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ABSTRACT: Ovarian cancer, more precisely high-grade serous ovarian cancer, is one of the most lethal age-

independent gynecologic malignancies in women worldwide, regardless of age. There is mounting evidence that 

there is a link between telomeres and the RIF1 protein and the proliferation of cancer cells. Telomeres are 

hexameric (TTAGGG) tandem repeats at the tip of chromosomes that shorten as somatic cells divide, limiting 

cell proliferation and serving as an important barrier in preventing cancer. RIF1 (Replication Time Regulation 

Factor 1) plays, among other factors, an important role in the regulation of telomere length. Interestingly, RIF1 

appears to influence the DNA double-strand break (DSB) repair pathway. However, detailed knowledge 

regarding the interplay between RIF1 and telomeres and their degree of engagement in epithelial ovarian cancer 

(EOC) is still elusive, despite the fact that such knowledge could be of relevance in clinical practice to find novel 

biomarkers. In this review, we provide an update of recent literature to elucidate the relation between telomere 

biology and the RIF1 protein during the development of ovarian cancer in women. 
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Introduction 

Owing to its prevalence, neoplasia of the ovary is one of 

the most common gynecologic, age-independent 

pathologies in women worldwide [1]. More precisely, a 

large number of women suffer from epithelial ovarian 

cancer (EOC), which is estimated to have the lowest 

survival rate [2]. Although the search for new therapeutic 

strategies has yielded reliable results, the overall 

prognosis and survival rate for patients with EOC remains 

poor [3]. The survival rate of women with ovarian tumors 

depends, among other things, on the stage of the tumor 

(Fig. 1), i.e., the higher the stage, the lower the chance of 

survival. Therefore, elucidating the molecular 

mechanisms of EOC tumorigenesis and progression is a 

prerequisite for exploring new therapeutic targets and 

treating the occurrence of ovarian cancer in women. In 

this context, telomeres and the RIF1 protein could be very 

important players. Telomeres are hexameric (TTAGGG) 

tandem repeats at the tip of chromosomes that shorten as 

somatic cells divide, limiting cell proliferation, and 

serving as an important barrier in preventing cancer [4]. 

Moreover, there is the shelterin complex at the telomeric 

region and the enzyme telomerase, which consists of two 

components, the RNA template (TERC), and the catalytic 

subunit, the telomerase reverse transcriptase (TERT) [5]. 

Among other species, the human TERT (hTERT) is 

responsible for telomerase activity, and therefore, for 

transcription, too. Interestingly, hTERT is upregulated in 

most ovarian tumors [6] and has been shown to be a 

central regulator of many cancer traits, like proliferation, 

survival, and characteristics of cancer stem cells [7-9]. 

Noteworthy, EOC stem cells do reflect these latter-
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mentioned properties, too [10-12]. Although hTERT 

appears to be a reliable biomarker and therapeutic target 

for EOCs, its relevance in neoplastic cells remains 

elusive. Numerous cancer types show typical 

maintenance of telomere length in their cells since among 

other mechanisms the catalytic subunit is responsible for 

adding the hexameric sequence [13]. It is interesting 

though that the Replication Time Regulation Factor 1 

(RIF1) binds directly to the promoter for hTERT enabling 

its expression, and in consequence, it plays an essential 

role in the regulation of telomere length [14].  Besides, 

RIF1 impacts the selection of DNA double-strand break 

(DSB) repair pathway and the regulation of replication 

timing [15-18], and is highly expressed in mouse 

embryonic stem cells, too [19-21]. Upregulation of RIF1 

in breast cancer tissues has been reported and the 

knockdown of RIF1 reduced cell growth and increased 

susceptibility of uterine cervical cancer cells to cisplatin 

[22-23]. However, the specific role of RIF1 in EOC needs 

further elucidation.  

In this review, we aim to shed light on the importance 

of the relationship between telomere biology and the RIF1 

protein during cancerogenesis, especially during the 

development of ovarian cancer in women. Moreover, we 

intend to answer the question of whether TERT or RIF1 

could be established as new biomarkers for the early 

detection of ovarian cancer regardless of the patient’s age. 

 

 
Figure 1. Scheme showing the different stages of ovarian cancer and their characteristics with regard to localisation and 

expansion in regard to their potential chance of survival. 

The relationship between Rif1 and telomeres in 

ovarian cancer 

 

Telomere shortening reflects a so-called mitotic clock in 

somatic cells since by every cell division and with 

advancing age, the chromosome’s tip gets shorter and 

therefore not only determines the life span of somatic cells 

but also serves as an intrinsic barrier for oncogenic 

transformation [24]. The latter-mentioned physiologic 

event is enabled due to specific pathways, such as the 

amplification of the gene encoding for TERT [25], the 

influence on transcriptional activators of TERT [26], and 

the cytosine methylation at CpG islands close to the TERT 

promoter [27]. Telomere length in specific cancer can be 

maintained via a telomerase-independent pathway, 

meaning an alternative elongation of telomeres [28], 

based on homologous recombination [29]. As previously 

mentioned, an elevated expression of hTERT and 

therefore, its positive effect on telomere length is crucial 

for the process of tumour development. Previous 

investigations provided evidence that a plausible reason 

for this elevated transcription is mutations at the promoter 

of hTERT [30, 31]. In the study of Wu and co-workers 

[30] the before-mentioned mutations were described in 

15.9% of patients suffering from clear cell carcinomas of 

the ovary. Worth mentioning that the mutation of the 

hTERT promoter seems not to be present at the beginning 

of oncogenesis and appears to be linked with the lack or 
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downregulation of ARID1A, a tumour suppressor gene, in 

ovarian clear cell carcinomas (OCC) [30]. Previous 

research provided evidence that the mutations are 

positioned at two loci [32,33]. Based on other studies and 

the study of Wu et al. [30] it appears that the pathogenetic 

mechanisms between OCC and ovarian endometrioid 

carcinoma are divergent. Other studies have also 

confirmed among others the mutation of the gene 

encoding for ARID1A mutation as an property during the 

early onset of OCC development but does also occur in 

endometriotic cysts [34,35].  Additionally, genome-wide 

analysis has also confirmed that ARID1A mutations have 

been detected in ovarian clear cell carcinomas [36,37]. 

According to the so-called telomere crisis theory, which 

is relevant for tumourigenesis, the accumulated telomere 

attritions cause senescence and/or harmful genomic 

instability [38].  

As a logical consequence, precancer cells aim to 

escape from the latter-mentioned telomere crisis to 

survive, and during the phase of telomere crisis, only 

those cells with adequate maintenance of telomere length 

will progress due to the selection pressure [30]. However, 

the data about TERT promoter mutations in the 

gynecological tract are rare [39,40]. Interestingly, it has 

been revealed that in patients diagnosed with OCC (FIGO 

stages I and II), mutation of the TERT promoter appeared 

to be an independent prognostic factor in combination 

with significantly shorter overall survival. Besides, in 

patients with recurrent OCC (early FIGO stage), mutation 

of the TERT promoter was significantly correlated with a 

relapse within six months [41]. 

 

 
 

Figure 2. Scheme showing directed Rif1-DNA interactions required to prevent telomerase and inadvertent activation of 

checkpoints at chromosome ends. In the event of a double strand break, the Rif1 seals the broken ends and opens access to tip 

resection machinery. As a result, the double-strand breaks ends are stabilized, promoting their retrocession by non-homologous end-

joining (NHEJ). 

Relevance of RIF1 in cancerogenesis and different 

cancer types 

As previously mentioned, understanding the mechanisms 

and regulators controlling cancerogenesis has become a 

priority for specialists worldwide. Given that Rif1 is 

involved in telomeric regulation (Fig. 2), the search for its 

role in tumorigenesis has begun. In one study, it was 

shown that as telomere length decreases, the amount of 

free Rif1 increases due to the loss of its specific 

association with Rap1 and thus association with telomere 

ends. The abnormally increased amount of free Rif1 

promotes tumourigenesis due to its impact on genomic 

instability and rearrangement of the chromosomes [42].  

Furthermore, Rif1 may act as an anti-checkpoint shield in 

repairing defective double-strand breaks (DSB) of DNA 

in breast cancer, and inhibition of its expression sensitizes 

cancer cells to drugs [42,43]. A direct mechanism in 

which Rif1 promotes tumour growth has also been 

revealed. In human er EOC cells, there is a close 

interaction between Rif1 and hTERT. As it turns out, Rif1 

binds directly to the promoter for hTERT allowing its 

expression, while Rif1 knockout inhibited ovarian tumour 

growth [42-44]. Furthermore, Rif1 knockout inhibits EOC 

cell migration and markers of the epithelial-mesenchymal 

transition leading to apoptosis and G2 cell cycle arrest of 

EOC cells [43]. Interestingly, also in EOC, Rif1 gene 

knockout sensitized its cells to drugs (cisplatin) and also 

platinum-based chemotherapy through inhibition of NER 

proteins in cancer cells [44]. A positive correlation 

between Rif1 and lung carcinoma cells was detected in 

another study. Importantly, a significant correlation was 

found between Rif1 and the regulators of proliferation 

signalling and maintenance of cancer stem cell 

characteristics, Wnt/β-catenin. As in previous studies, 

inhibition of Rif1 expression limited tumour growth, 



 Kordowitzki P., et al.                                                          Interaction between Rif1 and telomeres in ovarian cancer

   

Aging and Disease • Volume 15, Number 2, April 2024                                                                              538 

 

while its overexpression promoted tumour growth 

through activation of the PP1-AXIN trail resulting in 

induction of Wnt/β-catenin pathways [45]. Research into 

the function of Rif1 in tumourigenesis has yielded new 

solutions and alternative treatment pathways for various 

tumour types. Solutions based on inhibition of the 

expression of this protein have proven beneficial in the 

negative regulation of tumour growth through the Rif1-

hTERT or Rif1-PP1/AXIN- Wnt/β-catenin interaction 

pathways, and it is therefore believed that further research 

into Rif1 in tumorgenesis may provide many effective 

solutions for cancer therapy [45]. 

 

Crosstalk between Rif1 and telomeres in other cells 

Although Rif1 is conserved in cells from yeast to humans, 

the way it binds in organisms differs by interacting with 

different binding fractions. In budding yeast cells 

(Sacharomyces Cervisae - scRif1), the connection of the 

Rif1 protein with the respective domain on its C-terminal 

is mediated by Rap1 [46]. A second Rif2 protein is 

attached to this complement, containing two binding sites 

on Rap1 which together form a complex involved in 

telomere end protection. As it turns out, the N-terminal 

domain of scRif1 allows direct attachment to telomere 

ends. This connection is made possible by the unique 

shape of the N-terminal domain which adopts the contour 

of a shepherd's stick [46,47]. Further studies have shown 

that this region forms a conserved HEAT domain that is 

also responsible for dimerisation of scRif1 structures [47]. 

While Rif1 in budding yeast (Sacharomyces pombe - 

spRif1) is also involved in telomere-end protection, its 

mode of binding is somewhat different. Although the rap1 

protein has been shown to be present, the main binding 

protein for the connection between the telomere end and 

spRif1 is Taz1 [48]. In the methylotrophic yeast Rif1 

(Hansenula polymorpha hpRif1), it has also been shown 

to bind to Rap1, but this is not the main mechanism 

recruiting this hpRif1. Firstly, the hpRap1 protein has two 

fractions, hpRap1A and hpRap1B of which the first has 

no binding sites on telomeres and is associated rather with 

subtelomeric regions while the latter is responsible for 

telomere binding to dsDNA [49]. Secondly, the same 

authors suggest that hpRif1 binding to the hpRap1B 

domain is mainly responsible for recombination and not 

telomere length [49]. Subsequent studies have shown that 

Rif1 interacts with the Cdc13 complex, which in turn 

obtains an association with Stn1 similar to that in S. 

Cervisae [50]. Finally, it has been shown that the main 

hpRif1 binding fraction is the Ku80 heterodimer, which is 

able to bind telomere ends via Stn1 [51]. Although in 

mammals, including humans, the presence and ability of 

Rap1 protein to bind to telomere ends via the TRF1-TRF2 

complex has been demonstrated, so its interaction with 

hRif1 at this site has not been reported [46]. This is 

primarily related to the distinct function of hRif1, where 

it is involved in DNA damage repair mechanisms via 

crosstalk with 53BP1 by protecting non-homologous 

DNA ends [46]. Furthermore, in mouse Rif1 (muRif1) a 

compact structure can be formed which is able to bind 

several DNA G-quadruplexes (G-4 DNA) [52]. In turn, G-

4DNA has been shown to be involved in binding to the 

telomere-binding factor (TRF) in humans [53], therefore, 

researchers point to a high role for G-4 DNA in telomere 

end protection [54]. The situation is different when it 

comes to the genome of cells of the genus Drosophila. The 

mechanism of telomere-end protection is based on the 

action of retrotransposons [55], and not telomerase as in 

most organisms known to date, hence binding complexes 

such as Rap1, Taz1 or TRF are not present in the 

telomere-end region. Although the presence of the 

binding factor Rif1 has been demonstrated, the knowledge 

of the main location of dRif1 is incompletely understood. 

Studies indicate that dRif1 is associated with the three 

most commonly described functions of this protein, 

namely control of replication time, being its main 

inhibitor through interaction with protein phosphatase and 

S-phase kinases [56,57]. Interestingly, studies have shown 

dRif1 does not localize to telomeres obtained from yeast 

while the hRif1 homologue is capable of this interaction, 

suggesting that it retains the ability to bind telomere ends 

[58]. The above data show that Rif1 orthologues exist 

from yeast to humans, but their localisation and binding 

factors are different. In addition, not all Rif1 orthologues 

retained the ability to bind telomeres which translates into 

their later functions, so understanding these orthologues 

turns out to be crucial for understanding the activity and 

localisation of this regulator. 

 

Rif1 functions in different species 

Since the regulatory protein Rif1 was first discovered in 

budding yeast cells, interest in its function in relation to 

telomere end protection has increased significantly. 

Thanks to the binding factor scRif1, it is possible for it to 

bind at telomere ends and participate in telomere 

protection through the Rif1 recruitment factor – Rap1 

[13]. The same function is attributed to spRif1 as well as 

hpRif1 but, as previously mentioned, binding takes place 

using other linking fractions [48,51]. A study using PAL 

cells, i.e. model yeast organisms lacking telomerase 

function and telomerase capacity, showed that the 

concentration of Rif1 at an appropriate, constant level 

enabled telomere ends to be protected from spontaneous 

senescence. Moreover, while Rif1 was overexpressed the 

initiation of cell ageing and also the accumulation of DNA 

DSBs occurred [42]. When one of the complexes required 

for telomere capping is lost, scRif1 takes over as the major 
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regulator of telomere function which only points to its 

critical role in telomere end protection [59,60]. However, 

despite its well-defined role in regulating telomere 

elongation, one study determining the effect of scRif1 

telomere gene mutations on telomere origins firing 

showed that it was not associated with telomere length 

regulation suggesting that, despite origin gene mutations, 

the main function of scRif1 was still active [61]. In 

addition, much attention is focused on the degree of 

phosphorylation of the SCD domain of scRif1 since, 

according to the authors, it can positively as well as 

negatively regulate telomere length. One of the 

phosphorylation sites is Tel1, which is a homologue of the 

human ATM kinase. Synthetic telomeres lacking this 

kinase showed an increase in length, but there was no 

significant effect on chromosomal telomeres. The authors 

indicate that mutation of both the Tel1 fraction on the 

SCD domain and other telomeric DNA binding proteins 

could be used to study other functions of scRif1 in DNA 

repair and replication [62] was confirmed by one of the 

most recent studies analyzing mutation of the Rif1 gene 

and Tel1 simultaneously [63].  This situation is prevented 

due to its close crosstalk with protein phosphatase 1(PP1), 

for the reason that by recruiting PP1 to scRif1, telomerase, 

in general, Tel1 effectively suppresses telomere end 

repeat elongation [64]. In addition to telomere end 

protection, Rif1 has been shown to be intimately involved 

in the process of non-homologous DNA end joining 

(NHEJ) taking part in DNA repair [47], which has also 

been demonstrated in mammalian cells where it is 

indicated that this is one of the main mechanisms 

regulated by hRif1, without showing a direct effect on 

telomere end protection [65]. The accumulation of scRif1 

itself at DSB sites is made possible by the S-acylation of 

the N-terminal domain of scRif1 through the palmityl 

acyltransferase complex pfa4 [66]. In addition, scRif1 acts 

as a checkpoint inhibitor by inhibiting DNA damage 

response. This prevents mutation of certain DNA end-

strand genes and excessive telomere shortening, which 

would lead to cell death [60,67]. Ortholog of Rif1 in 

another yeast species Candida Glabrata did not exhibit 

telomere-protective functions while it was involved in 

subtelomeric DNA silencing [68]. 

It is also worth focusing on the role of mammalian 

mRif1 because, as previously mentioned, it does not bind 

directly on telomeres preventing the positive or negative 

effects of restriction enzymes. Instead, a very interesting 

correlation between the ZSCAN4 gene of embryonic stem 

cells (ECSs) and Rif1 was indicated. The latter-mentioned 

gene encodes for a specific protein that is responsible for 

the recombination-dependent telomere elongation 

mechanism and is required for normal, balanced cell 

growth [69]. In addition, the recombination-dependent 

telomere elongation mechanism through ZSCAN4 acts 

autonomously from the other mechanism regulated by 

telomerase. This seems to be confirmed by a study 

conducted on mouse embryonic cells and human ALT 

tumour cells during telomerase-encoding gene knockout. 

It was shown that the protein which is mainly involved in 

the overriding function of telomere homeostasis was 

encoded by ZSCAN4 [70]. It was indicated that the hRif1 

protein may be involved in limiting its overexpression, 

through a mechanism of subtelomeric silencing of 

ZSCAN4 thus leading to genomic stability of ECSs [71]. 

The regulatory mechanism is based on a specific 

interaction at the promoter of the ZSCAN4 gene 

combining with histone H3K9 methyltransferases leading 

to subtelomeric silencing [21,71]. In the same study, 

knockout of hRif1 was performed in ECSs cells leading 

to telomere hypercombination, elongation, and 

heterogeneity. Furthermore, knockout of both the gene 

encoding hRif1 and ZSCAN4 partially rescued defective 

embryogenesis by protecting telomere recombination 

phenotypes [21], thus indicating a key role for hRif1 in an 

indirect mechanism of telomere protection. 

The above data report that Rif1 protein homologues 

in cells from yeast to humans play a very important role 

in maintaining genetic stability, being one of the critical 

regulators of telomere biology. However, the growing 

interest in this protein over the past few years has led 

scientists to search for further important functions of Rif1 

given its highly conserved nature. Among others, it has 

been pointed out that it prevents too early activation of the 

onset of replication [72], DNA double-strand breaks 

repairs [73], or maintains genomic stability in mouse 

embryonic cells [74]. 

 

Rif1 and tumor microenvironment in ovarian cancer 

The cancer microenvironment is considered to be not only 

involving the transformation of tumor cells themselves, 

but also interactions between them and non-cancerous 

cells, as well as the conditions around the tumor cells. One 

of the most commonly mentioned facts in this regard is 

the poor oxygen availability in the tumor micro-

environment leading to intense, disorganized 

angiogenesis within the tumor. This induction depends on 

a heterodimer formed of hypoxia-inducible factors HIF-α 

and HIF-β which, under hypoxic conditions, migrate to 

the cell nucleus to induce VEGF and stimulate 

angiogenesis [75,76]. As a result of the developing 

hypoxia, cells reprogram the way they obtain energy from 

oxidative phosphorylation to anaerobic glycolysis. For 

this reason, there is an accumulation of lactic acid in the 

tumor microenvironment causing a drop in pH below 6.8. 

The acidified environment inhibits the response from the 

immune system and promotes malignancy and metastasis 

of tumor cells [77]. In addition, acidic pH influences 
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tumor metabolic remodeling, which in consequence 

impacts tumor cell growth due to the reorganization of 

metabolic pathways [78]. Interactions between tumor 

cells and other cell types have been reported [79], for 

instance, ovarian cancer cells which program the cellular 

targets of tumor stroma fibroblasts to maximize glutamine 

anabolism positively affecting tumor metabolism and 

infiltrative growth [80]. The lipid chaperone protein 

FABP4 of ovarian cancer cells enables growth, 

development and enhances metastasis in a lipid-rich 

environment, leading to intense proteo-metabolic changes 

manifested by intensification of lipid metabolism [81]. It 

seems that, in addition to intercellular interactions, the 

correlation between tumor cell organelles also exerts an 

influence on the corresponding adaptation relative to the 

tumor microenvironment. Thus, as a source of 

metabolism and energy acquisition, it is the mitochondria 

of tumor cells and their interactions mainly with the cell 

nucleus that enable adaptation to various conditions 

including oxidative or starvation stress [82,83]. The latter 

arises as a result of a nutrient-deprived condition thus 

activating modified energy acquisition pathways (Fig. 3), 

in addition to the natural derivation of pyruvate by 

glycolysis, including through the activation of adenosine 

monophosphate-activated protein kinase (AMPK) as a 

result of a deficiency in intracellular glucose 

concentration [84], which are then involved in the 

production of acetyl-coenzyme A. Branched-chain amino 

acids (BCAAS) are also involved as a result of nutritional 

deficiencies, which, in addition to being incorporated into 

the tricarboxylic acid cycle (TCAc), also contribute to 

glutamine synthesis [80]. Correlations and information 

exchanges in the tumor microenvironment promote tumor 

aggression and infiltrative growth, but there are some 

pathways for cancerogenesis suppression induced by 

cellular stress. As critical regulators, it considers the p53 

factor and p16ink4A which, upon DNA damage, telomere 

erosion, oncogene hyperactivation and inactivation of 

onco-suppressors, induce a program of cellular 

senescence and later cell necrosis to prevent neoplastic 

transformation (Fig. 4). On the other hand, despite the 

inhibition of proliferation of these cells, their metabolic 

activity is still active, and the released biomolecules can 

induce chronic inflammation and predispose to a pro-

cancer microenvironment [85].  

 
Figure 3. Scheme showing the cancer cell metabolism in nutrient replete and nutrient deprived conditions. (A) Cancer cell 

metabolism in nutrient-replete conditions, (B) Cancer cell metabolism in nutrient-deprived conditions. 

The above data show that there are a number of 

endogenous factors that promote tumor cell aggression 

and proliferation. The tumor microenvironment, 

intercellular, and inter-organelle interactions induce 

mechanisms of tumor survival and malignancy. 

Therefore, in the context of combating carcinogenesis, 

targeted therapy on the pathways of inhibition of the 

above interactions seems to be most beneficial which has 
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already been documented in many studies [86,87], There 

are also defense pathways on the part of the organism, 

including through regulators of p53 and p16ink4A, 

however, it needs to be determined under what conditions 

cellular senescence produces positive and under what 

conditions negative effects. 

 
 

Figure 4. Scheme showing the pathway of cell stress inducing cellular senescence.  

Conclusions and potential clinical implications 

In summary, there are many regulatory proteins that 

maintain genomic stability. However, some of them are 

critical for cell survival. Rif1 protein, as a highly 

conserved protein in cells from yeast to humans, 

unsurprisingly has very similar functions, but using 

different mechanisms to achieve its target. Nevertheless, 

it can be pointed out that Rif1 is an overarching regulator 

in the cells of many organisms, including humans, 

preventing the replicative senescence mechanism from 

occurring too quickly by excessively shortening 

telomeres. Thus, the telomeric function of the Rif1 protein 

has found application in cancer therapy with satisfactory 

results, but further research is needed to fully define the 

function of this protein in tumorigenesis mechanisms. It is 

also important to be aware of the other functions of Rif1 

and of the series of correlations with various regulators 

that together maintain genomic stability in the cells of 

many organisms. For this reason, the Rif1 protein can be 

considered one of the main factors for cell survival not 

only humans. In summary, it can be recommended that 

ovarian cancer patients should be diagnosed for TERT 

promoter mutations and should be additionally under 

adequate follow-up care in the months after 

chemotherapy. With regards to ovarian clear cell 

carcinomas, the screening for mutations in the genes of 

ARID1A, PIK3CA, and ZNF217, can be judged as an 

inadequate prognostic marker [88-91]. However, the 

detection of mutation in the TERT promoter in early 

FIGO stages of ovarian cancer patients appears to be a 

reliable prognostic marker.  Importantly though, regular 

screening for TERT promoter mutations could be used to 

develop novel therapeutic strategies, to avoid the 

development of chemoresistance [41]. Nevertheless, there 

are very limited data about the impact of these 

observations in the specific subtypes of ovarian cancer, 

including low and high-grade tumors and the specific 

histological type such as clear cell cancers. Further 

investigations should also focus on the impact of Rif1 and 

telomeres on the survival rate and specific ovarian cancer 

subtypes and different FIGO stages since these are still 

research gaps that require further elucidation. As it has 

been shown in a recent study, short-time suppression of 

TERT reduces cell growth [31]. Based on this finding new 

antineoplastic compounds could be established which 

temporarily inhibit TERT. All in all, there is no doubt that 

both RIF1 and telomeres do play a critical role during the 
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pathogenesis of ovarian cancer in women regardless of 

age, therefore, they can be used in clinical practice as 

potential diagnostic and prognostic biomarkers. Our 

review aimed to shed light on the importance of the latter-

mentioned factors, and due to the limited number of 

studies on the crosstalk and its relevance for ovarian 

cancer patients, we aimed to stimulate researchers to 

perform new experiments on this interesting topic.  
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