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Abstract

Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no 

effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis 

of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured 

NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 

1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat 

protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor 

(INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like 

phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated 

variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 

6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles 

homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-

reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), 

alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound 
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O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase 

δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as 

causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) 

analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic 

risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. 

These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can 

guide the development of targeted therapeutics.

With rising obesity rates, the prevalence of nonalcoholic fatty liver disease (NAFLD) has 

increased to epidemic proportions. NAFLD is caused by the deposition of excess fat in the 

liver (not due to alcohol) and can lead to advanced liver diseases, including inflammation, 

fibrosis/cirrhosis (scarring) and hepatocellular carcinoma (HCC; liver cancer)1. NAFLD is 

associated with metabolic diseases including dy slipidemia, hypertension, cardiovascular 

disease and diabetes, although causal relationships have not been established2–8. More than 

90% of severely obese individuals suffer from advanced NAFLD, which is associated with 

decreased lifespan9. The disease imposes an annual direct medical cost of approximately 

$103 billion in the United States and will soon become the leading indication for liver 

transplantation10. Causes of NAFLD are poorly understood, and there are presently no 

effective treatments, making this a large unmet medical need.

We and others have shown that NAFLD is partially heritable and have identified variants 

associated with disease8,11–20. These variants explain only about 20% of the heritability, 

suggesting that additional genetic risk variants remain to be identified. NAFLD steatosis 

can be measured using computed tomography (CT) or magnetic resonance imaging (MRI), 

which have an r2 with histological steatosis of 0.78 and 0.98, respectively21,22. Through the 

use of electronic health records, cases and controls can now be identified by International 

Classification of Diseases (ICD) codes and using natural language processing (NLP) 

of imaging and pathology reports. Furthermore, availability of liver imaging in large 

population-based cohorts and biobanks now allows direct assessment of these populations 

for the study of NAFLD and its associated comorbidities.

Results

GOLDPlus meta-analysis

We carried out a multi-ancestry meta-analysis of CT-measured liver fat (Genetics of 

Obesity-related Liver Disease (GOLD)) with UK Biobank (UKBB) MRI liver proton 

density fat fraction (PDFF), UKBB NAFLD, Electronic Medical Record and Genomics 

(eMERGE) NAFLD and FinnGen NAFLD (Extended Data Fig. 1). In all analyses, the 

top associated variants were at patatin-like phospholipase domain-containing protein 3 

(PNPLA3), verifying congruency across phenotypes. We identified 17 independent genome-

wide significant variants (P < 5.00 × 10−8; Table 1 and Supplementary Fig. 1). We 

prioritized genes for annotation if the index variant was an exonic variant, was in high 

LD (linkage disequilibrium, r2 > 0.85) with an exonic variant, and/or was an expression 

quantitative trait loci (eQTL) for the gene expressed in liver. Genes that were within 1 

Mb of the index variant and predominantly expressed in liver, prioritized by data-driven 
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expression prioritization integration for complex traits (DEPICT) analysis, and/or nearest to 

the index variant were also prioritized for annotation23. One region contained possibly two 

independent loci within close proximity—alcohol dehydrogenase 1B (ADH1B)-rs1229984, 

which is within 500 kb of microsomal triglyceride transfer protein large subunit (MTTP)-
rs7661964. To determine whether these two signals were independent, we carried out 

conditional analyses in the UKBB multi-ancestry dataset. ADH1B-rs1229984 had P values 

of 5.09 × 10−6 and 1.03 × 10−5 before and after conditioning on MTTP-rs7661964, 

respectively. MTTP-rs7661964 had P values of 2.01 × 10−7 and 4.09 × 10−7 before and 

after conditioning on ADH1B-rs1229984, respectively. We defined novel variants as those 

more than 1 Mb from published NAFLD or hepatic steatosis genome-wide association study 

(GWAS) genome-wide significant variants (P < 5.00 × 10−8) at the time of manuscript 

submission. We identified novel associations in or near torsin family 1 member B (TOR1B), 

fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/

growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory 

element-binding transcription factor 1 (SREBF1), and patatin-like phospholipase domain-

containing protein 2 (PNPLA2; Table 1 and Supplementary Fig. 1). We confirmed 

previously identified NAFLD associations in or near PNPLA3, transmembrane 6 

superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), 

tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial 

amidoxime-reducing component 1 (MARC1), MTTP, ADH1B, transmembrane channel 

like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and 

receptor-type tyrosine-protein phosphatase δ (PTPRD)8,11–20. One variant LOC157273/

protein phosphatase 1 regulatory subunit 3B (PPP1R3B)-rs4841132 (P = 4.21 × 10−13; Phet 

= 7.44 × 10−19) was removed from downstream analysis due to phenotype heterogeneity 

(Methods). Rs4841132 is known to promote liver damage by increasing glycogen, which 

is a distinct pathology from NAFLD24. In a separate European (EUR) ancestry-only meta-

analysis (Extended Data Fig. 2), only the PTPRD locus was not genome-wide significant 

(Supplementary Tables 1 and 2), likely due to reduced power as we do not see heterogeneity 

of effect across ancestries.

Effects of variants by study, ancestry, sex and alcohol use

We assessed heterogeneity of effect for NAFLD-associated variants in GOLDPlus. After 

Bonferroni correction, only TM6SF2-rs58542926 and APOE-rs429358 showed statistically 

significant heterogeneity of effect. However, direction of effect across studies was 

congruent. For completeness, we show the effects of the loci overall and stratified by cohort 

(Table 1 and Supplementary Table 3, respectively).

We next assessed the effects of NAFLD-associated variants across ancestries (EUR, n = 

15,880; African (AFR), n = 5,607; Hispanic (HIS), n = 1,674 and Chinese (CHN), n = 360; 

Fig. 1 and Extended Data Fig. 3) and sex (males, n = 11,006; females, n = 12,515; Extended 

Data Fig. 4). For these analyses, we used the GOLD Consortium data, where we had the 

highest quality measures of hepatic steatosis in population-based cohorts (Supplementary 

Tables 4–10). PNPLA3 (β = 0.24 EUR, β = 0.27 AFR, β = 0.24 HIS, β = 0.17 CHN, 

Phet = 5.69 × 10−6) exhibited significant heterogeneity of effect across ancestries. However, 

a limited sample size in the CHN-ancestry cohort likely caused an unstable estimate of 
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beta, influencing the estimate of heterogeneity. After the removal of the CHN cohort from 

the meta-analysis, the heterogeneity P value was not significant after Bonferroni correction 

(PNPLA3, Phet = 0.69). No other loci showed significant heterogeneity of effect by ancestry 

or sex.

We found >10% absolute difference in effect allele frequencies (EAFs) for index variants 

in PNPLA3, GCKR, TRIB1, GPAM, MARC1, ADH1B, MTTP, FTO, INSR, TMC4/
MBOAT7, SREBF1 and PTPRD across ancestries (Fig. 1 and Extended Data Fig. 3). 

The starkest contrast in allele frequencies across ancestries existed in ADH1B. In the 

CHN-ancestry cohort, ADH1B (rs1229984-C) had an EAF of 0.26, while it had >91% 

EAF in EUR-, AFR-, and HIS-ancestry cohorts. The variance explained across ancestries 

paralleled allele frequencies more than effect sizes, which were similar across ancestries 

(Supplementary Table 10). The highest variances explained were 2.79% in the HIS cohort 

for PNPLA3, 2.42% in the CHN cohort for GCKR and 2.04% in the EUR cohort for 

PNPLA3 (Supplementary Table 10). Taken together, these findings suggest EAF, more than 

effect size, accounts for differences in genetic disease burden across ancestries.

To assess the effects of alcohol use, we used our largest population-based cohort, UKBB 

MRI-PDFF, to perform a GWAS analysis stratified by alcohol use (Supplementary Table 

11). After Bonferroni correction, only ADH1B exhibited significant heterogeneity of effect 

(Phet = 6.16 × 10−4) between heavy (≥14 drinks per week for males or ≥7 drinks a week 

for females; n = 21,356) and light (≤1 drinks per week for males and females; n = 9,871) 

drinkers (Supplementary Table 12). ADH1B had a significantly greater effect (β = 0.20) in 

heavy drinkers compared to light drinkers (β = 0.03).

Tissue, gene set and pathway analyses

To further understand the biology underlying NAFLD associations, we used DEPICT to 

identify enriched tissues and cell types (false discovery rate (FDR) P < 0.05)23. Input 

included the 17 NAFLD-associated variants. Liver and adipose tissue were the most 

enriched tissues (Extended Data Fig. 5). Epithelial cells (hepatocytes) were the most 

enriched cell type (Extended Data Fig. 5). Using mSigDB, we computed significant gene 

functional overlaps25. We found enrichment (FDR P < 0.01) in the following biological 

functions: lipid homeostasis, lipid metabolic processes, monocarboxylic acid metabolic 

processes, alcohol metabolic processes, lipid biosynthesis, regulation of cholesterol 

biosynthesis and steroid biosynthesis.

Association of NAFLD variants with other phenotypes

We used publicly available GWAS data to perform a phenome-wide association study 

(PheWAS) of NAFLD-risk-increasing alleles with ICD-based diseases, alcohol intake, 

cardiovascular and body composition measures, and lipid, metabolic and liver function 

tests (Fig. 2). The NAFLD-risk-increasing allele of the variants broadly separated into 

the following two groups: one showing significant associations with increased serum low-

density lipoprotein cholesterol (LDL) and increased alanine aminotransferase (ALT; TRIB1, 

GCKR, COBLL1/GRB14, INSR, PNPLA2, SREBF1, MTTP, GPAM, MARC1, TMC4/
MBOAT7, TOR1B and ADH1B associations) and one exhibiting decreased associations 

Chen et al. Page 5

Nat Genet. Author manuscript; available in PMC 2024 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with LDL and increased associations with ALT (FTO, PTPRD, PNPLA3, TM6SF2 and 

APOE). Further separations showed that variants at TRIB1, GCKR, COBLL1/GRB14, 

INSR, PNPLA2 and SREBF1 were distinguished from GPAM, MARC1, TMC4/MBOAT7, 

TOR1B and ADH1B by being associated with high triglycerides (TG) and low high-density 

lipoprotein cholesterol (HDL). NAFLD-associated variants at TRIB1 and GCKR were 

distinguished from COBLL1/GRB14, INSR, PNPLA2, SREBF1 and MTTP by being 

associated with low risk of cholelithiasis and cholecystitis. GCKR had a particularly 

strong association with lower insulin-like growth factor 1 (IGF-1) and sex hormone-binding 

globulin (SHBG) levels. NAFLD-increasing associations at FTO were associated with 

increased TG, whereas those at PTPRD, PNPLA3, TM6SF2 and APOE were associated 

with decreased TG. FTO clustered alone and differed from other loci in having very strong 

association with increased body mass index (BMI). Likewise, APOE clustered alone and 

differed from PNPLA3 and TM6SF2 associations in having an increased association with 

body composition measures and decreased association with familial Alzheimer’s disease. 

We also looked at the effect of PheWAS subgroupings on diseases/traits in UKBB and 

depicted them as forest plots showing associations between subgroups and human diseases/

traits (Fig. 3). We found similar results as mentioned above, where the variants grouped in 

the glucose, insulin, absorb and TG divert categories had increased LDL and ALT, while 

those grouped as low lipid burn, low output and high input had increased ALT but decreased 

LDL. Variants grouped as glucose and insulin differed from those in TG divert by being 

associated with high TG and low HDL. Those grouped in categories of low output and 

high input were associated with decreased TG. Variants grouped in the high input category 

differed from the low output by having an increased association with BMI. A schematic 

providing biological context for the PheWAS subgroupings is presented in Fig. 4.

Association of NAFLD polygenic risk score (PRS) with other human phenotypes

To assess the cumulative effects of NAFLD-risk-increasing variants on disease, we 

constructed a PRS based on the GOLD-weighted (multi-ancestry) NAFLD-associated single 

variants (n = 17) and performed a PheWAS using ICD-9 and ICD-10 diagnoses available in 

an independent cohort, that is, Michigan Genomics Initiative (MGI; Fig. 5; characteristics 

in Supplementary Table 13). The PRS strongly associated with digestive phenotypes, that 

is, other chronic nonalcoholic liver diseases (odds ratio (OR) = 1.38 (95% confidence 

interval (CI) = 1.33–1.43)) as the most significant, chronic liver disease and cirrhosis (OR 

= 1.37 (95% CI = 1.31–1.42)), cirrhosis without mention of alcohol (OR = 1.48 (95% CI 

= 1.39–1.59)), liver abscess and sequelae of chronic liver disease (OR = 1.52 (95% CI = 

1.39–1.66)), other disorders of liver (OR = 1.24 (95% CI = 1.18–1.29)), abnormal results 

of liver function (OR = 1.24 (95% CI = 1.17–1.31)), portal hypertension (OR = 1.51 (95% 

CI = 1.36–1.69)), esophageal bleeding (OR = 1.46 (95% CI = 1.32–1.62)), abnormal serum 

enzyme levels (OR = 1.16 (95% CI = 1.11–1.21)), nonmalignant ascites (OR = 1.24 (95% CI 

= 1.15–1.34)) and liver transplant (OR = 1.45 (95% CI = 1.27–1.67)) as the least significant 

digestive phenotype. We also found significant associations with malignant liver neoplasm 

(OR = 1.60 (95% CI = 1.39–1.83)), cancer of liver and intrahepatic bile duct (OR = 1.35 

(95% CI = 1.21–1.50)), type 2 diabetes (OR = 1.07 (95% CI = 1.04–1.09)) and alcoholic 

liver damage (OR = 1.65 (95% CI = 1.45–1.89)).
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Effects on liver outcomes by PRS percentile

We then examined the effect of the PRS on NAFLD, cirrhosis and HCC by PRS percentiles. 

Higher NAFLD PRS was strongly associated with an increased OR for NAFLD in MGI 

(Fig. 6a). Compared to those in the PRS bottom decile, individuals in the top 10%, 5% and 

1% had an OR = 2.79 (95% CI = 2.36–3.29), 3.46 (95% CI = 2.88–4.15), and 4.77 (95% 

CI = 3.62–6.27), respectively, for NAFLD. Higher NAFLD PRS was also associated with 

increased odds of both cirrhosis (top 10% OR = 2.51 (95% CI = 1.98–3.17), top 5% OR = 

3.43 (95% CI = 2.66–4.41) and top 1% OR = 5.14 (95% CI = 3.59–7.36)) and HCC (top 

10% OR = 2.89 (95% CI = 1.76–4.76), top 5% OR = 4.25 (95% CI = 2.53–7.16) and top 1% 

OR = 5.80 (95% CI = 2.83–11.92); Fig. 6b,c) in MGI.

Mendelian randomization (MR)

To determine whether NAFLD causally influences liver and metabolic diseases and traits, 

we performed two-sample MR using variant-NAFLD effect estimates from GOLD as 

the exposure and related publicly available and UKBB GWAS as the outcome. NAFLD-

associated variants with an F-statistic >10 were used as a combined instrumental variable for 

steatosis (n = 11; Supplementary Table 14; combined F statistic = 45.4)26. Using the GOLD 

effects as the exposure, we found NAFLD increased the risk of liver fibrosis and cirrhosis 

(ICD K74, OR = 1.002, 95% CI = 1.001–1.003; MR-Egger, P = 1.88 × 10−3; OR = 1.001, 

95% CI = 1.001–1.002; inverse-variance weighted (IVW), P = 8.65 × 10−5) and esophageal 

varices (ICD I85; OR = 1.003, 95% CI = 1.002–1.005, MR-Egger P = 9.36 × 10−4; OR = 

1.002, 95% CI = 1.001–1.003, IVW P = 3.51 × 10−4; Extended Data Fig. 6). The MR-Egger 

heterogeneity P values were not significant for fibrosis (Phet = 0.32) but were significant for 

esophageal varices (Phet = 0.02). The MR-Egger pleiotropy P values were not significant 

for fibrosis (P = 0.08) but were significant for esophageal varices (P = 0.03), indicating 

horizontal pleiotropy may be driving the results of the esophageal varices MR. Sensitivity 

analyses are shown in Extended Data Fig. 6c,d.

We then assessed the causal effects of metabolic disorders, body composition measures 

and advanced liver disease on NAFLD. We used the GOLD all-ancestry meta-analysis as 

the outcome and independent genome-wide significant variants (P < 5.00 × 10−8) from 

previously published GWAS (Supplementary Table 15) as the exposure. Increased BMI (OR 

= 1.29, 95% CI = 1.05–1.59, MR-Egger P = 0.02; OR = 1.203, 95% CI = 1.12–1.29, IVW 

P = 1.02 × 10−7) and waist circumference (OR = 1.36, 95% CI = 1.02–1.82, MR-Egger 

P = 3.6 × 10−2; OR = 1.18, 95% CI = 1.08–1.29, IVW P = 3.71 × 10−4) increased risk 

of NAFLD (Extended Data Fig. 7). The MR-Egger heterogeneity and pleiotropy P values 

were not significant for BMI and waist circumference. The sensitivity analyses are shown in 

Extended Data Figure 7c,d.

Discussion

The present study represents the largest GWAS meta-analysis of CT-measured, MRI-

measured and diagnostic-code-assessed NAFLD to date. We identified 17 loci that include 

new genes associated with NAFLD. The effects of these variants on NAFLD were congruent 

across study, ancestry and sex. However, some of the associated variants have EAF 
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differences across ancestries, which were consistent with differences in the population 

burden of NAFLD. One variant, ADH1B-rs1229984, had a substantially varied effect when 

stratified by alcohol consumption. Tissue and pathway enrichment analyses identified liver, 

lipid, cholesterol, steroid, alcohol and monocarboxylic acid processes as being enriched. 

PheWAS analysis highlighted at least seven subtypes/clusters of NAFLD-associated variants 

and implicated genes that have a role in mitochondrial, very low-density lipoprotein 

cholesterol (VLDL), cholesterol and de novo lipogenesis processes. A PRS of the NAFLD-

associated genetic variants can identify people with an elevated risk of NAFLD, cirrhosis 

and HCC.

Our approach combining imaging, ICD-based and NLP-based diagnosis of NAFLD offers 

substantial advantages over traditional histology- or single modality-based GWAS. The use 

of ICD-based diagnosis could underestimate the disease; however, this causes the statistics 

to move toward the null so that any positive associations are still valid and interpretable. 

These nonhistology measures are less expensive, less invasive and more ethically applicable 

to asymptomatic individuals than liver biopsy. The inclusion of nonhistology-measured 

NAFLD increases power and decreases ascertainment bias. Furthermore, by assessing the 

heterogeneous effects of variants across multiple modalities, we were able to identify a 

variant associated with other types of liver disease, such as glycogen storage disease, that 

can be misdiagnosed as NAFLD and remove it from analysis. Thus, to reduce possible 

misdiagnosis, decrease ascertainment bias and increase power, we propose using multiple 

methods for measuring NAFLD when available.

One method used to assess fatty liver is abdominal MRI. To increase the power of our 

analysis, we used a convolutional neural network (CNN) to train an algorithm to measure 

MRI-PDFF in all UKBB participants with abdominal MRI (Supplementary Table 16). 

We then validated and tested the computed values in overlapping samples with UKBB 

MRI-PDFFs measured by expert radiologists. GWAS with the CNN-derived MRI-PDFFs 

identified variants near PNPLA3, TM6SF2, APOE and GCKR as the most strongly 

associated, verifying the sensitivity and specificity of the measure (Supplementary Table 

17). GWAS with just 4,616 samples where the MRI-PDFF value was known gave an 

association P value for PNPLA3 of 2.61 × 10−24, whereas GWAS of 43,293 samples 

with CNN-derived MRI-PDFF values decreased the P value to 2.18 × 10−132. Combining 

machine-learning methods with expert MRI or other imaging measures greatly increases the 

efficiency with which we can analyze large numbers of imaging studies present in biobanks 

and medical record archives. Thus, this combination of tools can facilitate larger sample sets 

to study the genetic epidemiology of many human diseases and traits.

The power of our meta-analysis allowed us to identify several genome-wide significant 

variants associated with hepatic steatosis and NAFLD that were new at the time of 

manuscript submission, including TOR1B, FTO, COBLL1/GRB14, INSR, SREBF1 and 

PNPLA2. Our group and others have shown TOR1B to be associated with elevated 

serum liver enzymes27 and cirrhosis28, but here we additionally show a strong association 

with direct measures of hepatic steatosis and NAFLD. Previously implicated variants 

that were confirmed by our analyses include PNPLA3, TM6SF2, APOE, GCKR, TRIB1, 

GPAM, MARC1, MTTP, ADH1B, TMC4/MBOAT7 and PTPRD8,11–20. Since the time 
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of manuscript submission, recent publications29,30 have also reported NAFLD-associated 

variants in or near TOR1B, FTO, COBLL1 and PNPLA2, reinforcing our studies.

We identified seven distinct clusters among the NAFLD variants and their associations 

with related phenotypes and cellular localization of the resulting protein product. NAFLD-

promoting alleles in TRIB1 and GCKR were associated with increased TG levels in 

our PheWAS. GCKR is an established variant associated with hepatic steatosis12. TRIB1 
has been previously associated with lipid levels, myocardial infarction and liver function 

tests27,31,32. Both TRIB1 and GCKR are thought to use glucose to promote de novo 

lipogenesis in liver, which may explain the identical associations with hepatic steatosis 

and related phenotypes33,34. Mice lacking TRIB1 have increased fatty acid synthesis and 

incorporation of diacyl to triacyl glycerol35. GCKR negatively regulates glucokinase; in 

the absence of GCKR, glucokinase promotes many carbohydrate-responsive processes, 

including promoting de novo lipogenesis36. In our PheWAS, we observed that NAFLD-

promoting variants at GCKR and TRIB1 were associated with increased cholesterol and risk 

for myocardial infarction. These are the changes that would be predicted to occur if there 

was a loss of function at these genes that promoted de novo lipogenesis and cholesterol 

synthesis. The NAFLD-promoting variant at GCKR, however, was strongly associated with 

lower glucose and lower prevalence of diabetes, whereas the NAFLD-promoting variant at 

TRIB1 was neutral in this regard. This suggests that the loss of these genes does not result in 

molecular changes that are completely convergent.

Like TRIB1 and GCKR, NAFLD-increasing variants in COBLL1/GRB14, INSR, PNPLA2, 

SREBF1 and MTTP were associated with increased TG, but unlike TRIB1 and GCKR were 

associated with increased glucose and glycated hemoglobin. Heterozygous mutations in 

PNPLA2 have been shown to cause a Mendelian disease, that is, neutral lipid storage disease 

(NLD). NLD is characterized by severe accumulation of cytoplasmic lipid droplets and 

associated with abnormal lipid metabolism in multiple tissues with muscle weakness, insulin 

resistance and diabetes and hepatic steatosis37. SREBF1 is a transcription factor activated 

by insulin that regulates hepatic de novo lipogenesis38. Experimental evidence has shown 

that increased expression of SREBF1 contributes to NAFLD via de novo lipogenesis39. 

GRB14 is a negative regulator of insulin signaling. Downregulation of Grb14 in mice 

decreased blood glucose and improved liver steatosis40,41. The metabolic effects of insulin 

are mediated through INSR. Defects in INSR impair the biological response to insulin and 

lead to insulin resistance42. Insulin resistance has been shown to promote hepatic steatosis, 

perhaps by causing the increased release of free fatty acids from adipose tissue that can go 

to the liver to increase fatty liver42. MTTP is a well-known gene whose product transfers 

phospholipids and triacylglycerols to nascent apoB for the assembly of lipoproteins, has 

previously been associated with NAFLD, and whose absence causes the Mendelian disease 

abetalipo-proteinemia43,44. MTTP, unlike others in this set, did not associate with decreased 

HDL and BMI, reflecting different biology. This is likely due to effects in the intestine, 

where it helps in absorption and packaging of lipids; the other members of this group were 

related to insulin biology.

In contrast to the abovementioned genes, NAFLD-promoting variants in GPAM, MARC1, 

TMC4/MBOAT7, TOR1B and ADH1B associated with low TG but high LDL, HDL, 
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ischemic heart disease and hypertension. The functions of steatosis-promoting alleles 

(GPAM, ADH1B and TOR1B) include TG synthesis and alcohol/retinol metabolism. GPAT1 

catalyzes the first step in glycerolipid biosynthesis and promotes TG synthesis. Both GPAM 
and ADH1B are highly expressed in adipose and liver tissue45. ADH1B is a member of 

the alcohol dehydrogenase family whose members metabolize many substrates, including 

ethanol, retinol, aliphatic alcohols, hydroxysteroids and lipid peroxidation products, and has 

previously been shown to be associated with NAFLD19,46. Notably, the variant identified 

in ADH1B shows positive selection in East Asians47 and is associated with alcohol use48. 

People without this allele are not able to metabolize alcohol well, have adverse reactions to 

alcohol and are less likely to become alcohol-dependent. Other substrates that ADH1B could 

affect to promote NAFLD and advanced liver disease include retinol, which when present 

in high amounts promotes cirrhosis49. Much less is known about the function of TOR1B. 

However, conditional deletions of torsins in mouse hepatocytes resulted in profound lipid 

dysregulation, which included increased intracellular lipids, decreased LDL/TG secretion, 

and decreased circulating lipids50. The MARC1 fatty liver-promoting allele has been shown 

to increase NAFLD and alcoholic cirrhosis, but its physiological function on NAFLD 

remains unclear13,51. Liver-specific knockout of Lpiat1, the mouse homolog of MBOAT7, 

altered the fatty acid content of phosphoinositols and activated SREBP-1c to increase de 

novo lipogenesis and liver inflammation52. Induction of SREBP-1c alone, however, would 

not explain why individuals carrying the MBOAT7 NAFLD-promoting allele have decreased 

TG and increased LDL and HDL, suggesting that other molecular details of its action remain 

to be elucidated. Overall, our results suggest that these variants (GPAM, ADH1B, TOR1B, 

MARC1 and MBOAT7) may function in similar ways to divert/reduce TG from serum and 

increase TG levels, fatty acid content of phospholipids, and other substrates in the liver, 

leading to NAFLD, although their exact mechanisms remain largely unknown.

Unlike the abovementioned genes, the NAFLD-increasing variants in FTO associated with 

increased TG, although modestly, and decreased LDL. In the PheWAS, FTO is most 

strongly associated with increased BMI and overall obesity measures and increased glucose 

and diabetes. This pattern of associations was unique, resulting in its clustering by itself. 

Variants at FTO likely act via IRX3/5 to decrease adipocyte browning, reduce lipid burning 

and increase BMI; whether the effect on fatty liver is direct in liver versus indirect by 

affecting adipose tissue remains to be determined53.

PTPRD, PNPLA3 and TM6SF2 reduce LDL but are also associated with decreased, as 

opposed to increased, BMI. PTPRD has been shown to have a role in hepatic lipid 

accumulation through exacerbation of the dephosphorylation of tyrosine 705 of the signal 

transducer and activator of transcription 3 protein (pSTAT3) in hepatocytes17. Mutations 

in TM6SF2 and PNPLA3 are thought to reduce serum lipids by decreasing their release 

from hepatocytes. TM6SF2 has been proposed to affect the lipid loading of VLDL, whereas 

PNPLA3 I148M has been proposed to affect the release of lipids from lipid droplets to 

cause lipid accumulation in liver54,55. Overall, this group of proteins results in decreased 

lipoprotein cargo output to cause NAFLD.

Finally, APOE binds to multiple liver receptors facilitating the uptake of HDL and thereby 

increasing lipoprotein cargo input to liver56. It also helps metabolize retinols and thus 
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may serve dual roles in promoting steatosis and progression to advanced liver diseases18. 

The fatty liver-promoting allele at APOE, unlike others, associates with reduced risk of 

Alzheimer’s disease and increased systemic C-reactive protein. Interestingly, the other 

variant at APOE that promotes Alzheimer’s disease (rs7412) does not have a strong 

association with fatty liver, thus demonstrating allele specificity18.

PRS analysis of these PheWAS subtypes showed that they have different effects on 

cardiometabolic and gastrointestinal (GI) diseases. This helps explain different patterns of 

disease associations and helps link these to genes and pathways that may be targeted in the 

future for precision therapeutics.

Some of the genes that have been previously suggested to have a role in NAFLD were 

not found to be significantly associated with hepatic steatosis measures in GOLDPlus. 

This includes HSD17B13 (rs6834314; P = 0.64), which may have a stronger effect on 

NASH/fibrosis. ERLIN1/CHUK/CWF19L1 (rs17729876; P = 1.15 × 10−5) and LYPLAL1 
(rs12137855; P = 0.002) had weak effects on promoting NAFLD. LYPLAL1 may affect 

body fat distribution and indirectly affect NAFLD, helping to explain its particularly weak 

effect57,58.

In addition to identifying new variants associated with NAFLD, our study examined the 

combined effect of single variants using MR, pathway analysis and PRS. MR analysis 

suggests that obesity is causally related to the development of NAFLD, but not the 

reverse. However, MR showed hepatic steatosis is causally related to fibrosis/cirrhosis. 

Considering these effects, hepatic steatosis should be targeted for intervention before the 

development of advanced liver disease, and efforts to combat obesity must be continued. 

As expected, tissues, cell types and pathway analyses highlight liver and then adipose as 

key tissues. Pathway enrichment analyses identified lipid, cholesterol, steroid, alcohol and 

monocarboxylic acid processes as being enriched for association with NAFLD. These results 

highlight the complex biological etiologies of NAFLD. Finally, our results demonstrate 

that, taken together, these 17 genetic variants can identify patterns of disease expected in 

individuals that carry these variants in an independent cohort. Indeed, the PRS was able to 

identify individuals at high risk (OR > 2) of NAFLD, cirrhosis and HCC in the top 5% of the 

PRS so that they can be targeted for interventions to prevent the development of advanced 

liver disease.

Our study is limited by the fact that it does not use histology to define all components of 

NAFLD. Additionally, most of our study group was EUR ancestry, so our predictions are 

likely to be most accurate in this population. Also, for publicly available datasets (FinnGen 

and eMERGE), we did not adjust for confounders as we lacked access to the primary data.

Our study has many strengths and represents the largest genetic study of hepatic steatosis 

to date, allowing us to identify new variants. Here we created and validated new machine-

learning methods to predict MRI-PDFF from abdominal MRI, which can be used to 

facilitate future studies incorporating imaging analysis for NAFLD and other endpoints. We 

used multiple methods to diagnose NAFLD, allowing us to identify variants that associate 

with misdiagnosed NAFLD in the population, namely PPP1R3B. We assessed our variants 
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of interest across cohorts, ancestry, sex and alcohol consumption and found congruent 

effects. EAF determined disease burden across ancestries. We assessed the effects of variants 

across many human diseases and traits and used MR to determine which traits promoted 

NAFLD and which were promoted by NAFLD. We created a PRS for NAFLD that predicts 

hepatic steatosis and cirrhosis. Finally, we identified NAFLD disease subtypes that can be 

linked to specific biology and targeted for future NAFLD precision therapy.

In conclusion, we identified 17 loci associated with hepatic steatosis/NAFLD. These single-

variant analyses identify genes that have a role in hepatic lipid processes, and the variants 

have diverse effects on human traits, suggesting that targeted interventions may be needed 

to effectively treat individuals with various disease subtypes. Genetic testing with these 

variants or combinations may help identify individuals at increased risk of developing 

advanced liver disease more effectively than clinical measures alone. MR shows that hepatic 

steatosis is causally related to the development of advanced liver disease and should be 

treated to prevent disease progression.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 

details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-023-01497-6.

Methods

Ethical approvals and study design

Protocols were approved by the institutional review boards (IRBs) at the institutions where 

participants were recruited. All included participants provided written informed consent. 

All research in this study was approved by the IRB of the University of Michigan (Ann 

Arbor, MI). UKBB protocols were approved by the National Research Ethics Service 

Committee, and all participants provided written informed consent. Analyses in this project 

were conducted under UKBB Resource Project 18120. IRB approval was not required to 

use eMERGE and FinnGen data as they are publicly available. Analyses were carried out 

in cohorts from the GOLD Consortium, UKBB, FinnGen, eMERGE consortium and MGI 

(Extended Data Fig. 1).

GOLD Consortium

The multi-ethnic GOLD Consortium includes the following nine multi-ethnic cohorts 

with CT-measured steatosis (n = 23,521): Age, Gene/Environment Susceptibility-Reykjavik 

Study (AGES)75, COPDGene76, Family Heart Study (FamHS)77, Framingham Heart Study 

(FHS)78, Genetic Epidemiology Network of Arteriopathy (GENOA)79, Insulin Resistance 

Atherosclerosis Family Study (IRASFS)80, Jackson Heart Study (JHS)81, Multiethnic Study 

of Atherosclerosis (MESA)82 and Old Order Amish (OOA)83. The normalization of liver 

attenuation and control for scan penetrance protocols, cohort characteristics and details 

of the genotyping methods, quality control and sample exclusion criteria are provided in 
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Supplementary Tables 4–8. GOLD genotypes were called in the individual datasets using 

Illumina Bead-Studio, GenomeStudio, BRLMM or Birdseed.

UKBB

The UKBB cohort was previously described84. Participants in the NAFLD analyses were 

included regardless of ethnicity and excluded if they or their relatives had abdominal 

MRI images. NAFLD cases were identified by ICD-9 571.8 or ICD-10 K76.0 codes. The 

UKBB NAFLD dataset included 1,827 NAFLD cases and 436,262 controls (Supplementary 

Table 18). A second UKBB NAFLD EUR-only dataset was assembled as stated above and 

included 1,706 cases and 412,151 controls (Supplementary Table 18). For quality control of 

UKBB genotypic data, we used EasyQC 9.2.

CNN model for UKBB liver MRI imaging

We applied a CNN model to determine liver PDFF from MRI in UKBB. UKBB uses 

the following two imaging protocols: gradient echo (GRE; n = 10,093) and iterative 

decomposition of water and fat with echo assymtery and least-squares estimation (IDEAL; 

n = 35,779), which includes n = 1,491 individuals who had undergone both protocols. To 

determine the MRI-PDFF for all participants, we applied a standard 2D U-Net to segment 

the GRE and IDEAL liver data85. We used ITK-SNAP (version 3.8) software to manually 

annotate the liver in 98 randomly chosen images from the GRE protocol86. Next, we split 

the segmented GRE images into training (n = 64), validation (n = 16) and test (n = 18) 

sets. The result showed that liver segmentation achieved Dice scores over 94%. Similarly, 

we manually annotated the liver in 95 randomly chosen images from the IDEAL protocol. 

Next, we split the segmented IDEAL images into training (n = 64), validation (n = 16) and 

test (n = 15) sets. The overall performance of the liver segmentation is also about 94% on 

Dice scores. After the liver has been identified by the 2D U-net model on each slice for the 

two imaging protocols, we applied a 2D CNN Residual Neural Network (2D-CNN-ResNet) 

model using two steps on the segmented liver87. From the 4,616 individuals with true 

PDFF values, quantified by Perspectum Diagnostics from GRE imaging, we selected 4,569 

individuals with a full set of ten standard liver segmentation images. We then split them into 

training, validation and test datasets. The 2D-CNN-ResNet model was trained and validated 

on 3,500 participants and tested on the remaining 1,069 participants. For the remaining 

5,477 individuals from the GRE protocol, we used the CNN model developed here to 

predict PDFF. We then applied this 2D-CNN-ResNet model to estimate the PDFF value of 

participants from the IDEAL protocol. Based on these overlapping samples (n = 1,491) with 

true PDFF value derived from the first step, the 2D-CNN-ResNet model was trained (n = 

952), validated (n = 238) and tested (n = 301). PDFF for the remaining 34,351 participants 

with only IDEAL imaging was then inferred using this CNN model. Inferred PDFF had 

a Pearson correlation coefficient of 0.976 and 0.984 in the validation and testing datasets, 

respectively. We also measured true PDFF values (Extended Data Fig. 8). This will be called 

the UKBB MRI-PDFF dataset, which after accounting for genetic missingness (n = 1,151) 

totaled n = 43,293 (Supplementary Table 16). A second UKBB MRI-PDFF dataset included 

only EUR participants and totaled n = 41,834 (Supplementary Table 16).
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eMERGE

The eMERGE NAFLD cohort (ncases = 1,106; ncontrols = 8,571) was previously described88 

and summary statistics are available at https://www.ebi.ac.uk/gwas/studies/GCST008468. 

EAFs were not available and were estimated using UKBB EURs.

FinnGen

We used FinnGen data freeze 4 summary statistics from https://www.finngen.fi/fi (n = 651 

NAFLD cases, 176,248 controls).

MGI

MGI is a hospital-based cohort of patients seen at Michigan Medicine (Ann Arbor, MI). The 

MGI cohort was previously described89. NAFLD cases were identified by ICD-9 571.8 or 

ICD-10 K76.0, and HCC cases were identified by ICD-9 155.0 or ICD-10 C22.0. Cirrhosis 

was defined by ICD-9 571.2 or 571.5 or 571.6, or ICD-10 K70.2–4 or K74.x or K71.7 or 

NLP (which has been previously described)89. Characteristics of the included EUR ancestry 

participants are shown in Supplementary Table 13.

GWAS and meta-analysis

We carried out a GWAS of autosomal variants, assuming additive effects, in each of the 

nine GOLD cohorts separately. The analyses were corrected for age, age2, sex, alcoholic 

drinks and principal components (PCs) or admixture. Sensitivity analyses by sex, study 

and ancestry did not show significant heterogeneity allowing us to combine the data across 

cohorts for all individuals with genetic data (n = 23,521). The GOLD Consortium meta-

analysis was performed using a two-tailed sample size and direction of effect approach in 

METAL (08/28/2018 release)90.

GWAS of autosomal variants were carried out independently in UKBB using linear 

mixed modeling using SAIGE (version 0.29) with binary NAFLD or inverse-normally 

transformed MRI-PDFF as the dependent variable using an additive genetic model84,91. A 

SNP imputation quality cutoff of >0.85 was used. The model was controlled for sex, age, 

age2 and PCs 1–10.

Summary statistics from FinnGen and eMERGE studies were combined with the UKBB 

NAFLD, UKBB MRI-PDFF and GOLD CT steatosis analyses using sample size and 

direction of effect meta-analysis implemented in METAL (Extended Data Fig. 1)90. We 

call this analysis GOLDPlus. We excluded multi-allelic variants, indels, variants with minor 

allele frequency <0.001, variants with minor allele count <400 and variants present in less 

than four cohorts. We also excluded variants with Phet < 0.05 and opposing directionality 

across studies simultaneously. The P < 5.00 × 10−8 was considered genome-wide significant. 

Given the multi-ethnic nature of the analysis, we identified independent loci using 500-

kb flanking criteria from the lowest P value associated variant. To ascertain independent 

signals, we also performed a direct conditional analysis for all our top hits using the UKBB 

multi-ethnic cohort. To perform conditional analysis, we added the genetic dosage of the loci 

to the other covariates (age, age2, sex and PCs 1–10) of SAIGE step 1 and reran the GWAS. 

SNP-specific annotation information was obtained from ANNOVAR.
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Ancestry- and sex-specific analyses in the GOLD Consortium

To assess ancestry-specific differences, we conducted a meta-analysis in the GOLD 

Consortium for each ancestry (EUR, AFR, HIS and CHN) separately and all ancestries 

together using METAL (Supplementary Table 6). Additionally, we conducted separate 

GWAS in men and women in the GOLD Consortium and meta-analyzed the GWAS 

using METAL. Sex-specific GWAS analyses were controlled for age, age2, number of 

alcoholic drinks per week and PCs 1–10. Cochran’s Q test was used to assess the observed 

heterogeneity, and the I2 metric was used for quantification. A Cochran’s Q test P < 2.00 × 

10−4 was considered significant.

GWAS analysis stratified by alcohol use

Using the UKBB MRI-PDFF data, we performed alcohol-specific GWAS of heavy and light 

drinkers. We identified heavy drinkers as ≥14 drinks consumed per week for males or ≥7 

drinks a week for females (n = 21,356) and light drinkers as ≤1 drinks consumed per week 

for males and females (n = 9,871; Supplementary Table 11). The UKBB MRI-PDFF GWAS 

was carried out as described above. A meta-analysis of the heavy and light drinkers was 

performed using METAL to assess the heterogeneity90.

DEPICT analyses

DEPICT provides details regarding GWAS-prioritized tissues, genes and pathways across 

cells and tissues23. Enrichment was considered statistically significant at a FDR P < 0.05 

(Extended Data Fig. 5).

Previously published NAFLD/steatosis variants

We evaluated the effects of previously reported NAFLD/steatosis variants in GOLDPlus 

(Supplementary Table 19). A literature search was conducted for NAFLD and steatosis 

GWAS in PubMed, and genome-wide significant variants were identified8,12,16,27,92–102. 

Variants that were independent of the GOLDPlus genome-wide significant variants (500 kb 

flanking criteria from the lowest P-value-associated variant) were assessed.

PheWAS

We used publicly available UKBB GWAS data from the Neale Lab (http://www.nealelab.is/

uk-biobank/) to perform a single-variant PheWAS of the NAFLD risk-increasing alleles 

with related phenotypes (Fig. 2)84,103. Associations were considered significant with P < 

0.05. We created PRSs from the subgroups identified in Fig. 2 using betas from GOLD as 

weights and carried out association analyses with cardiometabolic and GI traits in UKBB. 

Associations were adjusted for age, age2, sex and PCs 1–10. Outcomes are reported in s.d. 

for continuous traits and log OR for disease outcomes of the top tertile or quartile (for low 

output only due to the distribution of scores) versus the lowest tertile or value of zero of 

PRS, respectively.

PheWAS Manhattan plot of NAFLD PRS

For each ICD code in MGI, we fit a logistic regression model using Firth’s logistic 

regression. Every model included the ICD code as binary outcome variable and PRS built 
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on the GOLD-weighted score of the 17 genome-wide SNPs, age, sex and the first ten 

PCs as predictors. Associations were considered suggestive at α = 0.05 and significant at 

Bonferroni-adjusted α = 3.02 × 10−5 P values (Fig. 5). The associations were plotted using 

R version 4.0.2.

PRS and NAFLD risk factors

We created a PRS using the liver fat-increasing variants (n = 17) from the GOLDPlus 

meta-analysis. The PRS was based on a weighted sum of dosage of the NAFLD-associated 

single variants. The β value of each allele (from the GOLD Consortium) was used to weigh 

the PRS. The predictive power of the PRS was assessed on NAFLD, cirrhosis and HCC 

cohorts in MGI EUR ancestry samples (Fig. 6 and Supplementary Table 9). PRSs were 

defined as inverse-normally transformed rank units or as percentiles. Analyses were adjusted 

for age, age2, sex and PCs 1–10.

MR

We performed a two-sample MR, implemented in R version 3.5.1 using ‘TwoSampleMR’ 

(version 0.5.5)104. For the analysis, we used the variant-NAFLD effect estimates from 

the GOLD Consortium (betas are required for MR and the GOLD Consortium data had 

the highest quality measures of hepatic steatosis in the population-based cohorts). We 

calculated F-statistics105 for each variant, and only those having an F-statistic >10 were 

included in the MR analysis (Supplementary Table 14)26. MR was performed using the 

resulting variants as the exposure and related publicly available (Supplementary Table 

15) and UKBB GWAS (K74 fibrosis and cirrhosis of liver and I85 esophageal varices, 

a complication of cirrhosis) as outcomes. We also performed the reverse analysis where 

independent genome-wide significant (P < 5.00 × 10−8) variants from the aforementioned 

GWAS were used as exposure and the GOLD Consortium phenotype as the outcome. We 

applied inverse-variance weighted, penalized weighted median, weighted median, weighted 

mode and MR-Egger methods. Tests for heterogeneity and horizontal pleiotropy were also 

performed (Extended Data Figs. 6 and 7).
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Extended Data

Extended Data Fig. 1 |. GOLDPlus NAFLD measures meta-analysis study design.

Extended Data Fig. 2 |. European GOLDPlus NAFLD measures meta-analysis schematic.
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Extended Data Fig. 3 |. Characteristics of GOLDPlus genome-wide significant variants in GOLD 
ancestry-based cohorts.
For each variant, the characteristics are shown for the GOLD ancestry-based analysis 

including: associated gene, NAFLD increasing effect allele (EA), effect allele frequency 

(EAF), effect/beta and 95% confidence interval (CI), Cochran’s Q heterogeneity I2 metric 

(HetSq) and heterogeneity P-value (HetPVal), EA P-value (P), and sample size (N). Results 

are for meta-analysis of GOLD European ancestry (red), African ancestry (blue), Hispanic 

ancestry (green), Chinese ancestry (purple), and all ancestries pooled (black). The estimates 

of the effect sizes (Beta) and 95% confidence interval in bidirectional testing within each 
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ancestry and for all the ancestries combined were shown in the forest plots. The data 

underlying these plots are provided as Source Data.

Extended Data Fig. 4 |. Characteristics of GOLDPlus genome-wide significant variants in GOLD 
sex-specific cohorts.
For each variant, the characteristics are shown for the GOLD sex-specific analysis including: 

associated gene, NAFLD increasing effect allele (EA), effect allele frequency (EAF), effect/

beta and 95% confidence interval (CI), Cochran’s Q heterogeneity I2 metric (HetSq) and 

heterogeneity P-value (HetPVal), EA P-value (P), and sample size (N). Results are for 
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meta-analysis of GOLD cohort males (blue), females (red), and pooled sexes (black). The 

estimates of the effect sizes (Beta) and 95% confidence interval in bidirectional testing 

within each ancestry and for all the ancestries combined were shown in the forest plots. The 

data underlying these plots are provided as Source Data.

Extended Data Fig. 5 |. DEPICT analysis of biological enrichment of NAFLD associated variants.
Height of the bar represents the nominal −log10P-value of enrichment of GWAS associated 

genes with physiological systems, cells, and tissues. Dark orange shading represents 

statistical significance at false discovery rate (FDR) < 0.05. The data underlying these plots 

are provided as Source Data.

Extended Data Fig. 6 |. Two-sample Mendelian randomization analysis for casual associations 
between NAFLD associated variants and fibrosis/cirrhosis and esophageal varices.
a,b, Data represent the effect/beta and 95% confidence intervals for the inverse variance 

weighted (IVW) and MR-Egger analyses for (a) NAFLD exposure (GOLD cohort, n = 
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11 instruments) and K74:fibrosis/cirrhosis outcome (UKBB) (MR-Egger P-value = 1.88 

× 10−3, IVW p-value = 8.65 × 10−5) and (b) NAFLD exposure (GOLD cohort, n = 11 

instruments) and I85:esophageal varices outcome (UKBB) (MR-Egger P-value = 9.36 × 

10−4, IVW P-value = 3.51 × 10−4). c,d, The crosshairs on the plots represent the effect 

and 95% confidence intervals for each SNP-NAFLD or SNP-outcome association for (c) 

NAFLD exposure (GOLD cohort, n = 10 instruments) and K74:fibrosis/cirrhosis outcome 

(UKBB) and (d) NAFLD exposure (GOLD cohort, n = 10 instruments) and I85:esophageal 

varices outcome (UKBB). The data underlying these plots are provided as Source Data.

Extended Data Fig. 7 |. Two-sample Mendelian randomization analysis for casual associations 
between BMI, waist circumference associated variants and NAFLD.
a,b, Data are presented as effect/beta and 95% confidence intervals for MR-Egger and 

inverse variance weighted (IVW) methods for (a) waist circumference GWAS (UKBB, n 
= 217 instruments) and GOLD cohort outcome (MR-Egger P-value = 3.6 × 10−2, IVW 

P-value = 3.71 × 10−4) and (b) BMI GWAS (UKBB, n = 293 instruments) and GOLD cohort 

outcome (MR-Egger P-value = 0.02, IVW P-value = 1.02 × 10−7). c,d, The crosshairs on 

the plots represent the effect/beta and 95% confidence intervals for each SNP-NAFLD or 

SNP-outcome association for (c) waist circumference GWAS (UKBB, n = 211 instruments) 

and GOLD cohort outcome and (d) BMI GWAS (UKBB, n = 283 instruments) and GOLD 

cohort outcome. The data underlying these plots are provided as Source Data.
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Extended Data Fig. 8 |. Convolutional neural network schematic for UKBB MRI liver imaging 
(PCC values).
Scatter plot of predicted UKBB MRI-PDFF values versus ‘true’ UKBB MRI-PDFF values 

(as determined by Perspectum Diagnostics). a,b, Pearson correlation coefficients (PCC) 

are shown for (a) gradient echo image protocol and (b) IDEAL image protocol. The data 

underlying these plots are provided as Source Data.
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Fig. 1 |. Characteristics of a subset of GOLDPlus genome-wide significant variants in GOLD 
ancestry-based cohorts.
For each variant, the characteristics are shown for the GOLD ancestry-based 

analysis including associated gene, NAFLD increasing effect allele (EA), effect allele 

frequency(EAF), effect/beta (β) and 95% confidence interval (CI), Cochran’s Q 
heterogeneity I2 metric (HetSq) and heterogeneity P value (HetPVal), EA P value (P) and 

sample size (n). Results are for meta-analysis of GOLD European ancestry (red), African 

ancestry (blue), Hispanic ancestry (green), Chinese ancestry (purple) and all ancestries 

pooled (black). The estimates of the effect sizes (β) and 95% confidence interval in 

bidirectional testing within each ancestry and for all the ancestries combined were shown in 

the forest plots.
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Fig. 2 |. Effects of NAFLD-associated variants on other human diseases and traits using PheWAS 
clustering to identify distinct biological subgroupings.
A heatmap is used to show results from the subgrouping analysis in UKBB. Associations 

between NAFLD-associated variants (y axis) and diseases/traits (x axis) are shown as z 
scores. Red indicates that the NAFLD increasing allele has increased association with 

the disease/trait, blue indicates decreased association and white indicates no significant 

association. White horizontal bars between the heatmap subgroupings were used to separate 

each cluster. The horizontal bar atop the heatmap corresponds to the overall groupings 

of the disease/traits in the key. The subgroups are labeled Glucose, Insulin, Absorb, TG 

divert, Low lipid burn, Low output and High input to link to effects and biology. GI, 

gastrointestinal; LFT, liver function tests; TG, triglycerides; IFG-1, insulin-like growth 

factor 1; SHBG, sex hormone-binding globulin.
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Fig. 3 |. Effect of PheWAS subgroupings on human diseases and traits.
Forest plots show associations between each subgroup and human diseases and traits in 

the UKBB. The analyzed traits are serum LDL cholesterol (n = 321,191), serum TG (n = 

390,616), serum HDL cholesterol (n = 358,767), ischemic heart disease (ncases = 30,566, 

ncontrols = 378,395), hypertension (ncases = 77,645, ncontrols = 331,316), BMI (n = 407,713), 

waist-hip ratio adjusted for BMI (n = 407,545), cholelithiasis (ncases = 14,371, ncontrols = 

394,590), acute pancreatitis (ncases = 1,956, ncontrols = 407,005), glucose (n = 358,536), type 

2 diabetes (ncases = 19,673), ncontrols = 389,288), C-reactive protein (n = 390,108), ALT (n 
= 390,812), liver fat PDFF (n = 3,963) and cirrhosis (ncases = 2,571, ncontrols = 406,390). 

Associations are presented as effect size and 95% confidence interval of the PRS on the 

traits noted. Effects are in s.d. for continuous traits and log odds ratio for disease outcomes 

of the top tertile or quartile versus the lowest tertile or quartile of risk. A vertical black line 

indicates an effect size of 0. Significant effects less than 0 are in blue (indicating that the 

liver-fat-promoting allele decreases the effect) and significant effect sizes greater than 0 are 

in red (indicating that the liver-fat-promoting allele increases the effect). Human diseases 

and traits with no significant effect are shown in black. LDL, low density lipoprotein; 

HDL, high density lipoprotein; WHR, waist to hip ratio; GI, gastrointestinal; ALT, alanine 

transaminase; PDFF, proton density fat fraction; TG, triglycerides.
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Fig. 4 |. Schematic providing biological context for PheWAS subgroupings.
Locations and functions are simplified for diagrammatic clarity. High/normal lipoprotein 

input (purple) includes APOE, an important component of VLDL and a ligand for the LDL 

receptor that helps internalize lipoproteins thereby increasing fat burden on the liver59. Low 

lipoprotein output (dark blue) includes the PTPRD, TM6SF2 and PNPLA3 genes, which 

function to retain TG and other lipid derivatives to increase lipid load60–62. Low lipid 

burn (brown) includes the IRX3/5 (FTO) cluster that reduces adipose tissue browning and 

fatty acid utilization, promotes obesity63 and likely indirectly promotes fatty liver. Insulin 

(gray) includes GRB14, SREBF1, INSR and PNPLA2 genes. GRB14 and SREBP1 may 

function in the hepatocyte through acetyl-CoA and de novo lipogenesis to increase lipid 

levels40,64. INSR and PNPLA2 may function in adipose to increase the release of fatty 

acids that can come to liver to increase lipid load, but direct effects on liver may also 

promote de novo lipogenesis65,66. Diversion (pink) includes TOR1B, ADH1B, MBOAT7, 

GPAM and MARC1 genes. TOR1B and ADH1B promote the storage of products of do 

novo lipogenesis and other lipid derivatives in lipid droplets and other cellular structures 

thereby increasing lipid load67. MBOAT7, GPAM and MARC1 function in the mitochondria 

to possibly increase the production of TG and other phospholipids to increase lipid load68–

71. Absorption (green) includes the MTTP gene that acts in enterocytes (intestine) and 

hepatocytes (liver) to promote lipid uptake and in this way increase lipid load to the liver72. 

Glucose (orange) includes GCKR and TRIB1 genes, which function in the hepatocyte to 

inappropriately increase glycolysis to make TG via de novo lipogenesis to increase lipid 

levels73,74. VLDL, very-low-density lipoprotein.
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Fig. 5 |. PheWAS Manhattan plot of NAFLD polygenic risk score.
Shown is the bidirectional PRS −log10 (P value) of association (y axis) with phecodes in 

MGI (x axis) using Firth’s logistic regression model. The blue line represents α = 0.05, and 

red line represents the Bonferroni-adjusted significance threshold (α = 3.02 × 10−5).
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Fig. 6 |. Associations between NAFLD polygenic risk score with NAFLD, cirrhosis and HCC in 
an independent cohort.
a–c, Association between percentile of GOLDPlus NAFLD polygenic risk score on the 

independent MGI cohort on NAFLD (ncases = 3,021, ncontrols = 48,529; a), cirrhosis (ncases = 

1,472, ncontrols = 50,078; b) or HCC (ncases = 295, ncontrols = 51,255; c). Data are presented 

as odds ratios and 95% confidence intervals. Associations are depicted as odds ratios for 

NAFLD, cirrhosis or HCC for the noted percentage relative to individuals in the 0–10th 

percentile of polygenic risk score, adjusted for sex, age, age2 and PCs 1–10.
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