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Abstract

Background

The prospective cohort study PROTECT is the largest study in pediatric ulcerative colitis

(UC) with standardized treatments, providing valuable data for predicting clinical outcomes.

PROTECT and previous studies have identified characteristics associated with clinical out-

comes. In this study, we aimed to compare predictive modeling between Bayesian analysis

including machine learning and frequentist analysis.

Methods

The key outcomes for this analysis were week 4, 12 and 52 corticosteroid (CS)-free remis-

sion following standardized treatment from diagnosis. We developed predictive modeling

with multivariable Bayesian logistic regression (BLR), Bayesian additive regression trees

(BART) and frequentist logistic regression (FLR). The effect estimate of each risk factor was

estimated and compared between the BLR and FLR models. The predictive performance of

the models was assessed including area under curve (AUC) of the receiver operating char-

acteristic (ROC) curve. Ten-fold cross-validation was performed for internal validation of the

models. The estimation contained 95% credible (or confidence) interval (CI).

Results

The statistically significant associations between the risk factors and early or late outcomes

were consistent between all BLR and FLR models. The model performance was similar

while BLR and BART models had narrower credible intervals of AUCs. To predict week 4

CS-free remission, the BLR model had AUC of 0.69 (95% CI 0.67–0.70), the BART model
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had AUC of 0.70 (0.67–0.72), and the FLR had AUC of 0.70 (0.65–0.76). To predict week

12 CS-free remission, the BLR model had AUC of 0.78 (0.77–0.79), the BART model had

AUC of 0.78 (0.77–0.79), and the FLR model had AUC of 0.79 (0.74–0.83). To predict week

52 CS-free remission, the BLR model had AUC of 0.69 (0.68–0.70), the BART model had

AUC of 0.69 (0.67–0.70), and the FLR model had AUC of 0.69 (0.64–0.74). The BART

model identified nonlinear associations.

Conclusions

BLR and BART models had intuitive interpretation on interval estimation, better precision in

estimating the AUC and can be alternatives for predicting clinical outcomes in pediatric

patients with UC. BART model can estimate nonlinear nonparametric association.

Introduction

Outcomes following current standard therapies for children with ulcerative colitis (UC) are

difficult to predict because of extensive and severe disease at diagnosis in the majority of

affected individuals. It has been noted that age at diagnosis, anatomical extent and disease

course all contribute to a wide range of outcomes with some children quickly responding to

therapy and remaining in clinical remission, some who are refractory to all medical interven-

tions and who go to colectomy, and the majority who have a waxing and waning course [1–5].

Whereas most adults with UC tend to have more limited disease and often respond nicely to

oral mesalamine, less than half of all children have a similar course with most requiring corti-

costeroids or advanced therapies such as biologics [6–9].

The NIH supported PROTECT study (Predicting Response to Standardized Pediatric Coli-

tis Therapy (U01DK095745)), initiated in 2012 and completed in 2016, is the largest study in

pediatric UC with standardized treatments, and has provided valuable data to help develop

predictive models of clinical outcomes of pediatric UC. By concomitantly obtaining biospeci-

mens for translational studies at diagnosis and during the first year following therapy along

with highly standardized clinical data, it facilitated a better understanding of inter-patient vari-

ability in response to therapy and provided insights into the pathways that sustain colonic

inflammation [9]. In this large, multicenter inception cohort, the primary goal was to identify

predictors of corticosteroid (CS)-free remission achieved with mesalamine maintenance ther-

apy following initial treatment with mesalamine or CS.

In this article, we compared Bayesian and frequentist approach to predict clinical outcomes

using data from the PROTECT study. FLR is a typical choice in many applications [8, 9]. In

the frequentist approach, the parameter of interest (e.g., an odds ratio) is considered a fixed

number. The Bayesian approach, however, treats the parameters of interest as random vari-

ables, and, therefore, parameters can be described with probability distributions [10]. The fre-

quentist confidence interval (CI) has a long-run frequency interpretation. As an example, an

interpretation follows: we can be 95% confident that the true (unknown) estimate of odds ratio

of baseline Mayo< 10 for week 4 remission would lie within the CI (1.11, 3.12), based on

hypothesized repeated experiment. On the other hand, the Bayesian confidence interval (or

more formally credible interval, CI) can be interpreted in a probabilistic way. For instance,

one can interpret a Bayesian CI as follows: with 95% probability, the odds ratio of baseline clin-

ical severity Mayo score < 10 for week 4 remission is between 1.11 and 3.12. This would be a
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more natural interpretation for clinicians [11]. We utilized two Bayesian models. In a BLR, we

incorporated the external information via informative priors. As a new machine learning

approach, BART can take informative priors when constructing regression trees [12]. We

intended to fill the knowledge gap of a lack of comparative study to evaluating BLR, BART and

FLR predictive models for pediatric patients with UC.

Methods

Study population

In the PROTECT Study, patients were recruited from 29 North American centers between

July 2012 and April 2015. Children from age 4 to 17 years inclusive with a clinical history con-

sistent with colonic inflammation (any combination of diarrhea, bleeding, abdominal pain)

were eligible for study. Inclusion criteria, clinical assessments for the determination of clinical

variables and demographic information for patients enrolled in this study have been described

before [8, 9]. Participants were enrolled and completed all baseline assessments prior to initia-

tion of therapy and were followed for a minimum of 1 year, through April 2016. The data

includes post-baseline assessments at 4 and 12 weeks, along with interim phone calls, visits,

and hospitalizations as needed. Visit assessments included Pediatric UC Activity Index

(PUCAI), partial Mayo activity score (excluding the endoscopy sub-score), clinical evaluation,

and standard-of-care clinical labs. Stool samples and plasma for specialized laboratory assess-

ments were collected at 4 and 12 weeks. Depending upon initial PUCAI score, patients were

initially treated with either mesalamine (mild disease), oral CS (moderate disease), or intrave-

nous (IV) CS (severe disease) based on standardized guidelines but with some physician dis-

cretion allowed. We followed the same per-protocol population approach as in the original

study [8, 9]. The authors had no access to information that could identify individual partici-

pants during or after data collection. The data were accessed on March 10, 2022. This research

has been approved by the Institutional Review Board of University of Texas Health Science at

San Antonio and University of Tennessee Health Science Center. All methods were carried

out in accordance with relevant guidelines and regulations. Informed consent or assent from a

parent and/or legal guardian for study participation was obtained.

Outcomes

The primary outcome was week 52 CS-free remission defined as clinical remission (PUCAI

score of<10) with no corticosteroid (CS) use for 4 weeks or longer immediately before week

52, no medical therapy beyond mesalamine, and no colectomy. The secondary late outcome

was escalation to anti-TNFα therapy at any time in the 52 weeks. Early outcomes were week 4

and week 12 CS-free remission. Week 12 CS-free remission was similar to the primary late out-

come except for no CS for a minimum of 2 weeks. Week 4 CS-free remission was defined over

4 weeks.

Predictors

We focused on pre-determined predictors of clinical outcomes [8, 9]. These predictors were

utilized with different predictive models. When missing data were present, we focused on the

complete data analysis for the early outcomes as in [8]. For the late outcomes, imputation-

based approaches were presented as in [9] with additional technical details for the associated

statistical models below.
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Predictive models

We developed predictive models with three different statistical methods described below for

each outcome. Adjusted odds ratios were presented when applicable. We assessed model fit

with the AUC of the ROC curve and corresponding 95% credible or confidence interval (CI),

sensitivity, specificity, positive predictive value, negative predictive value and corresponding

95% CI. The cut-off value was typically chosen at a predicted probability of 0.50. However, for

the use of additional medical therapy or colectomy by week 4 on the intravenous corticosteriod

group, a smaller number 0.39 was chosen to obtain meaningful results. We also assessed

10-fold cross-validated AUC (CV-AUC) and 95% CI, which was different from the bootstrap-

ping in [8] or leave-one-out cross-validation in [9]. The last two approaches are computation-

ally intractable in the Bayesian framework, which is the focus of this article. Ten-fold cross

validation randomly split the data into 10 disjointly equal subsets and repeatedly used nine

subsets for model fitting and the remaining subset for validating AUC. The calculation of

CV-AUC is further detailed when the specific methods are described below. For the early out-

comes, we conducted separate modeling within initial treatment group (mesalamine, oral CS,

IV CS). For the late outcomes, separate modeling was developed for patients with biological

data. Analyses performed using R version 4.1.3 (2022-03-10), package rstanarm version 2.21.3

and BART version 2.9.

Methods 1 –Bayesian logistic regression

Unlike the frequentist logistic regression, Bayesian method assumed that the coefficients fol-

lowed some prior distributions. It was also assumed independence among the priors.

Throughout, we utilized the weakly informative priors [10]. Selecting prior distributions is a

critical step in Bayesian analysis, and we chose weakly informative priors by utilizing the

default prior configurations provided in the R package rstanarm, as recommended in [10].

These priors are specifically designed to capture general prior uncertainty across a range of

reasonable parameter values and are tuned with information from the data. Unless we possess

strong prior information, opting for the defaults in rstanarm generally results in more stable

simulation outcomes compared to attempting to tune other arbitrary priors. For each logistic

regression model, we ran Markov chain Monte Carlo (MCMC) with 4 chains where each

chain contained 10,000 iterations with the first half for burn-in and assessed convergence visu-

ally. We also computed quantitative convergence diagnostics, such as the Gelman-Rubin sta-

tistic and effective sample size (ESS) to assess the convergence of MCMC simulations. The

choice of the specific number of burn-in iterations, such as 5,000 in our analysis, is often deter-

mined empirically based on the behavior of the chain and may vary depending on the com-

plexity of the model and the specific MCMC algorithm used. The results were presented as

odds ratios using the 20,000 posterior draws for each logistic regression coefficient and their

95% CIs. Model performance was evaluated similarly using the posterior draws. In the 10-fold

cross-validation procedure, we repeatedly built Bayesian logistic regression with nine subsets

of data and obtained distribution of AUC from the remaining testing data. The AUC scores

from all folds were pooled to derive a posterior distribution of the AUC, which was then used

to calculate the mean and 95% credible intervals of the AUC.

For the late outcomes, we utilized 100 multiple imputations and combined the results fol-

lowing the recommended strategy in [13]: (i) simulate many draws from the posterior distribu-

tion in each imputed dataset, and (ii) mix all the draws. The mixed draws approximate the

posterior distribution. For each logistic regression model, this approach led to 100×20,000 pos-

terior draws, from which, odds ratios were computed, as well as the 95% CIs. Model perfor-

mance was evaluated similarly. In the CV-AUC procedure, we obtained AUC distribution for
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each fold following [13] again and took average of cross-validated AUC and confidence inter-

vals. Furthermore, to evaluate the posterior predictive accuracy of a Bayesian regression

model, we computed expected log-predictive density (ELPD). The higher the ELPD, the better

a model since higher ELPDs indicate greater posterior predictive accuracy to predict new data

points. The ELPD was estimated by leave-one-out cross validation. With multiple-imputa-

tions, we implemented the following procedure: we obtained pointwise ELPD for each multi-

ple-imputed dataset, computed means of pointwise predictive densities, where means were

over all imputed datasets. This resulted in pointwise predictive densities. A model’s ELPD was

then sum of log of pointwise predictions.

Method 2 –Bayesian additive regression trees

Boosting is a popular machine learning algorithm which combines many so-called weaker

learners sequentially and produce a powerful predictive model. Bayesian additive regression

trees (BART) [12] is similar to boosting although each tree is constrained by a regularization

prior to be a weak learner, and fitting and inference are accomplished via an iterative Bayesian

MCMC algorithm that generates samples from a posterior. This nonparametric Bayesian

approach allows full posterior inference including point and interval estimates of the unknown

regression function. BART requires to specify a prior for the leaf value (k) and the number of

trees(m), which can influence the conservatism of the fitting process. The recommended

default values are k = 2 and m = 50 for achieving good results [12]. We employed the default

prior configurations provided in the R package BART, which, as advocated by [12], serve to

regularize the fit by constraining individual tree effects to be small. BART has been shown to

have very impressive out-of-box performance with minimal tuning [14]. We adopted the same

multiple imputations as before for late outcomes. The model evaluation was similar to Bayes-

ian logistic regression although there was a lack of odds ratio due to the nature of a nonpara-

metric model. Similar to Method 1, we utilized ELPD for model comparison.

Method 3 –frequentist logistic regression

For the early outcomes, logistic regression models were fit, and we computed odds ratios with

95% CI and p-values. We evaluated model performance with AUC, sensitivity, specificity, pos-

itive and negative predictive value. The corresponding 95% CIs were computed with 999 non-

parametric bootstrap replications. To evaluate standard error and confidence intervals of

CV-AUC, a computationally efficient method was utilized [15].

For the late outcomes, 100 multiple imputations were utilized for missing data. For each

imputed data set, a logistic regression model was fit, and final models were computed using

Rubin’s rule across multiple imputations to assess odds ratios with 95% CI and p-values. Model

performances were combined from multiple imputations to generate 95% CI. For each imputed

dataset, we computed standard error of CV-AUC following [15] and utilized nonparametric boot-

strap-based standard error of AUC, sensitivity, specificity, positive and negative predictive value.

Results

For week 4 CS-free remission with all patients, a baseline total Mayo score less than 10 at diag-

nosis (OR 1.85, 95% CI 1.11–3.12), proctosigmoiditis (5.37, 1.93–18.97), rectal biopsy eosino-

phil peak count larger than 32 cells per high-power field (1.74, 1.11–2.74), and relative rectal

sparing (4.71, 1.92–13.43) were all associated with increased odds of week 4 CS-free remission

from the BLR model (n = 355; Table 1). The BLR model showed fair predictive accuracy (AUC

0.69, 0.67–0.70). For the cohort of the intravenous corticosteroid group using additional medi-

cal therapy or colectomy by week 4, the BLR model included baseline total Mayo score larger
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than or equal to 11 (OR 5.83, 95% CI 1.99–18.91), serum albumin g/dL (0.25, 0.09–0.58), rectal

biopsy eosinophil count of less than or equal to 32 cells per high-power field (7.63, 2.50–

27.20), and rectal biopsy surface villiform changes (3.29, 1.14–9.96). A strong prediction was

achieved, with an AUC of 0.86 (95% CI 0.84–0.87), a cross-validated AUC of 0.83 (0.72–0.92),

a specificity of 0.90 (95% CI 0.83–0.97). The BART (S1 Table) and BLR models had similar

prediction accuracy while a BART model can detect a nonlinear nonparametric association as

evidenced in Fig 1. As albumin level increases, the probability of week 4 remission increases in

a nonlinear fashion on a probit scale. There was underestimation of effect estimates in the FLR

models in comparison to the BLR models (S5 Table). The FLR models had similar AUCs with

wider interval estimates.

Table 2 shows the Bayesian multivariable model of baseline and week 4 risk factors associ-

ated with week 12 CS-free remission for all initial therapy groups and additional therapy or

colectomy for patients treated with intravenous corticosteroids. For the full cohort (n = 409),

predictive factors for corticosteroid-free remission included baseline PUCAI less than 35 and

increasing serum albumin by 1 g/dL increments in children younger than 12 years, week 4

clinical remission, which is most unvaryingly associated with corticosteroid-free remission

across the full cohort and for each initial treatment group, with the largest effect with intrave-

nous corticosteroids and the smallest effect with mesalamine. Similar conclusions hold for the

FLR models (S6 Table). For the cohort of the intravenous corticosteroid group using addi-

tional medical therapy or colectomy by week 12, the BLR model included baseline total Mayo

score larger than or equal to 11 (OR 2.69, 95% CI 0.98–7.81), rectal biopsy eosinophil count of

less than or equal to 32 cells per high-power field (4.79, 1.72–13.98), the existence of surface

villiform changes (3.20, 1.14–9.35), and the lack of remission by week 4 (34.47, 8.65–217.75).

The predictive accuracy was strong with an AUC of 0.88 (95% CI 0.86–0.89). For week 12 CS-

free remission with all patients, there was underestimation of effect estimates in the FLR

Table 1. Bayesian multivariable logistic regression models of baseline evaluation associated with week 4 remission and additional therapy/colectomy for patients

initially treated with IV steroids.

Remission, all patients Remission by Initial Treatment Additional Therapy/ Colectomy

Odds Ratio (95% CI) Total (N = 419) # 5-ASA (N = 135) Oral CS (N = 142) IV CS (N = 142) IV CS only (N = 142)

Model sample size (% of total N) n = 355 (85%) n = 132 (98%) n = 123 (87%) n = 142 (100%) n = 120 (85%)

Number of events (% of model n) 179 (50%) 73 (55%) 70 (57%) 57 (40%) 32 (27%)

Total Mayo score Mayo < 10: - Mayo < 10: Mayo < 11: Mayo� 11:

1.85 (1.11, 3.12) 3.43 (1.25, 9.81) 2.35 (1.18, 4.80) 5.83 (1.99, 18.91)

Albumin per 1 g/dL 1.38 (0.99, 1.92) 2.11 (1.23, 3.73) - - 0.25 (0.09, 0.58)

Proctosigmoiditis 5.37 (1.93, 18.97) 3.15 (1.11, 10.66) - - -

Rectal biopsy eosinophil peak count /hpf Count > 32: - Count > 32: - Count� 32:

1.74 (1.11, 2.74) 2.86 (1.29, 6.70) 7.63 (2.50, 27.20)

Relative rectal sparing 4.71 (1.92, 13.43) - 8.55 (1.85, 67.12) - -

Rectal biopsy surface villiform changes - - - - 3.29 (1.14, 9.96)

Model evaluation

AUC 0.69 (0.67, 0.70) 0.66 (0.64, 0.66) 0.70 (0.68, 0.71) 0.60 (0.60, 0.60) 0.86 (0.84, 0.87)

CV-AUC 0.67 (0.59, 0.72) 0.65 (0.59, 0.68) 0.69 (0.58, 0.73) 0.59 (0.54, 0.60) 0.83 (0.72, 0.91)

Sensitivity 0.62 (0.41, 0.76) 0.73 (0.38, 0.95) 0.77 (0.73, 0.90) 0.67 (0.00, 1.00) 0.58 (0.41, 0.69)

Specificity 0.66 (0.48, 0.85) 0.46 (0.20, 0.78) 0.54 (0.26, 0.64) 0.51 (0.00, 1.00) 0.90 (0.83, 0.97)

Positive predictive value 0.66 (0.60, 0.75) 0.63 (0.58, 0.70) 0.70 (0.62, 0.73) 0.46 (0.00, 0.49) 0.69 (0.58, 0.80)

Negative predictive value 0.63 (0.59, 0.67) 0.59 (0.49, 0.74) 0.65 (0.64, 0.67) 0.67 (0.00, 0.71) 0.86 (0.81, 0.89)

# Total N = number evaluable at week 4 and with no protocol violations. AUC = area under the curve. CV-AUC = 10-fold cross validation AUC

https://doi.org/10.1371/journal.pone.0295814.t001
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models in comparison to the BLR models on baseline total Mayo score of 11 or more, haemo-

globin of 10 g/dL or more, rectal biopsy eosinophil peak count, rectal biopsy surface villform

changes and week 4 remission. AUCs between the BLR, BART (S2 Table) and FLR models

were similar with narrower interval estimates for the first two models. The FLR models had

slightly larger cross-validated AUCs but wider interval estimates than the BLR models, which

in turn had marginal advantages on cross-validated AUCs than the BART models. These mod-

els generated similar results of sensitivity, specificity, PPV and NPV.

For week 52 CS-free remission with all patients, PUCAI score of less than 45, baseline hae-

moglobin concentration of 10 g/dL or higher plus week 4 remission were associated with week

52 CS-free remission (n = 386; Table 3). The BLR model had moderate diagnostic test power,

with an AUC of 0.69 (95% CI 0.68–0.70), a cross-validated AUC of 0.68 (0.66–0.71), and speci-

ficity of 82% (95% CI 0.61–0.86). The BART model showed similar prediction results with an

AUC of 0.69 (95% CI 0.67–0.70), a cross-validated AUC of 0.68 (0.62–0.72), and specificity of

83% (95% CI 61–88) (S3 Table). There was underestimation of effect estimates in the FLR

models in comparison to the BLR models on haemoglobin and week 4 remission (S7 Table).

The FLR model had similar prediction accuracy. The BLR and FLR model shared similar effect

estimates and interval estimates for biological data on antimicrobial peptide gene signature

Fig 1. Partial dependent plot for albumin with 95% credible intervals in the BART model of week 4 remission for

all patients. The plot summarizes the marginal effect of albumin on the response (probit of the probability estimate)

using the posterior median, lower quantile, and upper quantile.

https://doi.org/10.1371/journal.pone.0295814.g001
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and the relative abundance of Ruminococcaceae and Sutterella organisms. The addition of bio-

logical data to the clinical model improved the diagnostic test power of the BLR model, with

an ELPD 6.2 (SE 4.1), an AUC of 0.75 (95% CI 0.72–0.76), a cross-validated AUC of 0.73 (95%

CI 0.63–0.81), and specificity of 78% (95% CI 65–91) in the subset with biological data. Similar

conclusions hold for the BART model with an ELPD 4.4 (SE 3.6), an AUC of 0.76 (95% CI

0.72–0.79), a cross-validated AUC of 0.69 (95% CI 0.53–0.83), and specificity of 79% (95% CI

65–93). Model accuracy of the BLR and BART models was comparable or better than the FLR

models, which obtained the smallest specificity 0.6 (95% CI 0.24–0.96) for patients with biolog-

ical data in the clinical model. Similarly, the addition of biological data to the clinical model

improved the diagnostic test power of the FLR model (p = 0.00038).

For patients with moderate-to-severe disease escalated to anti-TNFα therapy by week 52,

predictive risk factors included a baseline total Mayo score of 11 or higher. High eosinophil

count in rectal biopsy samples, high serum 25(OH)D concentration, haemoglobin

Table 2. Bayesian multivariable logistic regression models of week 12 outcomes by treatment type.

CS-Free Remission, all

patients

CS-Free Remission by Initial Treatment Additional Therapy/

Colectomy

Odds Ratio (95% CI) Total (N = 409)# 5-ASA

(N = 129)

Oral CS

(N = 139)

IV CS

(N = 141)

IV CS only (N = 141)

p-value

Model sample size (% of total N) n = 403 (99%) n = 116 (90%) n = 139 (100%) n = 119 (84%) n = 119 (84%)

Number of events (% of model n) 140 (35%) 57 (49%) 47 (34%) 26 (22%) 42 (35%)

Baseline predictors:

Lower PUCAI PUCAI <35: - PUCAI < 45: - -
2.43 (1.41, 4.27) 4.50 (1.86, 10.96)

Total Mayo score�11 - - - - 2.69 (0.98, 7.81)

Higher albumin per 1g/dL increase (interaction

with age)

For Age < 12: - - - -

3.56 (1.84, 7.48)

For Age� 12:

1.22 (0.79, 1.82)

Hemoglobin�12 g/dL - 2.22 (0.98, 5.16) - - -

Rectal biopsy eosinophil peak count�32/hpf - - - - 4.79 (1.72, 13.98)

Rectal biopsy surface villiform changes - - - No changes: Changes:

2.76 (1.04,

8.29)

3.20 (1.14, 9.35)

Week 4 Remission 6.37 (3.90, 10.64) 3.79 (1.71, 8.63) 8.35 (3.43, 23.71) 7.67 (2.87,

23.53)

No Remission:

34.47 (8.65, 217.76)

Model evaluation

AUC 0.78 (0.77, 0.79) 0.70 (0.63, 0.70) 0.78 (0.76, 0.78) 0.77 (0.74,

0.77)

0.88 (0.86, 0.89)

CV-AUC 0.78 (0.73, 0.81) 0.68 (0.55, 0.72) 0.77 (0.74, 0.80) 0.76 (0.58,

0.80)

0.87 (0.80, 0.91)

Sensitivity 0.46 (0.37, 0.65) 0.65 (0.54, 0.74) 0.43 (0.40, 0.85) 0.33 (0.00,

0.62)

0.75 (0.57, 0.86)

Specificity 0.87 (0.74, 0.91) 0.66 (0.47, 0.76) 0.91 (0.58, 0.93) 0.92 (0.86,

1.00)

0.86 (0.74, 0.94)

Positive predictive value 0.66 (0.57, 0.70) 0.65 (0.58, 0.69) 0.74 (0.51, 0.76) 0.29 (0.00,

0.55)

0.76 (0.64, 0.84)

Negative predictive value 0.75 (0.73, 0.80) 0.67 (0.63, 0.69) 0.76 (0.75, 0.88) 0.84 (0.78,

0.89)

0.86 (0.79, 0.91)

#N is the number evaluable at week 12 and with no protocol violations. AUC = area under the curve. CV-AUC = 10-fold cross validation AUC.

https://doi.org/10.1371/journal.pone.0295814.t002

PLOS ONE A comparison of prediction of response

PLOS ONE | https://doi.org/10.1371/journal.pone.0295814 March 6, 2024 8 / 13

https://doi.org/10.1371/journal.pone.0295814.t002
https://doi.org/10.1371/journal.pone.0295814


concentration of greater than or equal to 10 g/dL, and remission by week 4 were also associated

with a lack of escalaton to anti-TNFα (n = 232; Table 4). The BLR model had good diagnostic

test power, with an AUC of 0.78 (95% CI 0.76–0.80), a cross-validated AUC of 0.76 (0.68–

0.84), sensitivity of 60% (95% CI 51–68), and specificity of 84% (95% CI 74–91). The BART

model had a close prediction accuracy, with an AUC of 0.78 (95% CI 0.76–0.80), a cross-vali-

dated AUC of 0.75 (0.64–0.84), sensitivity of 0.59% (95% CI 0.49–0.68), and specificity of 85%

(95% CI 75–93) (S4 Table). The addition of biological data on transport and antimicrobial

gene signature and the abundance of an Oscillospira species to the BLR model improved the

model prediction with an ELPD of 7.7 (SE 4.8), an AUC of 0.86 (95% CI 0.84–0.88), a cross-

validated AUC of 0.84 (0.75–0.92), sensitivity of 69% (95% CI 59–80), and specificity of 84%

(95% CI 76–92) in the subset with biological data (n = 118; Table 4). Similarly, the addition of

biological data to the BART model improved the model prediction with an ELPD of 9.0 (SE

3.7), an AUC of 0.88 (95% CI 0.84–0.90), a cross-validated AUC of 0.82 (0.68–0.95), sensitivity

of 69% (95% CI 54–83), and specificity of 86% (95% CI 76–94) in the subset with biological

data (S4 Table). The effect estimates in the FLR and BLR model were similar except for a base-

line total Mayo score of 11 or more for which the odds ratio was 4.30 (95% CI 2.18–8.48) com-

pared to 4.48 (95% CI 2.27–9.01) for all patients in the clinical model (n = 232; S8 Table). The

FLR models had comparable prediction accuracy compared to the BLR and BART models but

with much wider interval estimates of AUC. Finally, the addition of biological data to the FLR

model also improved the model prediction (p< 0.00004).

Discussion

In this study, the comparison of Bayesian and frequentist approaches revealed no significant

difference in the predictive performance for clinical outcomes in pediatric UC patients.

Table 3. Bayesian multivariable logistic regression models of week 52 corticosteroid-free remission in the per-protocol population.

All patients in clinical model Patients with biological data

(n = 386; 147 [38%] events) (n = 177; 69 [39%] events)

Clinical model Clinical and biological model

Baseline predictors

PUCAI score <45 1.80 (1.20, 2.90) - -

Haemoglobin �10 g/dL (without week 4 remission) 5 (1.8, 17) 7.3 (1.8, 42) 6.34 (1.44, 38.82)

Week 4 remission 11.20 (4.10, 37.00) 16.7 (4.3, 93) 17.25 (4.16, 101.17)

Antimicrobial peptide gene signature - - 0.55 (0.38, 0.80)

Ruminococcaceae (560535) OTU log relative abundance - - 1.45 (1.04, 2.07)

Sutterella (589923) OTU log relative abundance - - 0.80 (0.64, 0.99)

Model evaluation

AUC 0.69 (0.68, 0.70) 0.68 (0.68, 0.68) 0.75 (0.72, 0.76)

CV-AUC 0.68 (0.66, 0.71) 0.67 (0.58, 0.68) 0.73 (0.63, 0.81)

Sensitivity 0.38 (0.33, 0.67) 0.48 (0.00, 0.70) 0.51 (0.35, 0.65)

Specificity 0.82 (0.61, 0.86) 0.72 (0.60, 1.00) 0.78 (0.65, 0.91)

Positive predictive value 0.57 (0.52, 0.60) 0.37 (0.00, 0.53) 0.61 (0.53, 0.72)

Negative predictive value 0.69 (0.68, 0.75) 0.71 (0.61, 0.76) 0.72 (0.68, 0.75)

Clinical plus biological model vs clinical model§

Comparison of ELPD with SE 6.2 (4.1)

AUC = area under the curve. CV-AUC = 10-fold cross validation. §Comparison of the clinical plus biological model with clinical model in the subset of patients with

biological data.

https://doi.org/10.1371/journal.pone.0295814.t003
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Bayesian advantages include the ability to directly estimate uncertainty, formally incorporate

prior probabilities, and be applied with small sample sizes. Conversely, frequentist strengths lie

in interpreting probabilities based on long-term event frequency and greater reliability with

large samples. While the performance between Bayesian and frequentist models is similar, the

interpretation of results differs. For example, credible intervals, unlike confidence intervals,

offer more intuitiveness. Bayesian statistics permit direct parameter estimation, allowing for

model comparison. While the BLR and BART models had narrower credible intervals of AUC

than the FLR models, the corresponding CIs for cross-validated AUC didn’t show the advan-

tage. The CIs for the FLR models were derived from large sample theory to avoid very expen-

sive computations. In a simulation study with sample size n = 500, for 95% confidence

intervals, the coverage probability was 0.909, below the expected value of 0.95 [15]. In smaller

samples as in this study, the coverage probability is expected to be inferior to the nominal level

0.95. In other words, the reported CIs of cross-validated AUC for the FLR models might be

narrower than expected.

Predictive modeling can be improved. To predict week 4 CS-free remission for patients

with initial treatment intravenous corticosteroids, baseline total Mayo score itself was not

strong enough to accurately predict the outcome in the BLR, BART and FLR model, with wide

ranges of sensitivity, specificity, PPV and NPV. To predict week 12 CS-free remission with ini-

tial treatment intravenous corticosteroids, all three models with baseline total Mayo score, rec-

tal biopsy surface villiform changes and week 4 remission had poor sensitivity and PPV with

lower end of interval estimates 0% while substantially higher specificity and NPV. Sensitivity

and PPV can be improved by decreasing the prespecified classification cut-off point of 0.5.

It can be interesting to compare the results of the FLR models in S5–S8 Tables with pub-

lished work, S9 Table and Table 4 in [8], Tables 3 and 4 in [9], respectively. While the effect

estimation is similar, the model performance can be quite different with respect to variability

Table 4. Bayesian multivariable logistic regression models of escalation to anti-TNFα therapy by week 52 for patients with moderate-to-severe disease.

All patients in clinical model Patients with biological data

(n = 386; 147 [38%] events) (n = 177; 69 [39%] events)

Clinical model Clinical and biological model

Baseline predictors

PUCAI score <45 1.80 (1.20, 2.90) - -

Haemoglobin �10 g/dL (without week 4 remission) 5 (1.8, 17) 7.3 (1.8, 42) 6.34 (1.44, 38.82)

Week 4 remission 11.20 (4.10, 37.00) 16.7 (4.3, 93) 17.25 (4.16, 101.17)

Antimicrobial peptide gene signature - - 0.55 (0.38, 0.80)

Ruminococcaceae (560535) OTU log relative abundance - - 1.45 (1.04, 2.07)

Sutterella (589923) OTU log relative abundance - - 0.80 (0.64, 0.99)

Model evaluation

AUC 0.69 (0.68, 0.70) 0.68 (0.68, 0.68) 0.75 (0.72, 0.76)

CV-AUC 0.68 (0.66, 0.71) 0.67 (0.58, 0.68) 0.73 (0.63, 0.81)

Sensitivity 0.38 (0.33, 0.67) 0.48 (0.00, 0.70) 0.51 (0.35, 0.65)

Specificity 0.82 (0.61, 0.86) 0.72 (0.60, 1.00) 0.78 (0.65, 0.91)

Positive predictive value 0.57 (0.52, 0.60) 0.37 (0.00, 0.53) 0.61 (0.53, 0.72)

Negative predictive value 0.69 (0.68, 0.75) 0.71 (0.61, 0.76) 0.72 (0.68, 0.75)

Clinical plus biological model vs clinical model§

Comparison of ELPD with SE 6.2 (4.1)

AUC = area under the curve. CV-AUC = 10-fold cross validation. §Comparison of the clinical plus biological model with clinical model in the subset of patients with

biological data.

https://doi.org/10.1371/journal.pone.0295814.t004
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and confidence intervals. The variability of a model performance metric such as sensitivity can

be estimated based on the asymptotic theory once a model is fixed. The bootstrap procedure in

this article, however, perhaps more accurately captures the uncertainty of the modeling since a

metric was repeatedly evaluated for logistic regression models with replicated bootstrapped

samples. For the late outcomes, multiple imputation could contribute to different results as

well. To impute missing data, the default method in SAS was discriminant function for binary

variables and linear regression for continuous variables [9]. In R, we chose the default method

logistic regression and predictive mean matching, respectively. In addition, multiple imputa-

tion is a random process, which could provide different numerical results even with the same

imputation method. Utilizing different methods for the same dataset is an important interval

validation since data analysis inference such as FLR typically relies on theoretical assumptions,

which may fail to hold in practice. With prediction accuracy metrics including sensitivity,

specificity, PPV and NPV, we found that even with the same FLR, confidence intervals can

vary substantially depending on how to estimate variability.

One limitation of our study is the absence of a variable selection comparison between

Bayesian and frequentist methods. Variable selection is crucial in modern data analysis. While

our study focused on pre-selected risk factors, providing a straightforward interpretation of

effect estimates for BLR and FLR models, a systematic comparison is a potential avenue for

future research.

Conclusion

To conclude, this is the first study comparing BLR, BART and FLR models for a large pediatric

cohort with UC. Our study shows that, BLR and BART can be alternative approaches in devel-

oping prognostic models in pediatric UC. The BLR models have similar effect estimation com-

pared to the FLR models. The statistically significant associations between the risk factors and

early or late outcomes are consistent between all BLR and FLR models. The BLR and BART

have similar prediction accuracy and more accurate credible intervals of AUC than the corre-

sponding confidence intervals from the FLR models. Furthermore, the nonlinear nonparamet-

ric effect estimate from the BART models can provide more realistic clinical interpretations.

The original report (PROTECT study) had already demonstrated predictive factors associated

with week 52 corticosteroid-free remission and other outcomes. This manuscript reaffirms

that the test characteristics of the different models are like those presented in the original

report. However, in terms of clinical utility and interpretation, the models are presented using

a Bayesian approach.
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