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unclear, as are their regulation, function, and clinical significance.

Objective: The present study demonstrated the mechanism of tumor-infiltrating mast cells stimulating
ICOS" regulatory T cells via the IL-33/IL-2 axis to promote the growth of gastric cancer.

Methods: Analyses of 98 patients with GC were conducted to examine mast cell counts, ICOS* Tregs, and
the levels of IL-33 or IL-2. Isolated ICOS* Treg and CD8" T cell were stimulated, cultured and tested for
their functional abilities in vitro and in vivo.

Results: GC patients exhibited a significantly more production of IL-33 in tumors. Mast cell stimulated by
tumor-derived IL-33 exhibited a prolonged lifespan through IL-33 mediated inhibition of apoptosis.
Moreover, mast cells stimulated by tumor-derived IL-33 secreted IL-2, which induced Treg expansion.
These inducible Tregs displayed an activated immunosuppressive phenotype with positive expression
for the inducible T cell co-stimulator (ICOS). In vitro, IL-2 from IL to 33-stimulated mast cells induced
increased numbers of ICOS™ Tregs with increased immunosuppressive activity against proliferation and
effector function of CD8" T cell. In vivo, ICOS" Tregs were treated with anti-IL-2 neutralizing antibody fol-
lowed by co-injection with CD8" T cells in GC mouse model, which showed an increased CD8" T cell infil-
tration and effector molecules production, meanwhile tumor growth and progression were inhibited.
Besides, reduction in GC patient survival was associated with tumor-derived ICOS* Tregs.

Conclusion: Our results highlight a crosstalk between GC-infiltrating mast cells and ICOS™ Tregs and pro-
vide a novel mechanism describing ICOS" Treg expansion and induction by an IL-33/mast cell/IL-2 signal-
ing axis in GC, and also provide functional evidence that the modulation of this immunosuppressive
pathway can attenuate GC-mediated immune tolerance.

© 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The global death toll from gastric cancer is estimated to reach
768,793 in 2020, with 1,089,103 new cases. Among all cancers, it
has the sixth highest incidence and third highest death rate [1].
In some countries with low incomes and high rate of Helicobacter
pylori infection, such as several Eastern Asian countries, deaths and
morbidities associated with cancer have been significantly ele-
vated by this disease [2]. Despite significant progress in diagnosis
and treatment of GC [3], decreased Helicobacter pylori infection
rates [4], improvements in food preservation and the promotion
of gastrointestinal endoscopic screening, pathogenesis and regula-
tory mechanisms of GC remain largely unknown.

Gastric cancer development and prognosis are believed to be
affected by its interaction with the immune system [5]. Clinical
outcomes of GC patients are strongly influenced by adaptive
immunity, according to most studies [6,7]. On the other hand,
innate immune cell, for instance, residential mast cell is detected
in GC little is known about their function in GC progression. A mast
cell’s innate role in allergic hypersensitivity type I is their most
well-known function [8]. In tumor- microenvironment, mast cell
can manipulate immunomodulatory effects [9] through reshaping
tumor-microenvironment [10], promoting angiogenesis [11] and
cross-talking with other immune cells [12]. Our previous study
has shown that tumor-infiltrating mast cells could release cytoki-
nes to directly promote tumor progression [13]. As we know,
tumors are associated with cytokines and the immune system.
The cytokines are peptides produced by a wide variety of cell types,
including immune system subpopulations. When they bind to
appropriate receptors on membranes, they exert their effects as
cellular mediators [14]. Mast cells can also interact with other
stroma cells to indirectly affect tumor progression. An immuno-
suppressive subset of T cells known as Treg is found in human
GC [15]. Some studies have shown evidence of a cross-talk
between mast cell and Treg in allergic responses [16] and autoim-
mune disease [17]. However, the potential interactions between
mast cells and Treg subsets and the underlying mechanisms have
not been investigated for human GC.

There are several organ systems that express interleukin 33 (IL-
33) of the IL-1 cytokine family, including the stomach [18]. This
cytokine activates IL-1 receptor-like 1 (IL-1RL1) and IL-1 receptor
accessory protein (IL-1RAcp), which constitute a heterologous
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receptor complex. [19]. In tumor-microenvironment, it has been
found that mast cell and T helper (Th) 2 cell are involved in produc-
tion of IL-1RL1, which is regulated by IL-33 [20]. Elsewhere, IL-2 is
known to exert potent effect on T cell and NK cell reproduction and
effector activity [21,22]. IL-2 from activated T cells is also known to
be essential for Treg’s Foxp3 expression and repressive function.
However, whether IL-2 regulates Treg in GC with similar mecha-
nisms requires further clarification.

Here, we researched the signaling mechanisms governing inter-
actions between mast cells and Treg subsets in GC. Mast cells were
found to secrete IL-2 in responding to GC-derived IL-33, which in
turn promoted the expansion of immunosuppressive ICOS"™ Tregs,
thereby contributing to GC progression.

Materials and Methods
Patients and specimens

Tissues comprising a gastric tumor (no necrosis), peritumoral
tissues, and non-tumor tissues (a minimum distance of 5 cm
should be kept from the tumor), and patients peripheral blood
sample were all collected at the First Affiliated Hospital of Third
Military Medical University) who had undergone surgical resection
for GC. Autoimmune and infectious diseases, and multiple primary
cancers were excluded, as was chemotherapy and radiation
received before specimen collection. A TNM classification system
(7th edition) was used to determine the clinical stage of tumors.
Each subject gave written informed consent to participate in the
study, which was approved by the Ethics Committee of the South-
west Hospital of Third Military Medical University. A total of 107
patients were initially enrolled, but 9 of them withdrew or termi-
nated early from the follow-up due to personal preference. The
Supplementary table 1 contains a list of all reagents used in this
article.

Isolation of single cells from GC tissues

Hank’s solution containing 1% FCS was used to wash fresh GC
tissues three times and cut them into pieces. A MACS dissociator
(Miltenyi Biotech, Germany) was used to mechanically separate
samples in RPMI 1640 containing collagenase IV (1 mg/ml) (Gibco,
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USA) and deoxyribonuclease I (10 mg/ml) (Sigma-Aldrich, USA).
Cell suspensions were then incubated at 37 °C for 1 h under contin-
uous rotation before being filtered with a 70 pum cell filter (BD Lab-
ware, USA) (cell viability>90%).

Preparation of TTCS and NTCS and TTCS-conditioned mast cell
supernatants

By placing autologous tumor or non-tumor gastric tissues for
24 h in RPMI 1640, TTCS or NTCS were respectively prepared.
The supernatant was collected. A 24-hour culture was performed
on primary human umbilical cord blood mast cells (hCBMCs,
5 x 10°/ml) in 50%TTCS or in 50%TTCS with neutralizing antibodies
against human IL-33 (20 mg/ml) to obtain TTCS-conditioned mast
cell supernatant (TTCS-hCBMCs sup). The supernatants were cen-
trifuged, collected and frozen separately at —80 °C.

Mast cell stimulation

hCBMCs were stimulated with 50% TTCS with human IL-33 neu-
tralizing antibody (20 pg/ml, Goat IgG) or an isotype control IgG
(20 pg/ml) for 1 day, the supernatants were collected for IL-2 ELISA
studies. A signaling pathway inhibition experiment was conducted
by pretreatment with U0126 (MEK1/2 inhibitor), SB203580
(mitogen-activated protein kinase (MAPK) inhibitor), or
SP600125 (c-Jun N-terminal kinase (JNK) inhibitor) in 5 pl
(10 uM) for 1 h, followed by stimulation with 50% TTCS or human
recombinant (hr) IL-33 (100 ng/ml) for 24 h and harvesting. In par-
allel to the inhibitor treatment, DMSO (5 pl) was used to control
the inhibitors.

Treg cell induction assay

Isolating peripheral blood mononuclear cells (PBMCs) from
healthy donors with ficoll density gradient centrifugation, as
reported in the previous article [23]. For 5 days, Fluorescence-
activated cell sorter (FACS) (BD, USA) sorted naive T cells (CD4*-
CD45RA™) were cultured in 50% TTCS or 50% TTCS-hCBMCs sup plus
neutralizing antibodies against human IL-33 (20 g/ml) or a control
IgG (20 g/ml) respectively. Then, cells were harvested for intracel-
lular cytokine staining. In addition, sorted naive T cells were cul-
tured with the supernatant of TTCS-stimulated hCBMCs (referred
to as TTCS-hCBMCs sup) or the supernatant of IL-33-stimulated
hCBMCs (referred to as IL-33-hCBMCs sup) with or without neu-
tralizing antibodies against IL-2 (20 pg/ml, Rat IgG2a, «) for 5 days.
Finally, we stained intracellular cytokines in harvested cells using a
FACSCanto II (BD Biosciences, USA).

In vitro Treg cell-CD8" T cell co-cultures

After sorting naive T cells, they were cultured in TTCS-hCBMC
supernatant for 5 days with or without neutralizing antibodies
against IL-2 (20 ng/ml). Tregs were divided into ICOS™ and ICOS”
groups according to the expression of ICOS on CD25Foxp3*Tregs.
ICOS* and ICOS™ Treg subsets were also sorted from GC tissues
(FACSAria 11, BD Biosciences, USA). The expression of Ki-67 in Treg
subsets was detected by intracellular staining. Anti-CD3 (2 pg/ml)
and anti-CD28 (1 pg/ml) antibodies were added to RPMI 1640 with
10% FCS and 2 x 105/well CFSE-labeled CD8" T cells (sorted by
FACSAria 1) from healthy donors were cultured. Sorted ICOS* and
ICOS™ Treg subsets were then added with CD8* T cells at 1:2 ratio.
After a 5-day incubation, a CFSE fluorescence level and intracellular
cytokine staining were measured by flow cytometry for CD8* T
cells, and supernatants for ELISA analysis were collected.
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Mast cell proliferation and apoptosis assays

TTCS and NTCS were collected as described above. hCBMCs
were cultured with TTCS, NTCS, or TTCS with human IL-33 neutral-
izing antibody or a control IgG. Besides, mast cells were cultured
with human recombinant (hr) IL-33 (100 ng/ml) during mast cell
culture. As a measure of cell proliferation, CCK-8 (Dojindo, Japan)
was used at 0, 12, 24 and 48 h. Annexin V Apoptosis Detection
Kit (BD Biosciences, USA) or APO-Direct Apoptosis Detection Kit
(Invitrogen, USA) was used for 72 h to detect apoptosis, the meth-
ods as reported in the previous article [24].

In vivo tumor inhibition assay

Third Military Medical University’s Animal Ethical and Experi-
mental Committee approved animal experiments. A total of 10°
GC cells (SGC-7901 cells) were administrated subcutaneously to
5-7 weeks-old female NOD/SCID mice in 100 ml buffered saline.
There were 4 groups, 5 mice in each group. This about 7 days to
establish the GC mice model (Modeling was successful when a
tumor the size of a needle tip was seen subcutaneously at the
injection site in mice) and then the mice would undergo approxi-
mately three weeks of cell co-culture in vivo.

In cultured for 5 days, sorted naive T cells were stimulated with
TTCS-hCBMCs sup supplemented with neutralizing antibodies
against IL-2 or a control IgG2a. On day 7 after tumor cell inocula-
tion, 2 x 10°% activated (2 pg/ml anti-CD3 and 1 pg/ml anti-
CD28) polyclonal autologous CD8" T cells were co-cultured with
or without sorted Treg subsets at a 2:1 ratio for 5 days, before
being injected into the peritoneum (in 100 pl of buffered saline).
Two independent observers measured tumor volumes (V) using
the formula: V = A x B?/2 (A = axial diameter; B = rotational diam-
eter) every 3 days with calipers fitted with vernier scales. ELISA,
real-time PCR, and immunohistochemical staining of mouse
tumors were conducted following their euthanasia. The flow cyto-
metric analysis of mouse spleens was also performed on single
cells dissociated from the spleen.

Statistical analysis

Results are expressed as mean + SEM. Student’s t-test was gen-
erally used to analyze the differences between two groups, but
when the variances differed, the Mann-Whitney U test was used.
The linear regression analysis was used to assess the correlation
between different parameters. Survivorship was defined as the
period between surgery and death, or surgery and the last observa-
tion for those who survived. Using Kaplan-Meier method, cumula-
tive survival time was calculated and survival in months was
assessed by log-rank test. In the study, SPSS statistical software
(version 13.0) was used. A significance level of P < 0.05 was consid-
ered statistically significant.

Ethics statement

All experiments involving animals were conducted according to
the ethical policies and procedures approved by the Animal Ethical
and Experimental Committee of Third Military Medical University
(2019YFC1302200). The experiments involving human samples
were approved by the Ethics Committee of Southwest Hospital of
Third Military Medical University (2018YFC1303300). The written
informed consent was obtained from each subject.
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Results
IL-33 is increased in gastric cancer tissues

To evaluate the potential role of IL-33 in human GC, we ana-
lyzed IL-33 levels in different tumor, peritumoral and non-tumor
samples. According to our findings, GC tumors contain significantly
higher expressions of both IL-33 mRNA (Fig. 1A) and protein
(Fig. 1B) than peritumoral tissues and non-tumor tissues. More-
over, compared to Non-tumor culture supernatant (NTCS), IL-33
production in tumor-tissue culture supernatant (TTCS) was also
significantly increased (Fig. 1C). IL-33 protein levels were similarly
assessed by western blot (Fig. 1D) and immunohistochemical
staining (Fig. 1E). Furthermore, immunohistochemistry staining
showed that IL-33 was most likely derived from CD326* tumor
cells in GC (Fig. 1F). Additionally, we found that sST2, IL-33 cell’s
surface receptor and an endogenous inhibitor of IL-33 signaling
in a soluble form [25], was not changed in tumor tissues
(Fig. 1G) or in TTCS (Fig. 1TH) compared to peritumoral and non-
tumor tissues or NTCS. This indicates that IL-33 bioactivity is not
limited by sST2 in GC environments. We also detected other
important members of the IL-1 family and similar observations
were made when analyzing the mRNA (Supplementary Fig. 1A)
and protein (Supplementary Fig. 1B) levels of IL-1p and IL-18 in dif-
ferent tissues. Altogether, there is an increase in IL-33 in the GC tis-
sues of patients, as indicated by these findings.

IL-33 promotes tumor-associated mast cell survival by
inhibiting its apoptosis

In several diseases, IL-33 induces mast cell to secret proinflam-
matory cytokines [2]. Therefore, we wondered whether IL-33 also
modulated mast cell responses in GC environments. We first
observed mast cell infiltration in tumor tissues (Fig. 2A), with
expression ST2 (the IL-33 receptor) merged with tryptase staining
on mast cells (Fig. 2B). Moreover, we observed IL-33 levels and
mast cell infiltration in tumors were positively correlated
(Fig. 2C), suggesting that mast cell might be targets of IL-33 within
GC environment. To assess the effect of tumor-derived IL-33 on
mast cell, we stimulated hCBMCs with TTCS and then assessed
mast cell viability and survival rates. Using trypan blue staining,
comparing hCBMCs exposed to TTCS with those exposed to NTCS
from autologous GC patients, we found increased cell viability with
TTCS (Fig. 2D). In comparison with hCBMCs exposed to NTCS, a
delayed onset of apoptosis was observed by annexin V staining
(Fig. 2E) and deoxyuridine triphosphate nucleotide analysis
(Fig. 2F). To examine whether IL-33 might mediate these afore-
mentioned effects on mast cells, we putted neutralizing antibodies
against IL-33 in the hCBMCs/TTCS co-culture. Intriguingly, anti-
body blockade of IL-33 reversed TTCS-induced prolonged hCBMC
viability and survival (Fig. 2D-F). Exogenous IL-33 addition was
also demonstrated to prolong hCBMC viability (Supplementary
Fig. 2B) by delaying hCBMC apoptosis (Supplementary Fig. 2C
and D). These findings imply that tumor-derived IL-33 may func-
tion to increase mast cell survival through the inhibition of cell
apoptosis.

Tumor-derived IL-33 mediates Treg expansion by inducing mast
cells to secrete IL-2

IL-33 has been reported to contribute to Treg expansion in
infection-associated sepsis [26] and allergic dermatitis [27]. To
investigate whether analogous mechanisms may work in the GC
microenvironment, we first stimulated CD4*CD45RA™ naive T cells
with IL-33. However, IL-33 alone had no effects on Treg expansion
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(Fig. 3A and Supplementary Fig. 3B). As IL-33 exerted effects on
tumor-derived mast cells (Fig. 2), we postulated that IL-33 might
still indirectly affect Treg expansion through mast cell stimulation.
Thus, we stimulated naive T cells with the supernatant from TTCS-
stimulated hCBMCs and found that this significantly induced Treg
expansion. The effect was attenuated following the addition of
anti-IL-33 neutralizing antibodies (Fig. 3A). We also observed that
supernatant from IL-33-stimulated hCBMCs significantly induced
Treg expansion (Supplementary Fig. 3C). Moreover, signal pathway
inhibition experiments showed that supernatant from IL-33-
stimulated hCBMCs induced Treg expansion via the p38 MAPK
pathway (Fig. 3C).

Next, we observed that IL-2 concentrations in the supernatant
of TTCS-stimulated hCBMCs were significantly increased compared
to supernatant from non-hCBMCs or supernatant from TTCS-
stimulated hCBMCs treated with anti-IL-33 neutralizing antibodies
(Fig. 3B). Within GC tumors, Treg infiltration and IL-2 production
showed a strong positive correlation (Fig. 3E). To further determine
whether supernatant-contained IL-2 from TTCS-stimulated mast
cells contributed to Treg expansion, we added anti-IL-2 neutraliz-
ing antibodies to naive T cells stimulated with the supernatant
from TTCS-stimulated mast cells. Interestingly, antibody blockade
of IL-2 efficiently attenuated supernatant-induced Treg expansion
(Fig. 3F). Collectively, these results indicate that tumor-derived
IL-33 can mediate Treg expansion by inducing mast cells to secrete
IL-2.

IL-2-induced Tregs display an activated and
immunosuppressive phenotype

Phenotypic analysis of CD4*CD25"Foxp3* (G1 cell population)
versus CD4*'CD25Foxp3™ (G2 cell population) cells (Fig. 4A)
induced by supernatant from TTCS-stimulated hCBMC containing
control IgG2a or anti-IL-2 neutralizing antibody was conducted.
The expression of classical Treg and T cell activation marker,
including CD39, CD73, CTLA-4, LAP, ICOS, PD-1 and T cell activation
and memory markers CD69, CD44 and CD103 were all assessed
(Fig. 4B). Although Treg classical markers and T activation and
memory markers (Helios, PD-1, CD39, CD44, LAP, GATA3, CTLA-4,
ICOS, CD73, CD69 and CD103) were significantly overexpressed
in the G1 cell population compared to the G2 cell population, ICOS
expression on induced Foxp3* Tregs was notably increased in con-
trol IgG2a antibody containing cell cultures compared to those
containing anti-IL-2 neutralizing antibody (Fig. 4B). As a costimu-
latory receptor, ICOS is a marker of T cell activation. In short, these
results verify that Tregs induced by TTCS-stimulated hCBMC super-
natant displayed an activated phenotype.

IL-2-expanded ICOS’ Tregs exhibit increased inhibition of CD8*
T cell proliferation and anti-tumor effector activity

Given the reported enhanced ability of ICOS* Treg to restrain T
cell compared to ICOS™ Tregs [28], we hypothesized that ICOS*
Tregs induced by IL-2 from TTCS-stimulated hCBMCs may play
an important part in immunosuppression. Purified CD8" T cells
were co-cultured with ICOS™ Tregs or ICOS™ Tregs sorted from
induced Tregs cultured in TTCS-stimulated hCBMC supernatant
treated with either control IgG or anti-IL-2 neutralizing antibody
respectively. Interestingly, ICOS" Tregs inhibited significantly more
CDS8" T cell IFN-y, perforin and granzyme B production and prolif-
eration compared to ICOS™ Tregs (Fig. 5A and C and Supplementary
Fig. 4B). ICOS* Tregs also displayed increased proliferative activity
compared to ICOS™ Tregs (Fig. 5B).

To confirm the inhibitive effects of tumor-infiltrating ICOS™ Treg
on CD8" T cell, we repeated this assay using ICOS" Tregs or ICOS
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Tregs isolated from GC tumor tissue. Tumor-infiltrating ICOS*
Tregs also significantly suppressed CD8" T cell IFN-y, perforin
and granzyme B production and proliferation compared to
tumor-infiltrating ICOS™ Tregs (Fig. 5D and F and Supplementary
Fig. 4C). Tumor-infiltrating 1COS™ Tregs also exhibited enhanced
proliferative activity compared to ICOS™ Tregs (Fig. 5E). The data
obviously demonstrate that IL-2-expanded ICOS™ Tregs exhibit
enhanced suppression of CD8* T cell proliferation and anti-tumor
effector activity.

Growth and progression of GC tumors are inhibited in vivo by
blocking immunosuppressive ICOS* Tregs

To test the suppressive effects of ICOS* Tregs induced by TTCS-
stimulated hCBMCs (iTregs) on CD8" T cell immunity in vivo, a GC
mouse model (using NOD/SCID mice inoculating with SGC-7901)
was established using iTregs that were treated with an anti-IL-2
neutralizing antibody or a control IgG followed by their co-
injection with CD8" T cells. Tumor growth and progression were
observed in mice without CD8" T cell transfusion and mice co-
administered CD8* T cell and control IgG-treated iTregs (Fig. 6A
and B). In agreement with in vitro observations, mice receiving
CD8" T cells co-administered with anti-IL-2 neutralizing antibodies
showed decreased tumor volumes and slower disease progression
on day 19 (Fig. 6A and B). Mice co-administered CD8" T cells and
anti-IL-2 neutralizing antibodies showed increased CD8" T cell
infiltration in tumors (Fig. 6C) and increased IFN-vy, perforin and
granzyme B production (Fig. 6D and E and Supplementary
Fig. 5B). Moreover, increased IFN-y producing CD8* T cell was
observed in spleens of mice co-administered CD8" T cell and
anti-IL-2 neutralizing antibody-treated iTregs (Fig. 6D and Supple-
mentary Fig. 5A) compared with mice co-administered CD8" T cell
and control IgG-treated iTregs. These findings suggest that IL-2
induced ICOS" Tregs from TTCS-stimulated hCBMCs suppress
CD8" T cell immunity in vivo and thereby contribute to GC growth
and progression. Finally, we evaluated the clinical relevance of the
proportion of ICOS* Treg cells and the ICOS* Treg/CD8* T cell ratios
in GC patients. Comparing patients with high versus low ICOS*-
Tregs percentage (or rates ratio of ICOS* Tregs | CD8" T cells), the
44-month overall survival rates were signifificantly lower for those
within the higher percentage (or rates ratio of [COS* Tregs / CD8* T
cells) (Fig. 7A and B). Taken together, these findings suggest that
increased intratumoral ICOS* Tregs are associated with tumor pro-
gression and poor survival of GC patients.

Discussion

In an immunosuppressive tumor microenvironment, tumors
can modulate immune cell to facilitate tumor progression [24].
Understanding precisely how immune cells can influence cancer
progression has been a fundamental focus of cancer investigation.
In recent decades, it has been extensively studied how tumor-
mediated immunosuppression affects tumor growth [29]. Mast
cells [30] and Tregs [31] are tumor-infiltrating immune cells
within strong immunosuppressive effects. Here, we report that
gastric cancer derived IL-33 can lead to local mast cell to secret
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IL-2 to promote Treg cell expansion and ICOS expression. Although
tumor-infiltrating mast cells and Tregs have already been discov-
ered in GC [32,33], to our knowledge, this is the first demonstration
of a regulatory mechanism describing IL-33-induced mast cell to
produce IL-2 to induce Treg expansion in GC. Our results uncover
a novel mechanism for mast cell and Treg interaction and provide
new proof for the pro-tumoral roles of mast cells and Tregs within
the GC milieu.

The cytokine IL-33 is subordinate to IL-1 family and is involved
in cancer growth and metastasis [34]. IL-33 overexpression is asso-
ciated with hepatocellular carcinoma progression [35], and raised
expression of IL-33 are also found in lung cancer [36] and head
and neck squamous cell carcinoma [37]. In GC, the development
and transfer of GC cells are influenced by IL-33 in a dose-
dependent manner, according to previous studies [38]. A study
reported IL-33 deficient gp130F/F/IL-137" mice had reduced gastric
tumor growth and fewer pro-tumorigenic myeloid cells [39].
Inflammation is a well-established hallmark of cancer develop-
ment and progression and immune cells can be regulated by
tumor-derived signals to promote these processes. However, rela-
tively little is reported regarding the effects of IL-33 on immune
cells in GC milieu. Here, we showed that IL-33 was mainly pro-
duced by GC cells, which exerted biological function via ST2 recep-
tor. IL-33 binding allows membrane ST2 to interact with IL-1RAcP.
The IL-33/ST2/IL1RAcP complex then activates MAPK signalling
and NF-kB transcription factor via the MyD88 adapter, IL-1 recep-
tor associated kinase 1 (IRAK1), IRAK4 and TNF receptor associated
factor 6 (TRAFG). As a result, ST2-expressing immune cells are a key
target of IL-33 signaling in tumor microenvironments. These cells
include group 2 innate lymphoid cell (ILC2), Treg, Th1 cell, acti-
vated CD8" T cell and mast cell. IL-33 targets mast cells and con-
tributes to the deterioration of allergic and inflammatory
diseases. Soluble ST2 receptor (sST2) is an essential negative regu-
lator of IL-33 activity [40]. We detected sST2 expression in GC tis-
sue and non-tumor tissue and found low sST2 levels in both tissue
sites. Previous studies related to IL-33 and mast cells mostly
focused on IL-33 induced mast cell degranulation and cytokine
secretion [41,42]. Here, we unexpectedly discovered that TTCS pro-
tected mast cells from spontaneous apoptosis and enhanced their
proliferation via IL-33 signaling (Fig. 2D-F). We speculate that this
may explain why mast cell infiltration of GC is positively correlated
with IL-33 concentration (Fig. 2C).

Our previous studies have found that mast cells can exhibit a
pro-tumor phenotype during the intermediate and advanced
stages of GC, and that this is an independent and unfavorable prog-
nostic factor for GC patients [13]. IL-33 induced mast cell activa-
tion can be dependent or independent of IgE/antigen—FceRI
signals, such as prostaglandins, histamine, chemokines, IL-1, IL-
6, IL-13 and TNF-a [43,44]. Our present study found significantly
raised IL-2 production by mast cells following stimulation by GC
derived-IL-33. Pre-treatment of mast cells with signaling pathway
inhibitors identified the involvement of the MAPK pathway in IL-
33-induced mast cell IL-2 production.

Inducing T cell death or suppressing T cell proliferation, Tregs
are MHC class II restricted CD4" T cells [45]. NK cell-mediated
anti-tumor activity can be suppressed by Tregs [46]. Antigen-

Fig. 1. There is increased IL-33 expression in gastric cancer tissues. (A) IL-33 mRNA expression was determined using real-time PCR in autologous tumor, peritumoral, and
non-tumor tissue samples (n = 34). (B and C) IL-33 concentrations in autologous tumor, peritumoral and non-tumor tissues (n = 24) (B) or between autologous TTCS and NTCS
(n=8)(C) was analyzed by ELISA. (D) IL-33 production between autologous tumor (T), peritumoral (P) and non-tumor (N) tissues (3 pairs) were analyzed by western blot. (E)
A representative immunohistochemical staining of tumor, peritumoral, and nontumor mast cells of GC patients. Scale bars: 100 pm. (F) Infiltrated CD326"IL-33" cells were
seen in tumor tissues of GC patients by immunofluorescence staining. Green corresponds to CD326, red to IL-33 and blue to DAPI-stained nuclei. Scale bars: 50 um. (G and H)
sST2 concentrations in autologous tumor, peritumoral and non-tumor tissues (n = 24) (B) or between autologous TTCS and NTCS (n = 8) (C) was analyzed by ELISA. The
horizontal bars in panels A, B and G represent mean values. Each ring or dot in panels A, B, C, G and H represents 1 patient. ¥, P < 0.05; **, P < 0.01; n.s., P > 0.05 for groups
connected by horizontal lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Induced mast cell secretion of IL-2 by tumor-derived IL-33 mediates Treg expansion. (A) Naive T cells (CD4"CD45RA") were stimulated with different condition culture
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Fig. 2. By promoting proliferation and inhibiting apoptosis, IL-33 increases the number of mast cells in tumor tissue. (A) Immunohistochemical analysis of mast cells positive
for tryptase (red) in tumor, peritumoral, and non-tumor tissues from GC patients. Scale bars: 100 pm. (B) Representative immunofluorescence staining images showed
tryptase*ST2* mast cell infiltration interactions tumor tissues of GC patients. Green, tryptase; red, ST2; and blue, DAPI-stained nuclei. Scale bars: 50 pm. (C) Analyses were
conducted on the correlation between mast cells and IL-33 production in GC tumors. Results were expressed as the number of mast cells per field and IL-33 mRNA expression
(n = 34) or IL-33 concentration (n = 24) in tumor tissues of patients with GC. (D-F) Different culture supernatants were added to hCBMCs as described in Methods for the
indicated time periods. Trypan blue staining was used to assess cell viability (D) (n = 5). The apoptosis of GC cells was analyzed by annexin V (E) and deoxyuridine
triphosphate nucleotides (dUTP) (F) detection (n = 5). Each dot in panel C represents 1 patient. *, P < 0.05; **, P < 0.01 for groups connected by horizontal lines. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. IL-2-expanded ICOS™ Tregs exhibit increased suppression of CD8" T cell proliferation and anti-tumor effector function. Naive T cells (CD4"CD45RA") were stimulated
with TTCS-hCBMCs supernatant with IL-2 neutralizing antibodies (20 pg/ml) or control IgG2a (20 pg/ml) for 5 days. According to the expression of ICOS, the differentiated
Tregs were divided into ICOS* Tregs or ICOS™ Tregs subsets. (A and C) ICOS" Tregs and ICOS™ Tregs subsets were sorted by FACS, and co-cultured with CD8" T cells for 5 days.
Representative data (A) and statistical analysis (C) of CD8" T cell proliferation and intracellular cytokines production were shown (n = 5). (B) Representative data and
statistical analysis of Ki-67 expression on ICOS* Tregs and ICOS™ Tregs subsets respectively. (D and F) ICOS* Tregs and ICOS™ Tregs subsets sorted from tumor tissues of GC
patients, and co-cultured with CD8" T cells for 5 days. Representative data (D) and statistical analysis (F) of CD8" T cell proliferation and intracellular cytokines production
were shown (n = 5). (E) Representative data and statistical analysis of Ki-67 expression on ICOS" Tregs and ICOS™ Tregs subsets sorted from tumor tissues of GC patients. *,
P < 0.05; **, P < 0.01 for groups connected by horizontal lines.
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presenting cells (APCs) are evidently considerable for the regula- in mast cell-deficient mice, suggesting mast cells are capable of
tion of T cell differentiation [47]. Although mast cells are non- modulating T-cell responses as well [48,49]. Furthermore, mast
professional APCs, the CD4" T cell response to infection was altered cells could secrete IL-6 to promote Th17 differentiation leading
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to increased inflammation and autoimmunity in diabetic mice [50].
However, little is known about the effects of mast cells and mast
cell-derived IL-2 in the tumor microenvironment. In our study,
we confirmed that mast cell-derived IL-2 is important for Treg dif-
ferentiation, expansion and CD8* T cell suppression in the GC
milieu.

Treg subsets with differing states of differentiation/activation
can be discerned using various markers. Here, we found that Treg
expansion was suppressed in vitro when mast cell derived-IL-2 was
neutralized. It's known that CD25 is the receptor for IL-2, CD25*
Foxp3" Treg may respond to IL-2 stimulation in comparison to
the CD25" population of cells that do not have the IL-2 receptor.
Several recent studies suggest that CD25 molecules on Treg cells
and possibly other cells are capable of influencing T-cell homeosta-
sis via IL-2 deprivation [51]. In addition, IL-2 neutralizing antibod-
ies can be added to the in vitro culture system to deepen our
understanding of IL-2 on T cell homeostasis. Phenotypic analysis
of CD25*Foxp3* compared with CD25 Foxp3~ cells cultured with
TTCS-mast cell supernatant treated with control IgG2a or anti-IL-
2 neutralizing antibody showed altered surface marker expression
on CD25" Foxp3™ Treg cells, including CTLA-4, PD-1, ICOS, CD39,
CD73, LAP, CD103, CD44 and CD69. ICOS expression on CD25* Fox-
p3” cells were reduced following IL-2 blockade. CD28 family mem-
ber ICOS is well known as a costimulatory molecule expressed on T
cells after they have been activated. Treg ICOS expression marks an
activated Treg phenotype with enhanced suppressive capacity
[52]. In follicular lymphoma, follicular Tregs have been reported
to exhibit high ICOS expression and strong inhibition of CD4" effec-
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tor T cell activity [53]. Besides, ICOS" Tregs in GC and colorectal
cancer (CRC) patients were closely associated with H. pylori in gas-
tric epithelium and their prognosis, overall survival was longer in
patients with low ICOS* Tregs than in those with high ICOS* Tregs,
and patients with anti-H. pylori antibody (Hp-Ab) showed shorter
recurrence-free survival than those without Hp-Ab, which sug-
gested pre-operative H. pylori eradication has potential as a novel
immunotherapy for GC and CRC patients [54]. Nonetheless,
whether and how ICOS* Tregs could modulate anti-tumor CD8*
cytotoxic T cells has not been entirely researched in GC. Using a
combination of flow cytometry, cell sorting, cell co-cultures and
neutralizing antibodies, our results show that mast cell-derived
IL-2 can up-regulate ICOS expression in Tregs. Previous studies
have shown that the way to create LAK cells is to use high doses
of IL-2, which has shown toxicity. A recent study with innovative
value shows effects of IL-2 (200 U/ml) with immune-enhancing
effects on the expression of activating NKG2D, inhibitory CD158a
and CD158b receptors on CD8" T, NKT-like and NK cell lymphocyte
subsets originating from regional lymph nodes of melanoma
patients in vitro [55]. Furthermore, Tregs were divided into ICOS*
and ICOS™ subsets and ICOS™ Tregs displayed a superior prolifera-
tive and immunosuppressive ability compared to ICOS™ Tregs.
Tumor-infiltrating lymphocytes (TILs) have been used as a bio-
marker of the host immune response to cancer and the level of TIL
infiltration is closely related to cancer patient prognosis [33]. ICOS*
Tregs were abundantly observed in the late stages of gastric cancer
and exhibited the ability to produce IL-10, but not IFN-y, TNF, or IL-
17, which was closely related to plasmacytoid dendritic cells
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(pDCs) and their expression of ICOS-L and TLR9 as well as H. pylori
infection [56]. CD8" T cells are the vital component of TILs that play
crucial anti-tumor role. In our study, we co-cultured CD8* T cells
with Tregs in vitro and found that ICOS™ Tregs greatly inhibited
CD8" T cell proliferation and their anti-tumor effector functions.
Importantly, using an in vivo GC model, we revealed that ICOS*
Tregs inhibited CD8" T cell immunity and promoted GC develop-
ment in an IL-2 dependent manner. Our results are consistent with
those from Tu JF et al, in which ICOS* Tregs were identified as the
major immunosuppressive cells in the liver carcinoma microenvi-
ronment [57].

The relationship between infiltrating ICOS™ Tregs and GC
patient outcomes is of clinical interest. Our results found that
patients with higher proportions of ICOS* Tregs in their GC showed
worse prognoses than those with lower ICOS* Treg proportions. In
addition, patients with a higher ICOS™ Tregs/CD8" T cell ratio in
their GC exhibited a significantly increased risk of death than those
with a lower ratio, and GC survival may be influenced by this factor
independently. Together with other studies [58], our findings high-
light that ICOS" Treg infiltration plays an indispensable role in GC
tumor development and clinical prognosis through the suppression
of anti-tumoral CD8" T cell proliferation and effector function,
thereby leading to GC tumor progression.

Conclusions

Here, we reveal that GC-derived IL-33 induces mast cells to pro-
duce IL-2 through the P38 MAPK pathway, which further promotes
the expansion of ICOS* Tregs. This leads to enhanced Treg immuno-
suppression and decreased anti-tumor CD8" T cell activity (Fig. 7C).
Overall, it provides new insight into how these mechanisms work,
through which mast cells and Treg subset communicate to regulate
the GC microenvironment in favor of tumor progression. Our dis-
coveries could help the development of new immunomodulatory
strategies for improved GC diagnosis, treatment and patient
prognosis.
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