researchers also made intuitive visual
predictions of disease progression. Bowles et al. applied
the WGAN to subtract the average potential encoding of a
set of magnetic resonance images of healthy participants
from that of patients with AD, and separated the poten-
tial encodings corresponding to features of AD (Bowles
et al., 2018). Researchers can predict the progression of
AD by introducing or removing potential encodings from
real images.

Data sources and modalities

The data sources (public databases or clinical cases) and
the amount and mode of data used in the deep learn-
ing network were closely related to the training effect;
thus, we examined the data used in the included articles
(shown in Table 4). We found that among the 15 included
studies, eight studies used large public databases (mainly
ADNI), six studies used self-collected clinical data as the
training and test data of the GAN model, and only Kim
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Figure 4: Accuracy (ACC) of classification of AD state compared with other methods.
Note: LM3IL-C, GAN that uses only complete MRI and PET data; RBM, real image-based method; ICP, indirect conversion prediction; DCP, direct
conversion prediction (a CNN classifier); TA, traditional augmentation.

Table 4: Database, data amount, and modalities in the included studies.

Database Data modalities Data amount

Study Training Testing Input Output 2D/3D Training Testing

Islam and Zhang (2020) Noise PET 2D HC: 105
MCI: 208
AD: 98

Bowles et al. (2018) MRI MRI 2D Total: 1000+
Baumgartner et al. (2018) MRI MRI 3D Total: 1081 Total: 207
Yan et al. (2018) ADNI MRI PET 3D pMCI: 29 pMCI: 21
Pan et al. (2018) MRI PET 3D HC: 229

pMCI: 167
sMCI: 226
AD: 199

HC: 200
pMCI: 38
sMCI: 239
AD: 159

Oh et al. (2020) PET PET 2D Total: 173 Total: 19
Choi et al. (2018) PET MRI 2D HC: 49

MCI: 80
AD: 34

HC: 36
MCI: 41
AD: 21

Wegmayr et al. (2019) ADNI and AIBL MRI MRI 2D HC: 4859
pMCI: 178
sMCI: 232
AD: 700

Kang et al. (2020) Noise PET 3D HC: 62
MCI: 99
AD: 137

Shi et al. (2019) MRI MRI 3D HC: 21
MCI: 4
AD: 7

Ouyang et al. (2019) Clinical cases PET PET 2D Total: 39
Wang et al. (2018) PET PET 3D HC: 8

MCI: 8
Kang et al. (2018) PET PET 3D HC: 338

MCI: 117
AD: 72

HC: 97
MCI: 37
AD: 20

Wang et al. (2019) MRI + PET PET 3D HC: 8
MCI: 9

Kim et al. (2020) ADNI Clinical cases PET PET 2D HC: 347
AD: 139

HC: 68
AD: 73

Note: AIBL, The Australian Imaging, Biomarker and Lifestyle Flagship Study of Aging.
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et al. trained the GAN model using public databases and
verified it with self-collected clinical data. We also note
that studies using public datasets usually have a large
sample size, while studies using clinical data often have
a small sample size. For example, in the study by Wang et
al., there were only eight patients in each group (shown
in Fig. 5d).

We also examined the modalities of data used in dif-
ferent studies and found that most studies used 3D vol-
ume data of PET/MR images instead of 2D slices for
training (shown in Fig. 5a). In terms of input/output
data modes, only Islam et al. and Kang et al. adopted
the noise-to-image mode, while most of the remain-
ing studies adopted the image-to-image mode. Most
of these studies focus on the conversion of the same
modality data (such as MRI to MRI or PET to PET). A
small part of the research explores the modality trans-
fer between data with different modalities (mainly MRI
to PET). Wang et al. synthesized high-dose PET images
based on low-dose PET images and corresponding mul-
timodal magnetic resonance images (T1-weighted MRI
and DTI), which is the only study on synthesizing
single-mode data based on multimodal data (shown in
Fig. 5b).

Architectural design

The included studies all used different GAN modalities,
which served as the core of the study. These models
had made some improvements to the original GAN to
improve its training effectiveness on and adaptability to
medical images. We examined the structure and charac-
teristics of the GAN models used in the included studies
(shown in Table 5).

A total of seven included studies used the condi-
tional GAN (cGAN) model. Wang et al. improved the
existing U-net architecture to process 3D PET data and
used batch normalization to improve generating effi-
ciency and accuracy. In addition, this study used a train-
ing method called the ‘progressive refinement scheme’,
which used a series of GANs to input the image gener-
ated by the previous GAN into the next GAN to gener-
ate a new image; to improve the quality of the gener-
ated image as much as possible, their study also used
a similar GAN architecture and training method to gen-
erate a high-dose PET based on multimodal data (struc-
tural MRI, DTI, and low-dose PET). Oh et al. and Shi et al.
(2019) used similar 2D-cGAN methods to segment PET
and magnetic resonance images. Oh et al. used the resid-
ual block based on the rectified linear unit (ReLU) in the
generator to reduce the vanishing gradient and improve
the speed and stability of training. Shi et al. used skip
connections in the U-net to increase the ability of the
generator to segment small local regions. Yan et al.
also used 2D-cGAN in the modality transfer of MRI to
PET. They replaced the discriminator with a convolu-
tional Markovian discriminator so that it could focus on
more areas in the image, improve the efficiency of the

discriminator, and then improve the efficiency of the
whole adversarial network. Ouyang et al. used a pix2pix
cGAN for denoising low-dose PET images and used
feature matching in the implementation process to
reduce the hallucinated structure during training and
improve training stability. They also used an extra amy-
loid state classifier to provide the generator with task-
specific perceptual loss to make it generate an image fit
to the patient’s real amyloid state. Choi et al. completed
the transfer from PET to MRI using a similar pix2pix
cGAN structure.

A total of three included studies used the WGAN
model. Baumgartner et al. and Wegmayer et al. used a
similar WGAN model to complete the feature attribute of
magnetic resonance images of AD or MCI patients. They
added a map generating function to the 3D U-net gener-
ator structure to enable it to generate images of another
category according to images of one category (such as
generating magnetic resonance images of AD patients
according to the image of MCI patients or generating
images after several years according to the magnetic res-
onance images at baseline). Bowles et al. also used the
WGAN for feature attribution. They used a training data
reweighting schema to improve the generator’s ability to
produce severely atrophic images.

A total of three included studies used the deep con-
volutional GAN (DCGAN) model. Islam et al. augmented
PET data by input random noise. They used the original
DCGAN model, which uses BatchNorm to regulate the
extracted feature scale, and used LeakyReLU as the acti-
vation function to prevent the vanishing gradient prob-
lem. Based on this, Kang et al. combined the WGAN
model and added a regulation term when calculating
the Wasserstein loss to increase training stability. They
also trained two different GAN networks to generate both
Aβ negative and positive images to improve the gener-
alization of the model. Kang et al. made some improve-
ments to the architecture of DCGAN for the spatial nor-
malization of PET images. First, they used PET images in
native space, rather than random noise, as the input of
the generator. Second, they used MRI-based spatial nor-
malization results as ‘real’ data to generate template-like
images.

Another two included studies used other types of
GAN model. Pan et al. used a 3D cycle-consistency GAN
for the generation of PET images from magnetic res-
onance images that have two sets of generators and
discriminators to ensure that the generated image is not
only similar to the real image but also corresponds to
the input magnetic resonance image. Kim et al. used a
boundary equilibrium GAN (BEGAN) to extract features
from PET images. Different from other studies, the dis-
criminator and generator they used are trained to max-
imize and minimize the distance between the real and
fake image reconstruction loss rather than the data dis-
tribution, respectively, which reduces the mode collapse
and the training imbalance between the generator and
discriminator.
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Table 5: GANs used in included studies.

GANs used

Study Main categories
Specific
categories

Generator (G) and
discriminator (D) Functions of GANs

Characteristics of
GANs

Wang et al. (2018) Conditional GAN
(cGAN)

3D-cGAN G: 3D U-net based
CNN
D: 3D U-net based
CNN

Image denoising
(PET to PET)

Adjusting U-net to fit
3D PET data
Using progressive
refinement scheme to
improve generating
quality
Using E1 norm
estimation error to
reduce blurring
Using batch
normalization to
improve learning
efficiency

Oh et al. (2020) 2D-cGAN G: CNN
D: CNN

Image
segmentation
(PET to PET)

Using ReLU for
activation function in
convolution layer to
reduce the vanishing
gradient problem

Shi et al.(2019) 2D-cGAN G: U-net based CNN
D: CNN

Image
segmentation
(MRI to MRI)

Using skip-connection
in the U-net to
increase the ability of
the generator to
segment small local
regions

Yan et al. (2018) 2D-cGAN G: U-net based CNN
D: Convolutional
Markovian
discriminator

Modalities transfer
(MRI to PET)

Using convolutional
Markovian
discriminator to
improve
discrimination
performance

Ouyang et al. (2019) Pix2pix
cGAN

G: U-net based CNN
D: CNN

Image denoising
(PET to PET)

Using feature
matching to improve
training stability
Using an extra
Amyloid status
classifier to make the
generated image fit to
the patient’s real
amyloid status

Choi et al. (2018) Pix2pix
cGAN

G: U-net based CNN
D: CNN

Modalities transfer
(PET to MRI)

-

Wang et al. (2019) “Locality
adaptive”
multi-
modality
GAN
(LA-GAN)

G: 3D U-net based
CNN
D: 3D U-net based
CNN

Image denoising
(MRI + PET to PET)

Adjusting U-net to fit
3D PET data
Using progressive
refinement scheme to
improve generating
quality (autocontext
training method)

Baumgartner et al.
(2018)

WGAN WGAN G: 3D U-net based
CNN
D: CNN

Feature extraction
(MRI to MRI)

Using a new map
function in generator
to generate MRI of AD
patients from healthy
controls



238 Qu et al.

Table 5: Continued

GANs used

Study Main categories
Specific
categories

Generator (G) and
discriminator (D) Functions of GANs

Characteristics of
GANs

Wegmayr et al. (2019) WGAN Same as
Baumgartner et al.
(2018)

Feature extraction
(MRI to MRI)

Same as Baumgartner
et al. (2018)

Bowles et al. (2018) WGAN - Feature extraction
(MRI to MRI)

Using a training data
reweighting schema to
improve the
generator’s ability to
produce severely
atrophic images

Islam and Zhang (2020) Deep CGAN DCGAN G: CNN
D: CNN

Data augmentation
(noise to PET)

Using BatchNorm to
regulate the extracted
feature scale
Using LeakyRelu to
prevent the vanishing
gradient problem

Kang et al. (2020) DCGAN G: CNN
D: CNN

Data augmentation
(noise to PET)

Using a regularization
term in the
Wasserstein loss to
improve training
stability
Two different GAN
networks are used to
generate Aβ negative
and positive images,
respectively, to
improve the
generalization

Kang et al. (2018) DCGAN G: CAE
D: CNN

Modalities transfer
(PET to PETSN)

Using the fidelity loss
between the
MRI-based spatial
normalization result
and the generated
image to generate the
template-like image

Pan et al. (2018) Cycle GAN 3D Cycle-
consistence
GAN

Have 2 G & D sets
G1 & G2: CNN
D1 & D2: CNN

Modalities transfer
(MRI to PET)

Using two sets of
generated
countermeasure
networks to ensure
that the generated
image is not only
similar to the real
image but also
corresponding to the
input magnetic
resonance images

Kim et al. (2020) Boundary
Equilibrium GAN
(BEGAN)

BEGAN G: CAE
D: CAE

Feature extraction
(PET to PET)

The discriminator and
generator are trained
to maximize and
minimize the distance
between the real and
fake image
reconstruction loss
rather than the data
distribution

Note: PETSN, PET with spatial normalization; U-net, a modified CNN; ReLU, rectified linear unit.
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Figure 5: Database, data amount, and modalities in the included studies. (A) Dimensions (2D/3D) of data used by included studies; (B)
input/output modalities of data used by included studies; (C) sample size of studies using different modalities of data; and (D) sample size
of studies using different datasets (public datasets or clinical cases).

Quantitative assessment and methods compared

To ensure the application value of the research,
researchers need to conduct quantitative assessments
(setting specific indicators for calculation and evalua-
tion, which is different from simple visual judgment) and
compare them with other methods (other algorithms,
manual methods, etc.). Therefore, statistics are calcu-
lated on quantitative assessment indicators and compar-
ison methods of all included studies (shown in Table 6-8),
with particular attention to assessments and compar-
isons that clinicians were involved in.

Most studies commonly used classification and image
quality evaluation indicators, such as accuracy (ACC),
area under the curve, PSNR, and DSC. Clinicians partic-
ipated in the evaluation in only a few studies. Ouyang
et al. recruited two clinicians to score image quality and
judge amyloid status (Ouyang et al., 2019). Oh et al. also
used five observers to score the quality of segmentation
(Oh et al., 2020).

In terms of comparison methods, the comparison car-
ried out in the included research can be classified into
the following categories: (i) comparison with a method
based on real data; (ii) comparison with own algorithm
removing a specific part; (iii) comparison with the gener-
ator but without the adversarial training; (iv) comparison
with other mature algorithms; and (v) comparison with

the clinician manual method. Only one of these stud-
ies compared research methods with clinician manual
methods (Shi et al., 2019).

Discussion

The GAN was found to be an emerging deep learning
algorithm that has advantages in the diagnosis of AD.
In the classification of AD state, the accuracy is signif-
icantly better than other algorithms. In the application
of AD-related image processing, the image quality after
GAN noise reduction and the accuracy of segmentation
based on the GAN are higher. The quantitative assess-
ment indicators and comparison methods of GANs are
diverse; however, there is a lack of participation by clini-
cians.

The clinical significance of AD images processing

Images with more details after denoising
The quality of low-dose PET images in the clinical
diagnosis of AD are significantly worse than that of
full-dose PET images, having more noise and fewer
functional details. Wang et al. obtained images with
higher PSNR by 3D c-GANs and LA-GANs, improving the
quality of low-dose PET images (Wang et al., 2018; Wang
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Table 6: Quantitative assessment indicators of image quality and related studies.

Quantitative assessment indicators of image quality

Study PSNR SSIM
Mean squared error (MSE),

NMSE, RMSE DSC
Manual
scoring

Wang et al. (2018) Yes No Yes No No
Wang et al. (2019) Yes Yes No No No
Ouyang et al. (2019) Yes Yes Yes No Yes
Shi et al. (2019) No No No Yes No
Oh et al. (2020) No No No Yes Yes
Baumgartner et al. (2018) No No No No No
Kang et al. (2020) No No No No No
Kang et al. (2018) No No No No No
Choi et al. (2018) No Yes No No No
Pan et al. (2018) Yes No No No No
Islam and Zhang (2020) Yes Yes No No No
Kim et al. (2020) No No No No No
Wegmayr et al. (2019) No No No No No
Yan et al. (2018) No Yes No No No
Bowles et al. (2018) No No No No No

Note: The PSNR is used to measure the ratio between the maximum possible intensity value and the MSE of the synthetic and real images. SSIM is used to find the

similarities within pixels of two images. MSE, NMSE, and RMSE are used to measure the voxelwise intensity differences between the real and estimated images. The

DSC is used to measure the voxelwise intensity differences between the real and estimated images.

Table 7: Quantitative assessment of classification effect indicators and related studies.

Quantitative assessment indicators of classification effect

Study
Accuracy

(ACC)
Sensitivity

(SEN)
Specificity

(SPE) AUC F1-score Recall

Pan et al. (2018) Yes Yes Yes Yes Yes No
Islam and Zhang (2020) Yes No No No No No
Kim et al. (2020) Yes Yes Yes Yes No No
Wegmayr et al. (2019) Yes No No No Yes Yes
Yan et al. (2018) Yes No No Yes No No
Bowles et al. (2018) No No No No No No

Note: AUC means the area under the receiver operating characteristic curve (ROC) curve; F1-score means the harmonic average of precision and recall.

et al., 2019). Ouyang et al. ensured the accuracy of amy-
loid status after image denoising (Ouyang et al., 2019).
These images with more details are helpful for clini-
cians to diagnose AD accurately (Ouyang et al., 2019).
The included studies showed that researchers could
obtain more accurate classification results by inputting
the denoised images.

In addition, AD-related clinical trials are gradually
considering the inclusion of young, normal cognitive
decline subjects, so it is important to reduce the radia-
tion dose and the risk of radiation exposure (Huang et al.,
2009). Therefore, through noise reduction, researchers
can not only obtain high-quality pictures and precise
diagnostic information, but also can reduce the potential
health damage to patients and normal controls..

Located AD state features through segmentation
The precise segmentation of brain images is conducive to
locating AD state features. Shi et al. realized the accurate
segmentation of hippocampal subfields (CA1, CA2, DG,
CA3, Head, Tail, SUB, ERC, and PHG) (Shi et al., 2019). The

volume or morphology of these areas are closely related
to AD and MCI (Nestor et al., 2013; Hobbs et al., 2016). Oh
et al. segmented the white matter compartment of the
brain on 18F-FDG PET/CT images using a GAN model (Oh
et al., 2020). Quantitative analysis of 18F-FDG PET/CT in
the white matter has certain potential for the diagno-
sis of AD. A classification framework can be established
based on processing extracted features in these areas.

Visual attribution is a process in which researchers
visualize disease features in an image given the category
of diseases. Baumgartner et al. obtained feature maps for
different subtypes of AD state using a WGAN (Baumgart-
ner et al., 2018). The feature maps of AD patients by visual
attribution contribute to segmentation of structures (Pin-
heiro and Collobert, 2015; Oquab et al., 2015). For clini-
cians, changes in the featured area in these images are
helpful in assessing AD state progression. For disease
research, the generated AD feature map helps to stratify
the patient population and prove that AD is composed of
multiple subtypes rather than a single disease (Iqbal et
al., 2005).
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Table 8: Methods compared in included studies.

Comparison method Study Detail of method

The method based on GAN synthesized data
vs. the method based on real data

Islam and Zhang (2020) The method using real PET data

Pan et al. (2018) LM3IL-C (using real PET and MRI data)
Yan et al. (2018) The method using real data
Kang et al. (2020) The method using real data

GAN vs. the algorithm removed a specific part Bowles et al. (2018) WGAN method without reweighting
Wang et al. (2019) Method without autocontext
Ouyang et al. (2019) Network without perceptual loss; network using VGG16

perceived loss
Oh et al. (2020) pix2pix unet method (u-net replacing residual block)

GAN vs. the generator (removed adversarial
training)

Wang et al. (2018) 3D U-net-like model (without adversarial training)

Wang et al. (2019) Generating network (without adversarial training)
Shi et al. (2019) The generative network named UG-net (without

adversarial training)
Oh et al. (2020) U-net method (without adversarial training)

GAN vs. other mature algorithms Kim et al. (2020) 2D-CNN (method of Glozman et al.)
Pan et al. (2018) ROI; VGD; LLEP (using hand-crafted features); LDSIL;

LDMIL (using only MRI data)
Yan et al. (2018) Traditional data augmentation method (images are

randomly horizontally and vertically flipped)
Wegmayr et al. (2019) WGAN∗ Conversion prediction; Indirect conversion

prediction; Direct conversion prediction
Wang et al. (2018) CNN method; m-SR method; t-DL method
Wang et al. (2019) m-SR method; t-DL method; m-CAA method; autoCNN

method
Kang et al. (2018) Average template; CAE
Choi et al. (2018) The method based on PET template; the method based

on multiatlas PET template; the method based on PET
segmentation; the method based on real MR

Shi et al. (2019) Sparse coding and dictionary learning method; CNN
Baumgartner et al. (2018) Guided backprop; integrated gradients; CAM; additive

perturbation
GAN vs. the manual method Shi et al. (2019) The clinician manual method

Note: LM3IL-C, GAN that uses only complete MRI and PET data; UG-net, a GAN model with the modified U-net; VGD, voxelwise GM density.

Generating more data and modalities
The main challenge of using deep learning is the lack of
sufficient data to train a classification framework (Spasov
et al., 2019). Due to the relatively high price of 18F-FDG
PET and PET/CT, the problem of lack of data is particu-
larly prominent in AD research (Abdellahi et al., 2018). A
GAN can augment 18F-florbetaben image data to solve
this problem during the development of AD-related deep
learning frameworks (Kang et al., 2020).

Currently, the use of multimodality data is a trend
of deep learning to diagnose AD (Liu et al., 2018). MRI
contains more structural and textural information, while
PET contains metabolic information and the value of
quantitative analysis. The combined use of MRIF and PET
can provide clinicians with more comprehensive diag-
nostic information. However, in the clinic, it is common
to transfer between modalities to supplement the lack
of certain modality data. Choi et al. completed the pro-
cess of converting PET images into magnetic resonance
images by applying a GAN (Choi et al., 2018). AD classi-
fication algorithms can be developed and trained based
on these multimodal data. More information ensures the
accuracy of classification.

The clinical significance of the classification of AD
state

At present, no drugs can effectively prevent the devel-
opment of AD (Neugroschl and Wang, 2011). The clin-
ical trial failure rate of AD drugs is as high as 99.6%
(Cummings et al., 2014). Therefore, the current focus of
treatments has shifted to diagnosing and intervening
patients in the early stages of AD (Chong and Sahade-
van, 2005; Davis et al., 2018). In our study, we found that
AD patients can be distinguished from normal cognitive
decline control groups, and high-risk individuals (pMCI)
can be identified among MCI (sMCI and pMCI) patients
by the GAN-based classification framework with higher
accuracy than other algorithms. This provides an oppor-
tunity to delay or even reverse disease progression and
to reduce the occurrence of AD patients.

In most studies on AD classification, a two-stage deep
learning framework is usually established (shown in
Fig. 6). The first stage is to synthesize medical images
or extract relevant features, and the second step is to
establish a classifier for classification (Rathore et al.,
2017). Researchers use GANs to synthesize images and
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Figure 6: A general framework for GAN-based AD classification.

perform feature extraction while using other algorithms
(such as CNNs) to build classifiers (Islam and Zhang,
2020; Wegmayr et al., 2019). This structure makes full
use of the advantages of GANs in image processing.
To obtain higher accuracy, accurate feature extraction
is often more important than classification algorithms
(Sabuncu et al., 2015). A GAN’s processing of AD-related
images can better help the extraction of AD-related fea-
tures in the first stage of this framework, which plays a
critical role in the improvement of classification accuracy
of the model.

Why do GANs outperform other conventional
deep learning methods in AD-related tasks?

In this systematic review, GANs outperformed other con-
ventional deep learning methods in AD-related tasks. In
feature extraction tasks, GANs can better extract the fea-
tures of brain images of patients with AD/MCI and com-
plete visual attributes (Baumgartner et al., 2018) to clas-
sify AD/HC (Kim et al., 2020) or predict the magnetic res-
onance images after disease progression (Bowles et al.,
2018; Wegmayr et al., 2019). In data augmentation tasks,
GANs can generate brain PET images similar to the real
data according to random noise to augment the research
data and enhance the discrimination and generaliza-
tion performance of classifiers in the next stage (Islam
and Zhang, 2020; Kang et al., 2020). In modality trans-
fer tasks, GANs can generate images for one modality
based on another (such as the MRI to PET transfer) and
retain more anatomical and functional information (Choi
et al., 2018; Kang et al., 2018; Pan et al., 2018; Yan et al.,
2018). In image denoising tasks, GANs can better remove
noise in low-dose PET images and generate more realistic

high-dose PET images (Ouyang et al., 2019; Wang et al.,
2018; Wang et al., 2019). In image segmentation tasks,
GANs achieve results closer to those of expert manual
segmentation when segmenting a specific region (such
as the hippocampus) in the brain images of AD patients
(Shi et al., 2019; Oh et al., 2020).

In general, in AD-related tasks, GANs show a pow-
erful brain image processing performance that other
traditional deep learning methods do not have, which
may be related to their better adaptability to the pro-
cessing of medical imaging data (such as MRI, PET, and
other AD-related brain image data). First, medical imag-
ing data are mostly complex high-dimensional data, and
the adversarial structure of GANs has advantages over
other conventional deep learning methods in process-
ing. Conventional deep learning methods (such as CNNs)
often require a very large amount of computation to fit
high-dimensional data, resulting in relatively poor image
quality, and are often affected by blurring and alias-
ing artifacts (Chen et al., 2017b; Deng et al., 2020). GANs
do not require a preset distribution of data. Theoret-
ically, any differentiable function can be used to con-
struct the generator and discriminator, which means
that GANs do not need to customize the complex loss
function (Isola et al., 2017), can directly approximate the
real probability distribution of high-dimensional data
with arbitrary accuracy, and can generate high-quality
images (Goodfellow et al., 2014; Radford et al., 2015; ).
Second, due to the need for long-term follow-up, profes-
sional equipment, and analysis by well-trained medical
practitioners, medical imaging data for training are
scarce and more likely to have class imbalance prob-
lems (Sampath et al., 2021). GANs can learn the poten-
tial data distribution from the limited available data for
generating high-quality images, which results in less
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data required for training and an advantage in han-
dling unbalanced data (Kazuhiro et al., 2018), whereas
other conventional deep learning methods require a
great amount of prior knowledge (such as a very large
amount of data) for training and may face more overfit-
ting problems when processing small amounts of data
(Shorten and Khoshgoftaar, 2019; Sampath et al., 2021).

These technical advantages make GANs more suit-
able for medical image data processing and can explain
our findings in this systematic review. The data aug-
mentation task requires that the deep-learning network
use only a small amount of data to learn its character-
istics to generate very realistic images. Other conven-
tional data augmentation methods (such as fully visible
belief networks, recurrent neural networks, and varia-
tional autoencoders) require a very large amount of com-
putation when generating high-dimensional data such
as images, resulting in slower generation speed and more
artifacts of the generated images. The superior charac-
teristics of GANs in processing high-dimensional data
make them perfectly capable for this task (Kazuhiro et
al., 2018; Sampath et al., 2021); the modality transfer
task needs to complete the nonlinear conversion from
one modal image to another. Other conventional deep
learning methods often need to customize complex loss
functions when solving such problems and need per-
fect alignment between modifications, which is diffi-
cult to achieve in medical practice. The good adaptabil-
ity of GANs (especially cycleGAN) makes it possible to
fully learn the corresponding law between the two modal
data, to achieve high-quality modalities transfer without
the need for perfect alignment between images, which
is also one of the biggest advantages of GANs (Isola et
al., 2017; Zhu et al., 2017; Largent et al., 2019); In fea-
ture extraction, image denoising, and image segmen-
tation tasks, the deep-learning network needs to fully
learn the distribution features of the input image to
complete the extraction of disease features, the removal
of image noise or the segmentation of specific regions.
Although other conventional deep learning methods
have achieved some success when performing these
tasks, they lose some high-frequency structures and tex-
tures (Chen et al., 2017a) and may not ensure the spa-
tial consistency between the output image and the real
image when applied to continuous three-dimensional
data (such as MRI or PET images) (Yi et al., 2019). GANs
solve these problems (Kang et al., 2019; Huo et al., 2018)
and can generate normal-appearing images from images
with abnormal findings to visualize the effects of the dis-
ease (i.e. feature attribution) (Sun et al., 2020).

Data and architecture of GANs

Improve data quality and modalities
Data quality has always been a topic of concern in deep
learning research. Although a GAN can process image
data with high quality, data from different sources will
also have effects on AD classification and other clini-
cal applications. We reviewed the training and validation

datasets used in the included studies. For most of the
included studies, the training data came from the pub-
lic database Alzheimer’s Disease Neuroimaging Initiative
(ADNI), which was launched in 2003 as a public–private
partnership. The primary goal of the ADNI is to find more
biomarkers (such as MRI, PET, etc.) for the early detection
and tracking of AD and MCI. After >10 years of devel-
opment, the ADNI has formulated a strict project plan
(which includes patient type, patient age, cognitive sta-
tus assessment method, subpopulation allocation plan,
etc.) to ensure the comparability of the data and has
included >1500 AD, MCI or HC subjects from 57 sites
across the USA and Canada, which has made it one of
the largest neuroimaging databases of AD and MCI (Bur-
ton, 2011). Compared with other medical fields, such a
large database facilitates the development and training
of deep learning frameworks and alleviates the problem
of a lack of deep learning data. At the same time, some
studies cooperate with medical institutions, using clin-
ically collected data for training. However, in this sys-
tematic review, we found that simply using samples from
clinical cases may lead to a lower sample size for train-
ing, resulting in problems such as poor generation effects
and overfitting. The amount of data is a decisive factor in
the effectiveness of the deep learning model (Parmar et
al., 2018). Therefore, we suggest that researchers using
clinically collected data for training try to use a public
database (such as ADNI) with a large data volume and
high data quality to expand their sample size to improve
the generation effect and generalization ability of the
GAN model.

For validation data, we noticed that most of the data
used to train and validate algorithms were from the same
dataset; that is, only the internal validation method was
used to evaluate the performance of the GAN model,
which can be divided into cross-validation and split-
sample validation (Park and Han, 2018; Kim et al., 2020a;
Kulkarni et al., 2021). Cross-validation (such as the leave-
one-site-out method) takes the previous training data as
validation data in iterative training, which can improve
training efficiency and the fitting degree of the model to
the dataset and can make full use of the dataset. How-
ever, it can also result in the ‘leakage’ of the informa-
tion in the training set to the verification set, which leads
to overfitting and overestimation of the model capabil-
ity (Park and Han, 2018). Split-sample validation uses
a small part of the data that is randomly split from
the dataset and kept unused for training to evaluate
the performance of the algorithm. Although it will not
cause the “leakage” problem, spectrum bias and overfit-
ting cannot be avoided (Park and Kressel, 2018; Park and
Han, 2018). In general, many studies have suggested that
although internal validation can effectively evaluate the
technical performance of deep learning models, it may
also lead to insufficient generalization performance in
real-world, high-volume clinical environments (Zech et
al., 2018; Salehinejad et al., 2021). Therefore, using data
from clinical collections or external institutions as val-
idation data is important to solve such problems, and
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researchers can consider using large databases such as
ADNI to train deep learning frameworks and use clini-
cally collected data for verification, as Kim et al.

We also checked the input/output modalities of data
used by the included studies. Most of the studies only
used single modal data (PET or MRI) for AD classification
or image processing, while the use of multimodal data
was less common. Pan et al. and Yan et al. both use the
two-stage deep learning architecture. In the first stage, a
GAN is used to generate the missing PET image according
to the magnetic resonance images, and then the gener-
ated PET image and original magnetic resonance images
are input into the CNN classifier for classification. The
training effect is better than using MRI data alone, which
is similar to the results obtained by Li et al. and proves the
good efficiency of the multimodal classification method
(Li et al., 2014). In addition, at present, the MRI data used
in most PET to MRI modality transfer studies are struc-
tural magnetic resonance images (such as T1-weighted
MRI) (Hu et al., 2021), which may not be able to synthesize
PET images that reflect brain metabolism. Wang et al. cre-
atively combined T1-weighted MRI, which reflects brain
structure, with DTI (a kind of functional MRI), which
reflects brain function, to synthesize PET images. This
modality transfer method based on multimodal MRI has
achieved good results and provided insight for subse-
quent research. However, there were few data samples
used in this study, and there is still a lack of follow-up
research after expanding the samples.

We also analyzed the training sample size using dif-
ferent modal data. Among the included studies, the sam-
ple size of studies using PET images was generally small,
which may be due to the expensive cost of obtaining
PETs and the relative shortage of MRI–PET paired data in
public datasets such as ADNI (Zhang et al., 2012), which
suggests that we need to add more of this type of data
when building public databases. In addition, nearly half
of the included studies used partial 2D slices in MRI or
PET images instead of the whole 3D image for training,
which may cause the loss of spatial information and dis-
continuous estimation (Nie et al., 2018). However, a recent
study found that using the whole 3D image may increase
the scale of the GAN model and then affect the genera-
tion efficiency (Yu et al., 2018). Therefore, how to apply 3D
image data to train the GAN more efficiently remains to
be studied.

Toward better GAN architecture
We checked the characteristics of the GAN architecture
used by different image processing tasks. We found that
most studies on image-to-image tasks (image denois-
ing, image segmentation, and modality transfer) used
the cGAN model, which is a supervised model proposed
by Mirza et al. and uses a conditional variable C constraint
generator and discriminator to generate the specified tar-
get image (Mirza and Osindero, 2014). In the image-to-
image task of medical images, the input image is used as

the conditional variable C so that cGAN can perform cor-
responding processing according to the image and obtain
the desired output image (Sundar et al., 2020). This GAN
model has been proven to achieve good performance in
medical imaging denoising (Sundar et al., 2020), segmen-
tation (Yu et al., 2018) and modality transfer (Kawahara
and Nagata, 2021), which is also supported by our sys-
tematic review. In image feature extraction, most stud-
ies use the WGAN model, which was first proposed by
Arjovsky et al. This model uses Wasserstein loss instead
of Jensen Shannon divergence to avoid modal collapse
and makes the training gradient meet the Lipschitz con-
tinuity to solve the problem of training difficulty and
instability (Radford et al., 2015). This model can mini-
mize the distance between the real and generated dis-
tribution so that it can better extract meaningful fea-
tures in the image and complete the feature attribute
task. In the noise-to-image task, most studies choose the
DCGAN. This model was proposed by Radford et al. and
combines a CNN in supervised learning and a GAN in
unsupervised learning, which can improve the stability
of training and the quality of generated images (Rad-
ford et al., 2015) and is widely used in medical image
data augmentation (Kazuhiro et al., 2018). Kang et al. and
Islam et al. both used this model to amplify PET data and
achieved good results, which confirmed the advantages
of this model in data augmentation tasks. In addition,
the GAN model used by Pan et al. and Kim et al. also puts
forward a new direction for future research. The cycle
GAN used by Pan et al. was proposed by Zhu et al. This
model creatively uses two sets of generators and dis-
criminators to learn the mapping relationship between
the two modified data and then completes the modal-
ity transfer without paired data, which has great clinical
application potential and research value (Zhu et al., 2017).
The BEGAN used by Kim et al. was proposed by Berth-
elot et al., which generates data by estimating the error
of distribution rather than the difference between gener-
ated data and real data, which improves the generation
stability (Berthelot et al., 2017). However, its application
effect in high-resolution images is poor, and its appli-
cation in medical images is limited, requiring further
study.

We also checked the GAN architecture improvement
methods used in different studies, most of which aimed
to improve training stability and image generation qual-
ity (such as improvements to generators, discrimina-
tors, and loss functions). However, some studies have
improved the GAN model according to the characteris-
tics of AD image data; for example, Ouyang et al. used
an extra amyloid status classifier to make the gener-
ated image fit to the patient’s real amyloid status. Kang
et al. used two different GAN modalities to generate Aβ

negative and positive images to improve the generaliza-
tion. This task-specific improvement can make the GAN
model better meet the needs of clinical application and
has high reference value.
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Suggestions on quantitative assessment and
method comparison

To ensure that the developed algorithms can be applied
in clinical practice, quantitative assessment and com-
parison methods are worthy of attention. Quantitative
assessment can detect factors that reduce generaliza-
tion performance and evaluate the applicability of train-
ing datasets (Kang et al., 2020). Judging from the present
results of the included studies, the quantitative assess-
ment indicators of the studies with the same applica-
tion purpose were not uniform. This is one of the reasons
why this article only carried out a systematic review and
failed to carry out a meta-analysis. Future research can
propose reference assessment indicators for different
purposes, such as image segmentation, image denoising,
and modality transfer. This can facilitate horizontal com-
parisons between studies.

Judging from the summary of the comparison meth-
ods here, we recommend that researchers consider at
least the following three comparison methods: (i) com-
parison with algorithms removing a specific part; (ii)
comparison with other mature algorithms; and (iii) com-
parison with clinician manual methods. In Wang et al.,
Shi et al., and Oh et al., the advantages of GANs can
be highlighted by comparison with algorithms removing
part of the adversarial training (Wang et al., 2018; Shi et
al., 2019; Wang et al., 2019; Oh et al., 2020). Therefore, this
comparison method is necessary in research based on
GANs. Comparison with other published algorithms can
help show the advantages and application potential of
the algorithm.

From the results of the included studies, the process of
evaluation of the algorithm lacks clinician participation.
This limits that studies break through the barriers from
development to clinical application. The purpose of algo-
rithm training is to reach the level of the clinician and
realize automatic diagnosis. The clinician’s evaluation
reflects the clinical application effect of the algorithm.
Whether some key clinical information can be retained
in the process of image processing can only be known
through the evaluation of clinicians. In addition, it is dif-
ficult for clinicians to obtain an intuitive understanding
of the application effect of the algorithm from the only
objective quantitative assessment indicators (e.g., PSNR,
DSC) due to barriers between specialties. This will affect
the attitude of clinicians to use algorithms. Therefore,
we strongly recommend recruiting clinicians to evalu-
ate the algorithm in future research. Specifically, from
the aspect of quantitative assessment, clinicians make
rules to score images after image denoising, segmen-
tation and other processing. Then, the scores of differ-
ent algorithms are compared. Ouyang et al. and Oh et al.
reported the advantages of the GAN algorithm by scor-
ing (Ouyang et al., 2019; Oh et al., 2020). From the aspect
of method comparison, researchers can consider com-
paring the effect of clinician manual methods with that

of algorithms. For example, Shi et al. showed a good
segmentation effect in the hippocampus from magnetic
resonance images compared with the manual segmen-
tation method (Shi et al., 2019).

Limitations of GANs in psychoradiology and
AD-related tasks

There are also some common problems with the GAN
algorithm itself. For example, GANs are difficult to train.
During training, the generator and discriminator often
fail to balance well, which may cause problems such as
pattern collapse and gradient disappearance and which
results in the generator stopping the training after learn-
ing only part of the distribution pattern of the data and
not converging to global Nash equilibrium (Mertikopou-
los et al., 2018; Wiatrak and Albrecht, 2019). Also, the neu-
ral network needs good initialization during the train-
ing of GANs; otherwise, the learned distribution may
still be far from the real distribution, resulting in cyclic,
oscillating, or diverting behavior (Goodfellow, 2014; Mer-
tikopoulos et al., 2018; Wiatrak and Albrecht, 2019). In
addition, the generator of GANs can only learn an end-
to-end mapping function, which does not have explicit
expression. Therefore, the interpretability of GANs is
poor, and the corresponding relationship between their
latent space and the generated image is not clear, which
is like a “black box” for researchers (Zhou et al., 2016).
Some researchers have proposed optimized GAN mod-
els to solve the above problems (such as cGAN, WGAN,
and cycleGAN) (Radford et al., 2015; Zhu et al., 2017;
Sundar et al., 2020), but GANs still need to be fur-
ther optimized to fully achieve their optimal generation
performance.

The application of GANs in psychoradiology and AD-
related tasks still has some limitations. At present, a
GAN is mainly used in the processing of AD-related
medical images, but its application in other mental ill-
nesses (such as schizophrenia, autism, attention deficit
hyperactivity disorder, etc.) is still lacking (Li et al., 2021;
Ntelemis et al., 2021). The psychoradiologic data used
to study these mental diseases are similar to AD, while
more complex and higher-dimensional data (such as
functional MRI data) are often used to complete the clus-
tering and classification of those diseases. Deep learning
methods (such as CNNs) have been gradually applied to
the processing of imaging data of these mental diseases
and have achieved some promising results, but their abil-
ity to process functional MRI and other high-dimensional
psychoradiologic data needs to be improved (Li et al.,
2021). Therefore, it is very promising for GANs, which
outperform other conventional deep learning methods in
processing high-dimensional data, to be applied to these
diseases. Meanwhile, the application of a GAN in the field
of AD state can be extended to the field of bioinformatics,
such as the use of a GAN to analyze AD molecular data
(Park et al., 2020). The lack of data in bioinformatics is
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also a tricky problem. The ability of GANs to amplify data
in image processing can be transferred to bioinformat-
ics research (Lan et al., 2020). In addition, in this system-
atic review we found that researchers paid little atten-
tion to the clinical information contained in the image
(such as amyloid status) when conducting AD-related
research (Sorin et al., 2020). In the future, when studying
the application of GANs to AD-related tasks, algorithm
researchers should work closely with psychoradiologists
to ensure the consistency of clinical information pro-
vided by images before and after processing (Yang et al.,
2021).

Conclusion

The application value of a GAN in the classification of
AD state and AD-related image processing has been con-
firmed in reviewed studies. Compared with other meth-
ods, GAN classification is more accurate, the image qual-
ity after denoising is higher, and the image segmentation
is more accurate. In the future, researchers need to con-
sider using better data and GAN architecture and com-
paring algorithms with clinician manual methods and
recruiting clinicians to evaluate the effect of the algo-
rithm.
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