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Abstract
Age-related changes in intestinal microbiome composition and function are increasingly recognized as pivotal in the 
pathophysiology of aging and are associated with the aging phenotype. Diet is a major determinant of gut-microbiota 
composition throughout the entire lifespan, and several of the benefits of a healthy diet in aging could be mediated by the 
microbiome. Mediterranean diet (MD) is a traditional dietary pattern regarded as the healthy diet paradigm, and a large 
number of studies have demonstrated its benefits in promoting healthy aging. MD has also a positive modulatory effect 
on intestinal microbiome, favoring bacterial taxa involved in the synthesis of several bioactive compounds, such as short-
chain fatty acids (SCFAs), that counteract inflammation, anabolic resistance, and tissue degeneration. Intervention studies 
conducted in older populations have suggested that the individual response of older subjects to MD, in terms of reduction 
of frailty scores and amelioration of cognitive function, is significantly mediated by the gut-microbiota composition and 
functionality. In this context, the pathophysiology of intestinal microbiome in aging should be considered when designing 
MD-based interventions tailored to the needs of geriatric patients.
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Introduction

The intestinal microbiome is the ensemble of microorgan-
isms, predominantly bacteria, living in the gastrointestinal 
lumen and establishing physiologic interactions with the 
human body, as well as their theater of activity including a 
whole set of molecules related to gut and host physiology 
[1]. In healthy adult subjects, an equilibrium between bac-
terial species with purported health-promoting properties 

and opportunistic pathogens is generally present, while 
significant differences in gut microbial communities can 
be detected among different subjects [1, 2]. This inter-
individual variability depends on a large number of factors, 
including host genetics, environmental exposures, lifestyle 
and physiologic status [3, 4]. Diet is perhaps the most influ-
ential of these factors, as suggested by metagenome-wide 
association studies [4, 5].

The process of aging implies a certain degree of dis-
ruption of the equilibrium between beneficial, neutral and 
potentially pathogenic bacteria [6], especially after 70 years 
old, partly as a consequence of aging of the gastrointestinal 
and immune system [7], and partly as the result of disease, 
exposure to drugs, and change of diet and mobility [8]. This 
imbalance of intestinal microbial communities can nega-
tively influence several aspects of the host physiology and 
is defined as dysbiosis. Although dysbiosis can occur also 
in earlier stages of the human life, it is consistently involved 
in the pathogenesis of several age-related diseases and syn-
dromes and thus increasingly regarded as one of the funda-
mental pathogenetic drivers of aging [9].
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Dysbiosis does not only imply a change in the 
composition of the microbiome, with increased 
representation of opportunistic pathogens at the expense 
of taxa with purported health-promoting activity, but it is 
also associated with a different microbiome functionality, 
causing changes in the release of physiologically active 
compounds [10]. In the last decade, several experimental 
and clinical studies have suggested that age-related gut-
microbiota alterations can negatively inf luence the 
pathogenesis of many diseases and conditions with high 
prevalence in geriatric patients [11], including dementia 
[12], sarcopenia [13], type 2 diabetes [14], hypertension, 
and other cardiovascular diseases [15].

In older subjects, inter-individual differences in 
intestinal microbiota composition are also emphasized in 
comparison with subjects under 70 years of age [16]. As 
such, fit individuals who reach extreme ages of life, such 
as centenarians and supercentenarians, may maintain an 
intestinal microbiome structure more similar to the one 
of adult subjects, with good representation of bacterial 
taxa with beneficial modulatory properties for the body 
functioning, such as anti-inflammatory and pro-anabolic 
action [17]. Conversely, the deepest levels of dysbiosis 
are generally observed in frail multimorbid subjects [18, 
19].

These circumstances suggest that maintenance of 
a good equilibrium in intestinal microbiome should 
be a goal for promoting successful aging [20]. The 
administration of live bacteria (i.e., probiotics) or 
functional components (i.e., prebiotics) and foods has 
shown limited effectiveness on microbiome structure 
and clinical endpoints in older individuals, although 
few studies are available to date [21–23]. Dietary 
interventions, instead, have been emphasized as 
promising strategies to counteract dysbiosis by inducing 
generalized and durable rearrangements on microbiome 
composition and function [24]. Mediterranean diet (MD), 
in particular, has emerged as the healthy diet paradigm 
and has been associated with a wide range of beneficial 
effects on primary and secondary prevention of several 
non-communicable diseases [25, 26].

In this review, we summarize the current evidence on 
the interactions between MD and gut microbiome, and 
their importance for mitigating the pathophysiological 
processes associated with aging and some of the most 
relevant age-related conditions. First, we consider the 
effect of MD on the microbiome of adult subjects; then, 
we explore the impact of MD on older adults; and last, 
we comment on the main underlying mechanisms behind 
the anti-aging effects of MD on the gut microbiome.

Association between Mediterranean diet 
and microbiome in adult subjects

Observational studies

MD, acknowledged by UNESCO as Intangible Cultural 
Heritage of Humanity in 2010, is a traditional dietary 
pattern implying daily consumption of plant foods, 
including cereals, fruit, vegetables and legumes with 
olive oil as the main source of added fat, and moderate 
consumption of fish, seafood, eggs, poultry and milk or 
dairy products. Read meat and unprocessed sugars, which 
represent important components of modern Western 
diets, are generally present in limited amounts in MD 
[27], as well as parsimonious consumption of wine 
during mealtimes. Apart from its mere composition, MD 
also implies socialization and conviviality during meals, 
seasonality and biodiversity in dietary choices, frequent 
consumption of traditional and local food products and, 
overall, a healthy lifestyle with a good balance between 
physical activity and rest [27].

Adherence to MD pattern can be measured in each 
individual through specific scores validated by the 
scientific literature. These scores are generally based 
on the analysis of semi-quantitative food-frequency 
questionnaires and on the identification of the frequency 
of consumption of key foods for MD [28]. Despite the 
limitations of this approach, including the possibility of 
recall bias, population-based studies conducted in different 
countries have shown a correlation between MD adherence 
scores and fecal microbiome composition [29–35]. The 
results of these studies are summarized in Table 1.

Interestingly, in most studies, MD adherence was 
significantly associated neither with biodiversity, that is, 
species richness, nor with the overall composition of the 
intestinal microbial community [29, 33, 34]. Instead, MD 
seemed more associated with increased representation of 
bacterial taxa with purported health-promoting activities 
and metabolic function of bacteria, like Lachnospira, 
Prevotella, bifidobacteria, Faecalibacterium prausnitzii, 
Eubacterium rectale [29–35]. Conversely, Ruminococcus, 
Oscillospira, Escherichia coli and other members 
of Enterobacteriaceae were the main microbial taxa 
associated with Western-style diets [32, 34].

At functional level, MD adherence was associated 
with different metabolic signatures in blood, urine and 
fecal samples [36]. In particular, it was associated with 
increased microbial synthesis of short-chain fatty acids 
(SCFAs), including acetate, propionate and butyrate, 
which exhibit an overall anti-inflammatory and pro-ana-
bolic function favoring insulin sensitivity [29–31, 33]. 
Bacterial taxa with known capacity of synthetizing SCFAs, 
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such as F. prausnitzii, Butyrivibrio, and Roseburia, seem 
to play an important role as mediators of the beneficial 
metabolic effects of MD [37]. High fiber intake, which is 
a key component of MD, is in fact able to stimulate the 
representation of these taxa in intestinal microbial commu-
nities, while fibers themselves represent the biochemical 
substrates for SCFA synthesis [38].

MD adherence was also associated with reduced 
synthesis of trimethylamine-N-oxide (TMAO) [30, 32], an 
emerging marker of cardiovascular risk synthetized with 
the contribution of the gut microbiota [39]. According to a 
study conducted on 307 male adults, Prevotella copri also 
resulted as a key mediator of the beneficial effects of MD 
adherence on biomarkers of cardiometabolic risk, including 
serum levels of C-reactive protein (CRP), total cholesterol, 
triglycerides, and glycated hemoglobin [33]. Microbiome 
mediation in the relationship between MD adherence and 
reduction of inflammation was also confirmed in groups 
of patients with chronic inflammatory conditions, such as 
human immunodeficiency virus (HIV) infection [40], or at 
risk of inflammatory bowel disease (IBD) [34].

Intervention studies

MD intervention is generally assumed to modify gut-
microbiome composition and function not only in subjects 
with chronic diseases (Table 2), but also in healthy subjects 
[41–43]. The magnitude and the characteristics of these 
changes, however, are inconsistent across studies.

In a group of 20 healthy male volunteers, Barber et al. 
showed no major differences in gut-microbiome composition 
before and after a 2-week MD intervention, but they just 
demonstrated significant variations in a few bacterial 
taxa [41]. These findings were probably influenced by the 
high baseline inter-individual variability in the intestinal 
microbiome of participants, who responded to the dietary 
intervention in an individualized manner. However, 
metabolomic analyses revealed a different urinary metabolic 
profile after the intervention, with significant variations in 
the levels of several metabolites of bacterial origin [41]. In 
another study by Godny et al., a 4-week MD intervention 
associated with daily physical activity measurement resulted 
into increased representation of bacterial taxa involved in 
SCFA synthesis, including F. prausnitzii, Lachnospiraceae 
and Bifidobacterium spp., with reduced levels of 
inflammatory biomarkers such as fecal calprotectin [42]. 
Interestingly, similar results were obtained also by Rejeski 
et al. in a group of 10 healthy subjects, where a 2-week MD 
intervention also improved the overall microbiome species 
richness [43].

The modulatory effects of MD on gut microbiome 
are potentially useful for the prevention and treatment 
of several chronic conditions, including obesity, type 2 

diabetes, and metabolic syndrome [44]. In 18 overweight 
subjects with body mass index (BMI) ≥ 25 kg/m2, a 
3-month dietary intervention consisting of MD enriched 
with 40 g/day of high-quality extra-virgin olive oil was 
associated with improved fecal microbiome biodiversity, 
significant reduction of myeloperoxidase activity, 
oxidative stress markers and pro-inflammatory cytokines, 
and significant increase in adiponectin and plasma anti-
inflammatory cytokines such as interleukin-10 (IL-10) 
[45].

Randomized controlled trials (RCTs) investigating the 
effects of MD and its variants on the gut microbiome of 
overweight and obese subjects have also shown beneficial 
effects, ranging from increased biodiversity to increased 
representation of SCFA-producing taxa or bacteria 
involved in branched-chain amino acid metabolism 
(Table 2) [46–49]. Interestingly, other healthy dietary 
patterns not falling within the MD definition, such as the 
vegetarian [48] or the low-fat high-complex carbohydrate 
(LFHCC) diet [46], also induced beneficial changes in 
gut-microbiome composition and function, but these 
changes were distinct from those induced by a traditional 
MD pattern. LHFCC diet, for example, determined a 
more pronounced increase in the representation of F. 
prausnitzii than MD [46], while vegetarian diet promoted 
growth of Anaerostipes, Streptococcus, Clostridium, and 
Odoribacter not observed in MD [48].

The effects of MD on the gut microbiome are emphasized 
by concomitant involvement in a structured physical exercise 
program. In a group of subjects with non-alcoholic fatty 
liver disease (NAFLD), a condition frequently overlapped 
with obesity, the abundance of Ruminococcaceae, 
Oscillospiraceae and Lachnospiraceae was much more 
influenced by the association between aerobic physical 
exercise and MD than MD alone [50].

The interactions between gut-microbiome modifica-
tions induced by MD and type 2 diabetes are less known. In 
subjects following a MD pattern, an intestinal microbiome 
signature consisting in high abundance of Prevotella, Sac-
charibacteria, and Betaproteobacteria was associated with 
increased risk of developing diabetes [51]. Conversely, a 
4-week MD intervention in subjects with type 2 diabetes 
resulted into an improved bacterial richness of gut micro-
biota, which exhibited a negative correlation with insulin 
resistance [52]. However, in a recent RCT comparing the 
effects of MD with a personalized post-prandial target-
ing (PPT) diet in subjects with type 2 diabetes (Table 2), 
MD was associated with only minor modifications of fecal 
microbiome, such as increased abundance of Bifidobacte-
rium adolescentis, and resulted less effective than PPT diet 
in inducing metabolically-favorable changes of intestinal 
microbial communities [53]. Nevertheless, it should be high-
lighted that here the authors compared two different dietary 
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strategies (general vs. personalized dietary advice) and that 
further interventions with personalized MD intervention 
could be of interest.

In subjects with metabolic syndrome (Table  2), 
however, a long-lasting MD intervention was associated 
with increases in the fecal microbiome representation of 
Parabacteroides distasonis, Bacteroides thetaiotaomicron, 
F. prausnitzii, B. adolescentis and Bifidobacterium 
longum [54]. In two different analyses of the METADIET 
randomized, controlled, cross-over trial, Galié et al. showed 
that MD intervention was associated with increased levels 
of Lachnospiraceae and Ruminococcaceae and improved 
insulin sensitivity in patients with metabolic syndrome 
(Table 2) [55, 56].

The effects of MD interventions on the gut microbiome 
of adult patients with other chronic illnesses not included 
in the metabolic syndrome spectrum have been scarcely 
investigated (Table 2). In a RCT comparing MD with the 
specific carbohydrate diet in adults with Crohn’s disease, 
neither dietary approach was superior in reducing parameters 
of inflammation and disease activity after 6 weeks, and no 
major differences in post-intervention fecal microbiome 
composition were detected between study arms [57]. 
Therefore, the current knowledge on the physiologic effects 
of the interaction between MD and intestinal microbiome 
in subjects younger than 70 years old is basically limited 
to improvements in insulin resistance, glucose and lipid 
metabolism, and chronic subclinical inflammation related 
to obesity (Table 2).

Mediterranean diet and gut microbiome 
in older subjects

Observational studies

Despite the gut-microbiome composition of older 
individuals is less resilient to stressors and more influenced 
by a large number of (physio)pathologic conditions, diet 
remains a major driver of the inter-individual variability 
observed for this age group. In a cross-sectional analysis 
of data from the NU-AGE RCT, including 226 Dutch 
subjects aged between 65 and 79, BMI exhibited a much 
stronger statistically significant association with overall 
fecal microbiome composition than frailty phenotype [58]. 
The main dietary factors explaining microbiome inter-
individual variability were, on the one side, consumption 
of fruits, nuts, grain products, and carbohydrates, which 
are fundamental parts of the MD pattern, and, on the other 
side, consumption of processed and red meats, which are 
consumed only occasionally in MD [58]. The main bacterial 
taxa showing positive associations with foods typically well 

represented in MD included F. prausnitzii, E. rectale and 
Eubacterium biforme, while animal protein-based diets were 
mainly associated with the abundance of taxa with purported 
pro-inflammatory action, such as Ruminococcus gnavus and 
Collinsella [58].

Adherence to MD was associated with increased 
representation of F. prausnitzii also in a group of 74 older 
Spanish volunteers, where Clostridium cluster XIVa was 
identified as another important marker of MD [59]. These 
features of gut microbiome were also associated with specific 
metabolic signatures, including increased fecal levels of 
SCFAs, benzoic and 3-hydroxyphenylacetic acids [59, 
60]. These signatures are likely the result of the increased-
intestinal microbial metabolism of fibers and (poly)phenols 
associated with MD, respectively [59, 60]. In a group of 
older Caribbean Latinos living in the United States, instead, 
adherence to MD was associated with a distinct cluster of 
fecal microbiome composition, characterized by different 
abundance of P. copri and co-occurring bacterial networks 
[61].

In a group of 17 centenarians and 29 nonagenarians 
from Sardinia (Italy), adherence to MD was associated with 
several bacterial taxa in fecal microbiome [62]. However, 
the taxa positively correlated with MD were different 
between centenarians (Lactobacillus, Clostridium, and 
Dorea) and nonagenarians (Bacteroides, Parabacteroides, 
and Pedobacter), with the only exception of Peptoniphilus 
[62]. Interestingly, MD was associated with depletion of 
bifidobacteria only in nonagenarians, but not in centenarians 
[62]. In fact, the microbial ecology of centenarians is 
characterized by the persistence of a subdominant fraction of 
bifidobacteria, which is usually depleted in older individuals 
who do not reach extreme ages [63, 64].

Intervention studies

The existing intervention studies with MD in older 
individuals have adapted the traditional MD pattern to the 
specific needs of aging, targeting, in particular, modulation 
of inflammation, weight loss, and cognition. Berendsen et al. 
elaborated a modified MD pattern based on recommended 
daily allowances (RDAs) of macro- and micronutrients for 
older subjects, with the aim of modulating inflammaging 
(i.e., the chronic subclinical activation of inflammatory 
pathways responsible for the pathogenesis of several 
chronic illnesses and geriatric syndromes typical of the 
older age) and maintaining a good balance in protein-
energy metabolism [65, 66]. This dietary approach —the 
so-called NU-AGE diet— was the main intervention 
studied in the NU-AGE RCT, where 1141 pre-frail and 
fit subjects aged 65 to 79 years old from five European 
countries were randomized to receive MD tailored to older 
people (NU-AGE diet) or a control free diet [65]. It was 
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demonstrated as feasible in pre-frail and non-frail older 
subjects in the long term, with good adherence scores 
after 1 year from the initiation of the intervention [67]. 
The gut-microbiota composition and function was among 
the endpoints of the NU-AGE study and fecal microbiome 
profiling of 612 participants showed significant changes in 
the abundance of several taxa [68]. F. prausnitzii, E. rectale, 
Roseburia, Blautia, Anaerostipes and Prevotella were the 
main taxa showing positive association with the NU-AGE 
dietary intervention, while the abundance of Collinsella, 
Ruminococcus, Dorea, Blautia and Coprococcus exhibited 
a negative association [68]. Interestingly, after 1-year 
intervention, those subjects with deeper degrees of gut-
microbiome change, reflected in higher levels of the MD 
microbiome index, also exhibited significant improvement 
in measures of inflammation (CRP levels), frailty (Fried 
score and gait speed) and cognition (verbal fluency, Babcok 
memory score, and constructional praxis score). Conversely, 
the subjects in the intervention arm who exhibited reduced 
variations of fecal microbiome composition experienced less 
pronounced variations in clinical endpoints [68]. Therefore, 
the NU-AGE diet intervention modulated gut microbiota in 
a way that reflected negative associations with inflammation 
and frailty.

A MD-based intervention with energy restriction resulted 
into significant modulation of fecal microbiome even after 
only 15 days in a smaller study conducted in 20 obese older 
women [69]. However, the observed changes were partly 
different than those of the NU-AGE RCT, with increased 
representation of Coprococcus, Oscillospira, Bacteroides, 
and Akkermansia, while Collinsella was confirmed as 
negatively associated with the dietary intervention [69]. In 
the PREDIMED-Plus Study, traditional MD intervention 
was compared with an energy-restricted MD associated 
with promotion of physical activity in a group of 343 
overweight and obese Spanish subjects aged between 55 and 
75 years old [70]. Interestingly, the changes observed in gut 
microbiota after 1-year follow-up were similar between the 
two groups, but more pronounced in the energy-restricted 
MD arm, and included increased representation of SCFA 
producers from the Lachnospiraceae family [70].

The effects of MD intervention approaches on intestinal 
microbiome have been recently studied also in age-related 
neurological conditions. Rusch et al. showed significant 
changes in fecal microbiome composition, including in 
particular an increase in the SCFA producer Roseburia, 
after a 5-week MD intervention in a small group of 
patients with Parkinson’s disease [71]. These changes were 
associated with improvements in gastrointestinal symptoms 
(constipation scores), but no neurologic endpoints were 
measured in the study.

In the field of dementia research, ketogenic diets have 
shown a potential of slowing down cognitive impairment 

by improving cerebral metabolism [72]. Recently, some 
authors have proposed to combine the Mediterranean and 
ketogenic diet approaches into a modified Mediterranean-
ketogenic diet (MMKD) [72], which has shown the capacity 
of improving body composition and reducing levels of 
cerebrospinal fluid biomarkers of amyloid deposition 
(Aβ42) and tau protein [73, 74]. In a randomized cross-
over trial conducted on 17 subjects with and without mild 
cognitive impairment, 6-week MMKD intervention induced 
increased representation of Akkermansia and Slackia and 
reduced Bifidobacterium and Lachnobacterium, with the 
family Lachnospiraceae showing significant correlation 
with cerebrospinal fluid levels of Aβ42 [75]. Interestingly, 
changes in symbiont intestinal fungal species, the so-called 
mycobiome, were also observed [76]. At the functional level, 
MMKD induced changes in bacterial SCFA synthesis, with 
significant increases in fecal butyrate and propionate levels 
[75]. In a recent study conducted in 20 subjects with mild 
cognitive impairment, MMKD induced lower representation 
of Alistipes, a bacterial species known for its capacity of 
producing gamma-amino-butyric acid (GABA), and higher 
representation of Akkermansia, a taxon with GABA-
regulating functionality [77]. GABA imbalance is involved 
in the gut-brain axis and in the pathogenesis of dementia. 
Therefore, MD diet could influence important aspects of 
cognitive function by inducing subtle modifications in gut 
microbiome.

Anti‑Aging effects of mediterranean diet 
mediated by intestinal microbiome: main 
underlying mechanisms

Microbial synthesis of short‑chain fatty acids 
(SCFAs)

The depletion of bacterial taxa with capacity to synthetize 
SCFAs, and particularly F. prausnitzii, Roseburia, 
Butyrivibrio, and Succinivibrio, is a keynote characteristic of 
the gut microbiome of older individuals with frailty [78–80], 
sarcopenia [81, 82] and cognitive decline [83]. Frailty is 
associated with reduced fecal levels of butyrate [80], and 
an inverse correlation has been demonstrated between 
gut microbial synthesis of butyrate and appendicular lean 
mass in subjects at risk for sarcopenia [82]. Conversely, fit 
centenarians generally exhibit higher fecal levels of SCFAs 
than subjects between 60 and 70 years old [84].

In this scenario, the capacity of MD to stimulate the 
growth of SCFA-synthetizing bacteria and improve SCFA 
levels can be extremely important in an anti-aging perspec-
tive. However, the functional capacity of gut bacteria to 
effectively release SCFAs does not depend only on the fiber 
content of diet, but it also relies on complex cross-feeding 
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interactions among bacteria and on the interaction between 
bacteria and host [85, 86]. For example, an adequate butyrate 
production by F. prausnitzii is possible only in presence of 
a good representation of bifidobacteria in the gut environ-
ment [87, 88].

SCFAs, particularly butyrate, exhibit pleiotropic 
functions for the host [89]. First, they promote gut mucosal 
integrity and tropism, representing one of the main sources 
of energy for colonocytes [89]. Second, they exhibit marked 
capacity to modulate the inflammatory response, which is 
pivotal for controlling inflammaging and the pathogenesis of 
several age-related diseases and conditions, including frailty 
[90, 91]. In a group of Chinese older patients with cognitive 
impairment related to diabetes, reduced fecal butyrate 
levels were associated with higher circulating levels of pro-
inflammatory cytokines and worse cognitive performance 
[92]. In animal models of dementia, butyrate administration 
is in fact able to improve indices of neuroinflammation and 
cognitive performance via the gut-brain axis [93, 94].

In systemic circulation, butyrate also improves insulin 
resistance and has an overall pro-anabolic function, which is 
pivotal in counteracting type 2 diabetes and obesity [95]. At 
the skeletal muscle level, these actions result into increased 
protein synthesis and reduced muscle wasting [96], and this 
is the main reason why butyrate is considered a powerful 
anti-sarcopenic mediator in the context of the so-called 
gut-muscle axis [82, 97]. In fact, butyrate also exhibits an 
inhibitory capacity at the histone deacetylase level, resulting 
into increased muscle mass in mouse models of cachexia 
[98].

Reduction of intestinal mucosa permeability

Aging, even with a healthy active pattern, is associated with 
increased-intestinal permeability, witnessed by elevated 
levels of the serum biomarker zonulin [99]. According to 
a recent meta-analysis of case–control studies investigating 
biomarkers of frailty, serum zonulin levels are in average 
higher in frail than in healthy older subjects, reflecting a 
progressive loss of the barrier function of the intestinal 
mucosa [100]. This condition is associated with loss 
of skeletal muscle strength, sarcopenia, and functional 
autonomy in older subjects, either healthy or with chronic 
conditions such as chronic obstructive pulmonary disease 
(COPD) and dementia [101–103].

Increased intestinal mucosa permeability is associated 
with increased serum levels of bacterial toxins, including 
lipopolysaccharide (LPS), and increased presence of 
bacterial components into systemic circulation [104, 105]. 
These compounds provide activation of the innate immune 
response and antigenic stimulation of adaptive immunity, 
that ultimately result into persistent subclinical inflammation 

typical of aging with frailty, the so-called inflammaging 
[106]. Increased LPS toxinemia plays a pivotal role in 
the pathophysiology of age-related cognitive decline and 
Alzheimer’s disease, and is believed to represent one of the 
mainstays of the gut-brain axis dysregulation [107–109]. 
Age-related gut-microbiome alterations are deeply involved 
in this pathophysiological cascade, since germ-free mice 
show no development of chronic inflammation during aging 
and no increased LPS levels, while old mice with dysbiosis 
exhibit increased circulating levels of pro-inflammatory 
cytokines and macrophage dysfunction [110].

Higher adherence to MD is inversely associated with 
biomarkers of gastrointestinal mucosa permeability and 
with circulating LPS levels, in both adult subjects with 
chronic illnesses and older individuals [105, 111, 112]. 
These effects are emphasized with dietary interventions 
consisting in increased intake of (poly)phenol-rich foods, 
which are important components of MD [104, 113, 114]. In 
particular, the MaPLE randomized controlled trial showed 
that a (poly)phenol-rich food intervention in older subjects 
caused reduction in the serum levels of zonulin, associated 
with favorable changes in the gut microbiome including the 
increase of the relative abundance of F. prausnitzii [113]. 
Interestingly, these effects were less pronounced in those 
subjects with higher disruption of gut microbial community 
structure and with increased-intestinal permeability at 
baseline [104, 114]. Dysbiosis, in fact, does not only impair 
the integrity of the intestinal mucosa, but it can also limit 
the bioavailability of food bioactives contained in MD, 
especially (poly)phenolic compounds [115], making dietary 
interventions probably less effective in subjects with higher 
burden of frailty and associated gut-microbiome alterations.

The precise interactions among components of MD, gut 
microbiome, and host cells regulating intestinal mucosa 
permeability have not been elucidated yet. However, recent 
studies suggest that SCFAs and the bacterial taxa able to 
synthetize them from dietary fibers may play a central role 
[116, 117]. In the LIBRE RCT, for example, the baseline 
levels of SCFAs were independent predictors of the response 
to MD intervention in terms of intestinal permeability [117]. 
Therefore, the individual responses to MD diet may be 
consistently mediated by the preexisting composition and 
functionality of gut microbiome.

Biotransformation of food bioactives

(Poly)phenols or phenolic compounds are generally 
abundant in MD, where the intake of fruit and vegetables, 
wholegrain cereals, nuts, legumes, and extra virgin olive 
oil is recommended in large amounts [118]. The interaction 
between dietary (poly)phenols and the gut microbiome is 
able to generate several bioactive metabolites exhibiting 
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anti-aging effects, especially at the skeletal muscle and 
central nervous system level [86, 119, 120]. However, 
the microbiome response to dietary interventions shows a 
consistent inter-individual variability in terms of production 
of bioactive compounds [121, 122]. In the case of some 
polyphenolic subclasses, including ellagitannins, flavanones, 
isoflavones, flavan-3-ols, prenylflavonoids, avenanthramides, 
resveratrol, and lignans, some microbiota-related 
metabotypes have been identified, so that the beneficial 
effects of these dietary components might be observed only 
in presence of a particular microbiome composition and 
functionality [121, 122].

For example, urolithin A, isourolithin A, and urolithin 
B are metabolites released by the gut microbiome after 
ingestion of ellagic acid and ellagitannins, polyphenols 
frequently found in walnuts, pomegranate, and strawberries. 
Not all the individuals are able to produce these metabolites, 
and subjects can be classified into the Uro-A or Uro-B 
metabotype according to their capability to not produce 
or produce, respectively, urolithin B or isourolithin A, in 
addition to urolithin A [123]. Conversely, subjects with the 
Uro-0 metabotype do not show production of (iso)urolithins 
A or B by the gut microbiome, even after a dietary challenge 
with foods with high ellagitannin content, and cannot benefit 
from the biologic functions of urolithins [123]. While 
isourolithin A and urolithin B have been associated to gut 
dysbiosis and the prevalence of the Uro-B metabotype 
increases with aging, urolithin A production and the Uro-A 
metabotype has been related to a healthier and younger 
profile [122]. The potential anti-aging effects of urolithin 
A include improvement of muscle strength and exercise 
endurance [124, 125], modulation of neuroinflammation 
and cell apoptosis with improvement in cognitive function 
[126–128], promotion of insulin sensitivity, modulation 
of lipid metabolism and inflammatory response [129]. 
Interestingly, in a recent RCT testing the effects of MD in 
obese subjects, MD was associated with an average increase 
in the urinary excretion of urolithins, even if the analyses 
did not consider metabotypes [47]. Similarly, urolithin 
urinary excretion was significantly associated with visceral 
adiposity reduction [130] and magnetic resonance-measured 
hippocampal occupancy score [131] in two distinct RCTs 
testing the effects of a long MD intervention.

Gut microbiota-derived metabotypes are less known for 
polyphenol subclasses other than ellagitannins. Hesperidin 
high-excretors and low-excretors have been identified 
after dietary intake of flavanones, a polyphenol subclass 
particularly represented in citrus [121, 122]. Hesperidin 
exhibits antioxidant, anti-inflammatory and pro-anabolic 
actions, promoting muscle protein synthesis [132, 133] 
and reducing amyloid deposition and neuroinflammation 
in animal models of Alzheimer’s disease [134, 135]. In an 
intervention study testing the effects of MD in subjects with 

type 2 diabetes, increased plasma levels of hesperidin and 
other flavanone derivatives were detected after 12 weeks, 
with significant reductions in inflammatory biomarkers 
[136]. Similarly, equol is a bioactive compound released 
after intestinal biotransformation of soy isoflavone daidzein, 
but it is produced only by a part of the population harboring 
a specific microbial profile. Equol exhibited neuroprotective 
actions against the onset of dementia in vitro [137–139], but 
it was associated in vivo with better cognitive performance 
only in presence of an equol-producer microbiome 
metabotype [140].

The role of dietary proteins and exercise 
in older age: a gut microbiome perspective

Nutritional guidelines and clinical recommendations 
against age-related physical frailty and sarcopenia generally 
emphasize the importance of increasing protein intake 
to overcome anabolic resistance [141, 142]. However, 
intervention studies have shown only mild improvements 
in muscle mass and strength after increases of daily 
protein intake up to 1.6 g/kg/day [143]. High-protein 
diets, especially rich of processed foods of animal origin, 
are also associated with deleterious consequences for the 
gut-microbiome composition and functionality in both 
human and animal experiments [144]. A recent systematic 
review of RCTs conducted in human beings has shown that 
higher meat intake is associated with marked reduction of 
Anaerostipes and Faecalibacterium, two of the main taxa 
producing SCFAs [145]. In this perspective, ad  libitum 
consumption of animal proteins in the older age may produce 
conflicting effects on the pathophysiological mechanisms of 
physical frailty and sarcopenia, resulting in modest clinical 
benefits [146, 147].

The benefits of high-protein diets on frailty and 
inflammation, instead, may be more pronounced when the 
dietary intervention consists in consumption of proteins with 
high biologic value, such as whey protein [148, 149], or 
when dietary intervention is associated with regular exercise 
[150]. In a double-blind placebo-controlled cross-over study, 
Ford and colleagues demonstrated that a balanced high-
protein diet, either in combination with probiotics/synbiotics 
or alone, was associated with generally favorable changes 
in the gut-microbiota composition of a group of healthy 
older women, although the representation of the SCFA 
producers Roseburia and Anaerostipes was reduced [151]. 
In healthy young subjects, the increase of lean red meat 
consumption under controlled conditions was not associated 
with detrimental consequences for the microbiome structure 
as well [152].

Protein consumption in MD is balanced and mainly 
includes vegetal proteins of high biologic value, such as 



Aging Clinical and Experimental Research           (2024) 36:58  Page 11 of 17    58 

those from legumes and lean meat, rather than proteins 
from processed red meats. Thus, increasing protein intake 
maintaining a Mediterranean dietary style may represent 
an optimal compromise from a gut-microbiota perspective 
[146, 147].

Furthermore, regular exercise seems to act as an enhancer 
of the beneficial effects of MD-style diets, both on the gut-
microbiome composition and on clinical markers of aging. 

Multicomponent interventions consisting in regular exercise 
and tailored nutritional counseling have proven effective in 
reducing the burden of disability in physically frail older 
individuals [153, 154]. Exercise represents a powerful ben-
eficial modulator of gut microbiome and can prevent dys-
biosis in both adult and older age [155, 156]. However, no 
comprehensive investigation of the effects of exercise and its 
interaction with dietary patterns has been conducted in older 

Fig. 1  Overview of the mecha-
nisms linking dietary habits, 
and particularly Mediterranean 
diet, to gut-microbiome and 
pathophysiological aspects of 
aging (created with Biorender.
com)
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individuals to date. Interestingly, in the PREDIMED-Plus 
Study the effects of energy-restricted MD dietary interven-
tions on the gut microbiome of subjects aged 55–75 years 
old were more pronounced when diet was associated with 
regular exercise programs [70]. Therefore, multicomponent 
interventions combining MD or its variants with exercise 
programs should represent the best alternatives to counteract 
age-related frailty also from a gut microbiome perspective. 
Future studies should include also gut-microbiome param-
eters as endpoints of clinical interventions against frailty.

Conclusion and perspectives

A healthy diet can influence several pathophysiological 
aspects of aging through mediation of the intestinal microbi-
ome, while Western-style diets may be associated with a ten-
dency toward dysbiosis favoring the pathophysiological pro-
cesses leading to frailty (Fig. 1). In this context, promoting 
MD in older individuals can represent an effective strategy 
to counteract the age-related drift of gut-microbiome com-
position and function toward dysbiosis and its detrimental 
consequences. In both adult subjects and older individuals, 
adherence to the MD pattern is associated with maintenance 
of a healthy microbiome able to modulate inflammation, 
anabolic resistance, oxidative stress, and neurodegeneration 
in a favorable way. Intervention studies have confirmed this 
interaction among diet, gut microbiome, and host (patho)
physiology, but few studies have specifically targeted older 
individuals and outcomes of geriatric interest. In this regard, 
the results from the NU-AGE study, suggesting that older 
individuals respond to MD intervention in an individualized 
manner by mediation of the intestinal microbiome, are of 
paramount importance to understand the complex under-
lying mechanisms linking diet, aging, and its phenotype. 
Future studies should further investigate the role of MD and 
its variants in counteracting physical and cognitive decline 
in the older age, accounting also for the role of the microbi-
ome from a multi-omics perspective.
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