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Abstract

Clinical progress in multiple myeloma (MM), an incurable plasma cell (PC) neoplasia, has been 

driven by therapies which have limited applications beyond MM/PC neoplasias and do not target 

specific oncogenic mutations in MM. Instead, these agents target pathways critical for PC biology 

yet largely dispensable for malignant or normal cells of most other lineages. We systematically 

characterized the lineage-preferential molecular dependencies of MM through genome-scale 

CRISPR studies in 19 MM versus hundreds of non-MM lines. This identified 116 genes whose 

disruption more significantly affects MM cell fitness compared to other malignancies. These 

genes, some known, others not previously linked to MM, encode transcription factors, chromatin 

modifiers, endoplasmic reticulum components, metabolic regulators or signaling molecules. Most 

of these genes are not among the top amplified, overexpressed or mutated in MM. Functional 

genomics approaches thus define new therapeutic targets in MM not readily identifiable by 

standard genomic, transcriptional, or epigenetic profiling analyses.
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Introduction

Multiple myeloma (MM), a plasma cell (PC) neoplasia and the second most common 

hematologic malignancy in the Western world, remains incurable despite major therapeutic 

progress during the last two decades. Much of this progress was achieved through use of 

proteasome inhibitors, thalidomide and its derivatives, anti-CD38 monoclonal antibodies and 

more recently BCMA-targeting therapies. These agents have limited therapeutic applications 

outside MM, do not target specific oncogenic mutations in MM cells, but perturb pathways 

which are critical for PC biology yet largely dispensable for most other normal or malignant 

cell types1,2. By contrast, established or investigational therapeutics that target mutated gene 

products and pathways of MM3 generally yield short-lived clinical responses. Identification 

of genes essential for malignant or normal PCs, but dispensable for most other cell types, 

normal or malignant, could uncover putative therapeutic targets for MM. Therefore, we 

performed a systematic characterization of the molecular vulnerabilities of MM cells, 

compared to other types of neoplastic cells, through genome-scale CRISPR gene-editing 

screens. We hypothesized that these functional screens would not only “re-identify” known 

MM/PC dependencies but also pinpoint additional genes whose preferential role in MM 

might not be readily predicted from patterns of molecular alterations in MM cells, including 

mutations, DNA copy number changes, structural rearrangements or overexpression.

Results

MM-preferential dependencies identified by CRISPR screens

We sought to identify genes whose loss-of-function (LOF) more efficiently and consistently 

inhibits growth/survival of MM compared to non-MM cells. CRISPR/Cas9-based gene-

editing screens were performed in 19 MM and 770 non-MM lines (see Methods and 
4). Guide RNAs for genes more essential for MM are predicted to be eliminated more 

profoundly in MM than non-MM cells. We compared the patterns of gene essentiality 

in MM vs. non-MM lines using CERES scores (Fig. 1a, Extended Data Fig. 1a-b and 

Supplementary Table 1), the ranks of genes according to their CERES scores in a given 

cell line (Extended Data Fig. 2a) or MaGECK ranks (Extended Data Fig. 2b). These 

comparisons, based on criteria outlined in Methods, identified genes with statistically 

significant differences in quantitative metrics of essentiality in MM vs. non-MM lines, 

while filtering out those genes with a similar frequency of essentiality in MM vs. non-

MM, including “core essential” genes required across all cancer cell lines. These analyses 

identified 116 MM-preferential dependencies (Fig. 1a, Extended Data Figs. 1 and 2a, 

Supplementary Table 1). In retrospective analyses of sequential releases of data from the 

Dependency Map (DepMap) program, which included increasing numbers of cell lines, 

the identity of MM-preferential dependencies was largely stable, with 72 genes identified 

in 5 consecutive releases. Additional cell lines in the later datasets allowed identification 

of >30 additional preferential dependencies (Extended Data Fig. 1a). These analyses were 
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not influenced by the computational correction (e.g., in CERES score calculation) of the 

gene-independent copy number effects of CRISPR gene-editing, because MAGeCK analyses 

without such correction provided concordant results for these MM-preferential dependencies 

(Extended Data Fig. 2b, Supplementary Fig.1). Collectively, the use of multiple analytical 

methods and versions of the DepMap data offers greater confidence in the identification of 

MM-preferential dependencies. While some of these genes can also be identified by shRNA-

based screens, including IRF45, PIM2, PRDM1, POU2AF1, NFKB1, RELB, IGF1R, IRS1, 

EP300, or TCF3 (Extended Data Fig. 2c,d), many others were identified only by gene 

editing studies.

Approximately one third of the genes preferentially essential for MM encode transcriptional 

and epigenetic regulators (Fig. 1b, Extended Data Fig. 1b-d). These include regulators 

of plasma cell biology (e.g., IRF4, PRDM1, XBP1, IKZF1, IKZF3), members of the NF-

κB pathway (e.g., NFKB1, RELB), or other genes involved in MM pathogenesis (e.g., 

MAF). Several transcription factors with underappreciated roles in MM, including MEF2C, 

CBFB, TCF3, IRF2, ZBTB38, ZNF296, and ZNF592, as well as transcriptional cofactors 

such as POU2AF1, CTBP1, TLE3 and ATF7IP were also identified. Disruption of several 

epigenetic enzymes had a more pronounced effect on MM compared to non-MM cell lines, 

including EP300, KDM5C, CARM1, DOT1L, and HDAC1; as well as members of the BAF 

(SWI/SNF) complex (ARID1A, SMARCD1, ARID2); STAGA complex (TAF5L, TADA1, 

SUPT20H, SUPT7L); Mediator complex (MED23, MED13L) and PRC1 (PCGF5, RING1 
and PCGF1). MBNL1, a regulator of alternative splicing of pre-mRNAs, and several RNA 

binding proteins (CPEB4, RPRD2, RBM15 and ATXN2L) were also more essential in MM 

cell lines.

Consistent with the highly secretory nature of plasma cells, a large group of MM-

preferential dependencies are involved in endoplasmic reticulum (ER) function (Fig. 1b), 

including genes encoding ER membrane protein complexes mediating dislocation of 

misfolded proteins from the luminal side of the ER to the cytosol (e.g., HERPUD1 and 

SEL1L); ER-specific E2 ubiquitin conjugating enzymes (e.g., UBE2J1, UBE2G2) or the E3 

ligase SYVN1; enzymes required for N-glycan-dependent surveillance of quality control for 

luminal ER glycoproteins (e.g., DPM1, PMM2, ALG3, ALG9, PGM3, MPDU1) chaperones 

for misfolded ER proteins (e.g., DNAJB11, DNAJBC3); the ER stress-sensor IRE1a (ERN1) 

and the target of its RNA processing activity, XBP1. Other molecules involved in ER stress 

sensing and response (e.g. CNPY2 6, DDI2); or involved in transport of proteins from ER 

to the Golgi network (e.g. ATP2C1, SEC23B) are also preferentially essential for MM cells 

(Extended Data Fig. 1b,c).

Several genes preferentially essential for MM cells encode proteins participating in 

proliferative/anti-apoptotic signaling cascades (Fig. 1b) including, the serine/threonine 

kinase PIM2; IKBKB (IKK-β) and CHUK (IKK-α), which are upstream of NF-κB 

transcription factors; members of the IGF1R signaling cascade, including IGF1R itself, 

its downstream effector IRS1 and the peptidases FURIN and CPD (carboxypeptidase D) 

which regulate the cleavage of the IGF1R polypeptide to its mature form7; as well as 

IL6ST (gp130; a coreceptor for IL-6 and other cytokines). FGFR3 is also a MM-preferential 

dependency, likely reflecting MM cell lines with t(4;14) chromosomal translocationthat 
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results in FGFR3 overexpression, versus the highly infrequent nature of FGFR3 essentiality 

in other malignancies. Notably, STK11, a tumor suppressor in lung cancer, its positive 

regulator CAB398 as well as SIK3, a downstream target of STK11 and an upstream 

regulator of MEF2C in other systems9, are preferentially required for MM cells. Additional 

signaling-related MM-preferential dependencies include the negative regulator of TGF-β 
signaling SMAD7; ARHGAP45 (HMHA1) and ROCK1, which are involved in regulation of 

cell adhesion and motility; as well as the CCM signaling complex members CCM2, KRIT1 
(CCM1), and their downstream interactor MAPK14. Finally, other genes preferentially 

essential for MM cells include those encoding the mitochondrial regulator of apoptosis 

BCL2 and the mitochondrial E3 ligase MARCH5 (MARCHF5); the E3 ligases FBXO11 and 

FEM1B; and the nuclear transport proteins NUP37 and XPO4.

Molecular alterations of MM-preferential dependencies

We examined whether there are recurrent molecular alterations in the genes preferentially 

essential for MM cells (as summarized in Fig. 2). Among 834 genes overexpressed 

(log2FC>1.0, FDR<0.05) in MM vs. non-MM cells lines (Cancer Cell Line Encyclopedia 

[CCLE], Fig. 3a), only 4% (29) are among the 116 MM-preferential dependencies. Notably, 

6 of these genes have the greatest difference in essentiality scores in MM vs. non-MM 

cells. These include the lineage-defining transcription factors IRF4 and PRDM1, as well 

as POU2AF1, PIM2, MEF2C and CCND2. However, only a minority of MM-preferential 

dependencies are in the top 100–200 overexpressed genes when ranked by log2FC (Fig. 

3b) or FDR (Fig. 2, circle 8) in MM vs. other tumor types and some MM-preferential 

dependencies are less highly expressed in MM lines (Fig. 3a, Extended Data Fig. 3). Similar 

observations were made when examining transcript levels for these genes in MM vs. non-

MM patient tumor samples (Extended Data Fig. 4a). Most MM-preferential dependencies 

are not overexpressed in MM vs. normal PCs or more highly expressed in later vs. earlier 

stages of myelomagenesis (Extended Data Fig. 4b) and do not consistently correlate with 

adverse patient outcome (Extended Data Fig. 4c), even under relaxed statistical criteria 

(Extended Data Fig. 4d,e). Moreover, most MM-preferential dependencies were not among 

the top overexpressed transcripts in MM cells co-cultured with mesenchymal bone marrow 

stromal cells (BMSCs) (Fig. 2, circle 13), an interaction which attenuates MM cell responses 

to diverse therapies10-12.

Only 10/116 MM-preferential dependency genes were mutated in more than one of the MM 

cell lines (Extended Data Fig. 5a). Only two MM-preferential dependencies (FGFR3 and 

IRF4, mutated in 2% of patients) are among the top 200 most frequently mutated genes 

in patients with newly diagnosed MM (Fig. 4a). Furthermore, the large majority of MM-

preferential dependencies did not have higher frequency of DNA copy number variation 

(CNV) gains, while some had a higher rate of CNV losses, in MM vs. non-MM cell lines 

(CCLE; Fig. 4b,c). In patient-derived MM samples, MM-preferential dependencies are not 

enriched within regions of frequent large CNV gains (e.g., hyperdiploid chromosomes or 

chromosome 1q) or losses (Fig. 4d,e). In patient-derived MM samples, MM-preferential 

dependency genes did not exhibit a higher frequency of CNV gains (Fig. 4e) or DNA copy 

number (Fig. 4f). Furthermore, only 5 MM-preferential dependencies are among the top 

200 genes with the highest frequency of CNV gains in patient samples (Extended Data Fig. 
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5b). Regarding structural variants (SVs) that result in focal CNVs and complex somatic 

events13, 45 regions, which harbor in total 475 genes evaluated in our CRISPR screens, were 

recently identified13 as hotspots for SVs that cause gain of chromosomal material. Of these 

45 regions, 8 contain 9 of the 116 MM preferential dependencies, namely IRF4 (and its 

neighboring DUSP22), POU2AF1, IRF2, PPCDC, CARM1, ZBTB38, PRDM1 and ZNF592 
(Extended Data Fig. 5c,d). Notably, two MM preferential dependencies (MPDU1, PFAS) are 

located in a SV loss hotspot for MM (specifically within 17p 13). Overall, a limited number 

of MM-preferential dependencies may be located in regions with structural rearrangements 

or copy number alterations, but most MM-preferential dependencies do not rank among the 

top genes in terms of the frequency of these events in MM or their enrichment in MM 

compared with non-MM.

Chromatin regions such as “super-enhancers”, defined by dense transcription factor binding, 

H3K27 acetylation, and chromatin accessibility, facilitate gene expression critical for 

cell identity14. To determine if such gene regulatory features defined MM-preferential 

dependencies, we examined chromatin accessibility (ATAC-Seq) in 12 MM cell lines with 

a focus on MM-preferentially essential genes. This identified on average 5-6 chromatin 

accessible regions within 100 kb of the MM-preferential dependency genes and these were 

modestly enriched at super-accessible regions (Extended Data Fig. 6a) that were largely 

consistent across the 22 MM cell lines analyzed (Extended Data Fig. 6b). Examples of 

these chromatin accessible regions can be found at PRDM1, UBE2J1, and IRF4; in regions 

of the DUSP22 gene that may regulate nearby IRF4; as well as in POU2AF1 (Extended 

Data Fig. 6c-f). While 55/116 MM-preferential dependencies were ≤100 kb from a highly 

accessible region, there were over 4,000 super-accessible regions covering over 3,400 genes, 

and therefore MM-preferential dependencies could not be readily identified by chromatin 

accessibility alone.

Collectively, these data (Fig. 2) indicate that many MM-preferential dependencies identified 

by CRISPR gene-editing screens are not among the top recurrently mutated, amplified or 

aberrantly expressed genes in MM. This observation is concordant with data on preferential 

dependencies in other malignancies, such as ER+ breast, renal, or colon cancer, melanoma, 

and acute myeloid leukemia (Supplementary Figures 2-6).

MM encompasses several subgroups defined by molecular features, such as chromosomal 

translocations involving immunoglobulin gene enhancers or mutations/DNA copy number 

events in key oncogenes or tumor suppressors. MM lines with translocations targeting 

CCND1, CCND2, CCND3, MAF, and FGFR3; or with KRAS or NRAS mutations tend to 

be dependent on these respective genes. Hierarchical clustering of MM cell lines according 

to the essentiality scores for preferential dependencies revealed that 4 of 5 MM lines 

with MAF rearrangement and another line with ectopic MAF overexpression were in 

the same branch of the dendrogram, while 4 lines with CCND1 rearrangement were in 

adjacent branches. Overall, however, clustering of lines based on their essentiality scores for 

MM-preferential dependencies as a group does not distinguish molecular subtypes, perhaps 

reflecting the limited numbers of lines from each MM subtype (Extended Data Fig. 6g) 

and a need for gene editing studies in larger panels of MM lines in order to better define 

subtype-specific MM dependencies.
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MM dependencies: shared or distinct roles in other cancers

The 116 genes we identified are preferentially, but not necessarily exclusively, important 

for MM cells. Several of them are recurrently essential in other neoplasias, e.g. EP300, 

MARCHF5, CBFB, MBNL1, DOT1L or FURIN in leukemia (Extended Data Figs. 7 and 

8a-e), while IRF4 is important for lymphoma and a subset of melanoma lines (Extended 

Data Fig. 8a). Notably, though, the essentiality scores for the MM-preferential dependencies 

define a tight cluster of MM lines distinct from all non-MM, including other hematologic, 

cell lines in the t-distributed stochastic neighbor embedding (t-SNE) clustering analysis 

(Extended Data Fig. 8b,c). Applying in other neoplasias across the DepMap dataset the 

criteria we used to define preferential dependencies for MM, we identified genes previously 

known to be essential for tumors of different lineages including CTNNB1 for colorectal or 

ESR1, FOXA1 and SPDEF for ER+ breast cancer (Supplementary Figs.2-6). However, in 

general, non-MM tumor types had fewer preferentially essential genes, even those with gene 

editing screens in higher numbers of cell lines than MM. (Extended Data Fig. 8a,d).

The high number of MM-preferential dependencies might not reflect solely biological 

differences between malignant hematopoietic vs. solid tumor cells but a specific set of 

vulnerabilities associated with PC biology. Consistent with this notion, 68 MM-preferential 

dependencies were more essential to MM cells than to non-MM blood cancer cell lines 

(difference in average CERES scores ≤−0.2, FDR<0.05; Extended Data Fig. 8e). Gene 

editing with a sub-genome scale library that included single guide RNAs (sgRNAs) for 89 

MM-preferential dependencies was performed in two cell lines representing Waldenström’s 

macroglobulinemia (WM), a lymphoplasmacytic lymphoma, which is related to MM but 

also has several distinct biological and genetic features. Disruption of 28 MM-preferential 

dependency genes had no effect on either WM cell line and 40 additional MM-preferential 

dependencies were not essential in one of the WM lines (Supplementary Fig. 7a-c), 

highlighting the distinct pattern of genetic vulnerabilities of MM, even when compared 

to a closely related malignancy.

Some genes do not meet all criteria for designation as preferential dependencies in MM 

when compared to all other non-MM (heme or solid) tumor lines but are more essential in 

MM vs. B-cell lymphoma; or in MM vs. solid tumor lines (Extended Data Fig. 8f-j). Several 

of these genes function in similar pathways as some MM-preferentially essential genes, 

such as the ER-associated degradation (ERAD)-related genes ERLEC1, STT3A, UFL1, and 

UFM1 which are more essential in MM vs. B-cell lymphomas (Extended Data Fig. 8i,j). 

IKZF1, IKZF3, or BCL2 which can be therapeutically targeted, are more essential for MM 

compared with all non-MM lines, but have a similar importance for B cell lymphomas. 

Conversely, some genes such as PIK3CA are more essential for MM vs. B-cell lymphomas, 

but are similarly critical for all other non-MM cell lines (Extended Data Fig. 8i,j) and have 

not yet proved to be clinically actionable in MM. These examples highlight that defining 

differential dependencies for MM cells may provide distinct information depending on the 

comparator group, e.g., all non-MM tumor cells or specific hematologic malignancies: the 

latter comparisons inform about potential biological differences in MM vs. the respective 

neoplasias and warrant studies in larger cell line panels.
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Further highlighting their distinct roles in MM, several MM-preferential dependencies 

function as tumor suppressors in others diseases, e.g., FBXO1115 or PRDM116 in 

lymphoma; or STK11, CAB39, and TSC2 in many cancers17. This seemingly paradoxical 

observation may relate to the biology of PCs and the functional relationships of these genes 

with other MM-preferential dependencies. For instance, CERES scores for TSC2 and several 

other negative regulators of mTORC1 signaling (e.g., DDIT4, DEPDC5, NPRL2) exhibit 

positive correlation in MM and other lines (Supplementary Fig. 7d-g), concordant with the 

TSC1/2 complex as negative mTORC1 regulator in MM cells. RHEB, direct downstream 

target of TSC1/2 and positive regulator of mTORC1, has higher CERES scores in MM vs. 

other cell lines (Supplementary Fig. 7h,i). Therefore, disruption of the TSC1/2 complex 

leading to hyperactive mTORC1 can drive growth of other cell types but also leads to 

increased ER stress18, to which MM cells are particularly susceptible. Recent studies in 

leukemia9 reported that STK11 activates SIK3 and SIK2, which in turn activate MEF2C, 

another gene preferentially required by MM (Supplementary Fig. 7j,k). These examples 

suggest that cell lineage is critical for interpretation of gene essentiality screens.

Preferential dependencies previously implicated in MM

Several MM-preferential dependencies (IRF4 5, MAF, CCND2, IKZF3, IKZF1, NFKB) 

have known roles in MM, but limited, if any, prior formal evaluation of their preferential 

essentiality in MM compared with other cancers. We examined the patterns of essentiality 

of genes targeted by IRF45 (Supplementary Fig. 7l, Extended Data Fig. 9a) or IKZF1 and 

IKZF319 (Extended Data Fig. 9b) in MM. Each of these TFs regulates in MM cells genes 

which, represent distinct clusters, including genes essential across all tumor types; genes 

with recurrent proliferative, anti-apoptotic, or oncogenic roles across many cancers (e.g., 

regulation KRAS by IRF4); as well as genes that individually are not required for growth of 

MM or other cancer cell lines. Notably, several putative IRF4 targets (e.g., PRDM1, PIM2, 

BCL2, UBE2J1 and CCDC134) are themselves MM-preferential dependencies (Extended 

Data Fig. 9a, based on data from Fig. 1-2), which may explain why IRF4 disruption is so 

disadvantageous to MM cell fitness.

MM-preferential dependencies also include targets for anti-MM therapies, including the 

thalidomide derivative targets IKZF3 and IKZF120,21 and a recently identified CRBN neo-

substrate ARID222, but not other CRBN neosubstrates23-32 (Fig. 5). Genes required for 

MM cell fitness also include those encoding molecules mediating the anti-MM activity 

of proteasome inhibitors such as members of the NF-κB pathway33 and regulators 

of ER-associated protein degradation. These results are concordant with the fact that 

the clinical effects of thalidomide derivatives and proteasome inhibitors are mostly 

limited to PC malignancies. HDAC1 and BCL2 are also MM-preferential dependencies, 

consistent with the activity of inhibitors against these targets in clinical trials. IGF1R and 

members/regulators of its pathway (for example, IRS1, FURIN7) are also MM-preferential 

dependencies, consistent with the greater preclinical activity of IGF1R inhibitors against 

MM compared with other cell types 34,35. These data suggest that other genes identified 

from this study may have therapeutic relevance.
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In vitro studies supporting CRISPR screen results

MM lines harboring doxycycline (Doxy)-inducible SpCas9 were transduced with sgRNAs 

directed against MM-preferential dependencies including PIM2, MEF2C, TCF3 and 

DOT1L. Doxy treatment led to significant depletion of MM cells transduced with these 

sgRNAs (Supplementary Fig. 8a,b) compared with control sgRNAs for olfactory receptor 

genes, which are not expressed in MM36. As an orthogonal validation of the gene disruption 

screening results, treatment of MM lines with antagonists for the methyltransferase CARM1 

(PRMT4)37,38, the CBFB transcription factor39, the SIK kinases (including SIK3) or PIM 

kinases (including PIM2) decreased the relative viability of MM cells (Supplementary 

Fig. 8c-e). Additional validation of genome-scale CRISPR studies was offered by data 

from pharmacological screens (Supplementary Fig. 8f,g). Inhibitors against the products 

of several genes preferentially essential for MM were more active against MM lines 

compared to lines from solid tumors or other hematologic malignancies. These included 

“positive controls” such as lenalidomide (targeting IZKF1, IZKF3), bortezomib (targeting 

ER function or NF-κB); as well as inhibitors for BCL-2, IKK1/IKK2 (CHUK/IKBKB), 

IGF1R, HDAC1 and NAMPT (Supplementary Fig. 8f,g).

POU2AF1, an essential transcriptional cofactor for MM cells

The roles for many MM-preferentially essential genes were previously only modestly 

explored. One example is POU2AF1, encoding the OCA-B transcriptional cofactor. 

Prior studies in MM suggested that POU2AF1 regulates expression of BCMA 

(TNFRSF17)40; TCR-engineered T cells recognizing POU2AF1 peptides can have 

therapeutic applications41; while elevated POU2AF1 protein levels correlates with adverse 

prognosis42. However, the role of POU2AF1 as a dependency in MM has been understudied. 

POU2AF1 was the most preferentially essential gene encoding a transcriptional co-factor 

in MM (Fig. 1) and was also essential for several MM cell lines in shRNA studies 

(Extended Data Fig. 2c,d). Depletion of POU2AF1 protein levels through Doxy-inducible 

CRISPR interference (Extended Data Fig. 10a) decreased MM cell growth (Fig. 6a), while 

CRISPR-based activation of POU2AF1 (Extended Data Fig. 10b) stimulated growth of LP-1 

MM cells (Fig. 6b and Extended Data Fig. 10c). POU2AF1 overexpression also triggered 

upregulation (Fig. 6c) of other MM-preferential dependencies (e.g., PRDM1, SUPT7L, 

UBE2G2), TSC1, KRAS and other genes implicated in the pathogenesis of MM or other 

cancers (e.g., FGFR3, RUNX243, SMO, MEF2D, and PCGF2); as well as downregulation of 

CDKN1C (Fig. 6c), encoding a cyclin-dependent kinase inhibitor. POU2AF1 overexpression 

also led to downregulation of MHC class II molecules (Fig. 6d) and their transcriptional 

activator CIITA (Fig. 6c), suggesting potential roles of POU2AF1 in immune evasion.

ATAC-Seq indicated that chromatin surrounding the POU2AF1 locus was highly accessible 

in MM cells (Extended Data Fig. 6e), concordant with its consistent expression (Extended 

Data Fig. 3 and 4a). Motif analysis of ChIP-Seq data for POU2AF1 (GSE79480) identified 

overlap with DNA-binding motifs for POU family TFs such as OCT2 (POU2F2), the 

binding partner of POU2AF1, members of the ETS family and other TFs with roles in MM 

including c-MYC, IRF4, NF-κB, PRDM1 and RUNX2 (Fig. 6e), suggesting that POU2AF1 

may act as a cofactor for these factors. In further support of this notion, gene set enrichment 

analyses (GSEA) showed that the transcriptional signature of POU2AF1 overexpression is 
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enriched for genes regulated by MM TFs such IRF4, IKZF1, IKZF3 and MYC (Fig. 6f). 

Motifs associated with POU2AF1 binding are also enriched near the transcriptional start 

site of several MM-preferential dependencies including POU2AF1 itself, BCL2, IRF2 and 

IRS1 (Fig. 6g,h). Genes correlating with POU2AF1 expression in MM cells across 768 

patients with newly diagnosed MM were enriched among the genes upregulated by CRISPR 

activation of POU2AF1 in the LP1 MM cell line, suggesting that many are bona fide 

POU2AF1 targets (Fig. 6i). POU2AF1 expression was also correlated with expression of the 

116 MM-preferential dependencies in MM patient samples (Fig. 6j), as exemplified by IRF2 
(Fig. 6k), with multiple POU2AF1 binding sites in the accessible chromatin regions of this 

gene (Fig. 6l). POU2AF1, like IRF4, may be critical for MM cell fitness due to its ability to 

stimulate expression of other genes essential for MM proliferation and survival.

Endoplasmic reticulum genes preferentially essential for MM

ER-associated degradation (ERAD) for unfolded proteins represents an important biological 

vulnerability for MM cells, given the proteostatic stress associated with immunoglobulin 

production2,44. Multiple genes preferentially essential for MM encode previously 

underappreciated components of the ERAD system (Fig. 1 and Extended Data Fig. 1b,d). 

Doxy-inducible CRISPR knockout (KO) of UBE2J1 (Fig. 7a and Extended Data Fig. 10d), 

SYVN1 (Fig. 7b) or HERPUD1 (Fig. 7c) validated observations from gene editing screens 

in the respective cell lines (Fig. 1). Accordingly, HERPUD1 knockout affected viability 

of KMS18 cells, but not OCI-My5 cells (Fig. 7b). Moreover, in a competition assay of 

KMS18 cells harboring Doxy-inducible SpCas9 and sgRNA against UBE2J1 or an olfactory 

receptor (OR2D12) negative control, UBE2J1 KO cells were outcompeted by control cells 

only in the presence of Doxy (Fig. 7d). While there are no small molecule inhibitors for 

UBE2J1 or HERPUD1, LS-102, an inhibitor of SYVN1, inhibited growth of MM cell lines 

at micromolar concentrations (Fig. 7e). Consistent with the role of UBE2J1 in ERAD, 

UBE2J1 KO led to induction of the heat shock protein BiP, a marker of ER stress (Fig. 7f). 

In a reanalysis of a retroviral gene-trap mutagenesis screen and a gene-editing screen for 

genes involved in ERAD regulation in KBM7 haploid cells45, UBE2J1 was one of the top 

hits, together with its partners in the ER dislocon (HERPUD1 and SYVN), that facilitates 

translocation of misfolded proteins from the ER lumen to the cytoplasm (Extended Data 

Fig. 10e). Given that proteasome inhibitors induce ER stress in MM, we examined whether 

disruption of ER-associated genes preferentially important for MM could enhance response 

to proteasome inhibitors. In support of this notion, inducible KO of HEPRUD1 further 

decreased viability of MM cell lines treated with bortezomib (Fig. 7g,h), while KO of 

SYVN1 had a more modest effect (Extended Data Fig. 10f). The variable impact that 

perturbation of different ER-associated genes on MM cell response to proteasome inhibition 

may reflect diverse roles of these proteins in ER function. Collectively, these data support an 

important role in MM cells for a series of ER-associated genes (Fig. 7i) which may represent 

additional targets to enhance efficacy of proteasome inhibitors.

The patterns of essentiality of all ER-associated genes in MM vs other cancers (Extended 

Data Fig. 10g) reveal that a minority are “core essential” genes (Extended Data Fig. 10g, top 

of the graph); and a large proportion are essential for few, if any, cancer cell lines (Extended 

Data Fig. 10g, lower part of graph). Additionally, we identified ER-associated genes which 
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do not meet all criteria for MM-preferential dependencies, are not broadly essential across 

all cancers, but are essential for many MM cell lines (Extended Data Fig. 10g,h). These 

latter genes encode for ER proteins involved in dislocation of misfolded ER proteins to the 

cytosol (AUP1, AMFR and RNF139); or in N-glycan-dependent quality control for luminal 

ER glycoproteins (ALG12, ALG6, ALG8): these additional ER-associated genes may also 

represent candidate therapeutic targets for MM.

In vivo studies confirm role of MM-preferential dependencies

We examined if MM-preferential dependencies identified in vitro were also essential for 

MM cells grown in vivo within a bone marrow (BM)-like scaffold system engineered 

to simulate the human marrow microenvironment46 and enhance MM growth. Bicalcium 

phosphate scaffolds were populated ex vivo with primary human mesenchymal BM stromal 

cells under conditions favoring osteogenic differentiation (46 and Supplementary Fig. 8h). 

Scaffolds were subcutaneously implanted into NOD-scid gamma (NSG) mice and injected 

with KMS11 or XG7 SpCas9+ MM cell lines transduced with a focused sgRNA library 

targeting 89 MM-preferentially essential genes, genes with broad roles across many tumor 

types and controls. Analysis of sgRNA distribution of tumors recovered from the mice 

revealed that a large majority of MM-preferential dependencies identified in vitro were also 

essential for MM cells in vivo. For example, among the 57 MM-preferential dependencies 

with CERES scores ≤ −0.4 in KMS11 cells in vitro, their large majority exhibited depletion 

of their cognate sgRNAs in vivo (average log2FC≤−1.0 and depletion of 3-4 of 4 sgRNAs; 

Fig. 8a,b). These included genes encoding TFs/cofactors (e.g., IRF4, PRDM1, POU2AF1, 

RELB, MAF); epigenetic regulators (e.g., CARM1); kinases upstream of NF-κB (CHUK, 

IKBKB); and ER regulators. Core-essential genes and broad-spectrum oncogenes essential 

in vitro (e.g., MYC, CFLAR, CDK7 on both lines; KRAS in XG7) remained essential in 
vivo; while PTEN KO cells were enriched consistent with the tumor suppressive role of 

this gene (Fig. 8c). Overall, the large majority of MM-preferential dependencies examined 

were essential for MM cell growth in vivo of either KMS11 or XG7 cells; and most were 

essential for both lines (Fig. 8c). Knockout of several genes had a greater effect in vivo 
than in vitro. For instance, BCL2, the ER-associated genes HEPRUD1, ALG9, and DPM1; 

and the TFTCF3 (a gene examined with individual sgRNAs in another MM line in vitro; 

Supplementary Fig. 8) had in vitro CERES scores in the range of or greater than −0.40 in 

KMS11 cells, but sgRNAs for these genes were depleted in the in vivo setting (Fig. 8a). 

These observations indicate that most MM-preferential dependencies identified in vitro are 

also required when MM cells interact in vivo with a highly supportive microenvironment.

Discussion

Recent advances in MM treatment have relied on therapeutics that are primarily effective 

against PC neoplasias. This preferential anti-MM activity could not have been readily 

predicted by the genomic characterization of MM cells, as these agents do not target 

mutated oncogenes or the malignant state of MM PCs, but rather pathways critical for 

PC biology. This was originally recognized for thalidomide derivatives and proteasome 

inhibitors1 and also applies for subsequently developed therapies targeting the preferentially 

high expression of CD38, BCMA or GPRC5D on PCs, malignant and normal. Notably, 
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some of the most successful anticancer therapies also target both malignant and normal cells 

of lineages dispensable for survival of adult patients, sparing other tissues and avoiding 

major life-threatening complications. Such lineage-specific therapies include rituximab for 

lymphomas, hormonal therapies for prostate or breast cancer or radioactive iodine for 

thyroid carcinoma. The profound impact of lineage-specific treatments in MM and beyond 

prompted us to functionally ascertain, through genome-scale CRISPR screens, genes that 

are preferentially essential for MM compared with the overwhelming majority of neoplasias 

from other lineages.

Reassuringly, several MM-preferential dependencies identified in this study are known 

regulators of MM biology (e.g., IRF4) or targets/mediators for therapies with preferential 

clinical activity against MM/PC neoplasias. Among diverse proposed mediators of anti-MM 

activity of thalidomide derivatives, IKZF3, IKZF1 and ARID2 emerged as MM-preferential 

dependencies. Prior work primarily centered on IKZF1 as the critical target of thalidomide 

derivatives, but our present study identifies more pronounced and recurrent MM cell 

dependence on IKZF3. ARID2 is a CRBN neosubstrate with pomalidomide, but not 

lenalidomide, treatment22. Our observations suggest that additional emphasis is warranted 

on IKZF3, ARID2, and their downstream effects.

In terms of the pronounced activity of proteasome inhibitors (PIs) against PC neoplasias 

(vs. limited activity against most other tumor types), the precise mechanistic contribution 

of NF-κB inhibition vs. ER stress had remained an unanswered question. Our study points 

to a contribution of both pathways, because MM cells are, compared to other neoplasias, 

preferentially dependent on both NF-κB pathway genes and ER regulators. The latter 

include molecules with previously underappreciated roles in MM, including the ER-resident 

E2 ligase UBE2J1 and E3 ligase SYVN1; or their ER-to-cytosol retrotranslocation partners 

SEL1lL and HERPUD1 which contribute to the quality control system for misfolded 

proteins in the ER. These proteins and their respective complexes may represent therapeutic 

targets in MM.

The identification of BCL2, HDAC1, and PIM2 as MM-preferential dependencies is also 

notable, given that BCL2 inhibitors have promising clinical activity in a subset of MM 

patients47; and broad-spectrum inhibitors of class I HDACs48 or PIM kinases49 have 

exhibited activity in clinical studies in MM, but only limited clinical efficacy in other 

settings.

By this logic, other MM-preferential dependencies could represent putative therapeutic 

targets. Many transcriptional/epigenetic regulators identified in this study have received 

limited attention as therapeutic targets in MM. Others (e.g., DOT1L50 or CARM151) 

have been targeted therapeutically in preclinical MM studies which, however, did not 

comprehensively compare the role of these targets in MM vs. other cancers. A translational 

implication of our study is that selective direct inhibitors of the expression of MM-

preferential dependencies or function of their product(s) merit preclinical and clinical 

evaluation in MM, without excluding possible applications in other neoplasias. Our 

data do not imply MM-“exclusive” essentiality for these genes, as several are also 

recurrent/preferential dependencies for other malignancies. However, a large fraction of 
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MM-preferential dependencies do not exhibit a similar role in other hematologic neoplasias 

and some were even reported as tumor suppressors in other lymphoid malignancies (e.g., 

FBXO1152 and PRDM116) or solid tumors (e.g., STK11 and TSC2). Examining other 

neoplasias, beyond MM, for their respective preferential dependencies, identified some 

known examples of dependencies related to the respective cell of origin, but overall fewer 

genes per disease compared to those identified for MM. This may reflect the highly distinct 

molecular network that is essential for the MM cells and their identity as PCs, specifically 

their status as highly secretory cells, which require high levels of ER function, as well 

as distinct transcriptional, epigenetic and signaling vulnerabilities, compared to most other 

tumor types. Collectively, MM-preferential dependencies cannot be attributed exclusively 

to biological differences between blood cancers vs. solid tumors but may reflect the major 

underlying differences in the molecular network of MM cells compared to all other cancers.

The identified MM-preferential dependencies vary in terms of the fraction of MM lines 

dependent on each gene or the magnitude of essentiality scores. Future studies in larger 

panels of MM lines may reveal molecular determinants of these differences, e.g., if any 

of these genes are preferential to individual MM subtypes, defined by either genomic or 

CRISPR-based functional criteria. Some MM-preferential dependencies defined by CRISPR 

are also apparent in shRNA studies, but others are not, perhaps reflecting a more pronounced 

and less variable suppression of gene function by CRISPR-based gene-editing. Time-course 

studies may provide important additional insights on the kinetics and the cytostatic vs. 

cytocidal impact of CRISPR KO of MM-preferential dependencies and whether during the 

course of a CRISPR screen tumor cells “re-wire” to accommodate the loss of such genes.

Our in vivo studies validated the large majority of MM-preferential dependencies identified 

in vitro. Additional genes may conceivably be preferentially essential for MM cells in vivo 
but not in vitro. Interaction with the BM milieu may alter the patterns of dependencies in 

MM cells, as evidenced by our observation that some genes were more essential for growth 

in vivo than growth in vitro. Future studies will likely define microenvironment-related 

in vivo dependencies (e.g., growth factor receptors or cell adhesion molecules critical for 

cell-cell interactions) in models that faithfully simulate the support of the local BM milieu 

on MM cells and ideally involve local production by human stromal cells of cytokine/growth 

factors since many murine cytokines do not react with the human receptors. Our xenograft 

studies in immunocompromised mice could not examine the impact of MM-preferential 

dependencies on immune recognition. Notably, activation of POU2AF1, one of the top 

MM-preferential dependencies, was associated with decreased expression of MHC class II 

molecules, while other MM-preferential dependencies (e.g., MPDU1, ARID1A) influence 

tumor cell responses to natural killer cells53,54. Therefore, at least some MM-preferential 

dependencies could have pleiotropic roles beyond the cell autonomous regulation of MM 

cell survival and proliferation.

MM cell behavior is shaped by their intrinsic “PC biology” and their superimposed 

“cancer biology”1: comprehensive understanding and therapeutic targeting of both aspects 

is warranted1. By comparing dependencies in MM vs. all other malignancies, our study 

addresses this former aspect of “PC biology” of MM and yields many previously 

underappreciated targets which do not require genomic perturbations in order to serve as 
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essential genes and candidate therapeutic vulnerabilities for MM. Indeed, the large majority 

of MM-preferential dependencies are not among the top genes in terms of the frequency 

of mutations or DNA copy number gains in MM, are not necessarily located in highly 

accessible regions of chromatin and are not among the top differentially expressed genes 

in MM vs. other neoplasias. Conversely, most genes overexpressed in MM cells (compared 

with other tumor types) are not essential for MM cells. Collectively, our study identifies 

MM-preferential dependencies, most of which would not be readily identified as MM 

driver genes with highly recurrent genomic perturbations, and thus is complementing the 

long-standing efforts to define therapeutic targets for the “cancer biology” aspect of MM.

For nearly two decades, research in MM and other malignancies focused on profiling 

of tumor cell lines and patient samples for alterations in their genome, transcriptome, 

epigenome, and proteome, with the hope that molecules with the most recurrent or 

pronounced dysregulation could represent attractive therapeutic targets. Our study highlights 

that CRISPR-based functional genomics approaches4,55,56, by directing assessing the impact 

of gene perturbation on tumor cell fitness, can identify genes critical for tumor cells from a 

particular cell lineage and define promising therapeutic targets not readily identifiable based 

on alterations in the tumor genome, transcriptome, or epigenome.

Methods

This research complies with all relevant ethical regulations. In vivo studies were performed 

according to a protocol approved by the Dana-Farber Cancer Institute Animal Care and Use 

Committee.

Cell lines.

Details about the cell lines examined in the genome-scale CRISPR-Cas9 gene editing 

studies are available at https://depmap.org/portal/. Information about lines used in additional 

experiments is included in Supplementary Table 2. Cell line identity was validated by short 

tandem repeat analysis and cultures were regularly tested for Mycoplasma.

CRISPR-based genome-scale screens

Genome-scale CRISPR-Cas9 screens were performed in human MM and other cell lines 

stably transduced with lentiviral vector pXPR-311Cas9, selected with blasticidin and then 

infected with a lentiviral library of 76,106 sgRNAs (AVANA) targeting 17,670 genes protein 

coding (~4 sgRNAs/gene) and including 995 nontargeting control sgRNAs. Cells were 

selected in puromycin and blasticidin for 7 days and then passaged without selection (with 

target representation of 500 cells per sgRNA) for 21 days. Genomic DNA was purified 

from endpoint cell pellets, sgRNA barcodes were PCR amplified with sufficient gDNA 

to maintain representation, and PCR products were sequenced using Illumina protocols 

as described55,57. Data processing and quality control was performed as in previous 

studies4,55,56,58. CERES scores, a metric of relative essentiality of an individual gene in 

a given cell line, were calculated as in55 to correct for gene-independent DNA copy number 

effects of CRISPR gene editing. The CERES scores for all cell lines in this study are 

available at https://depmap.org. Unless noted, figures represent data reported in the 20Q4v2 
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release and exhibit very high degree of concordance with results from other releases (e.g., 

in Extended Data Fig. 1). Essentiality was also evaluated by converting the CERES scores 

into ranks of CERES scores (also referred to as “CERES ranks”) for each gene within 

each cell line; or the MAGeCK algorithm59 to assess sgRNA depletion or enrichment 

without correction for DNA copy number. Dependency data based on RNA interference 

were derived from Achilles Heel shRNA screens and Novartis’ Project DRIVE60, and were 

reprocessed using the DEMETER2 algorithm to calculate gene dependencies56.

Computational methods to identify preferential dependencies: To identify 

candidate tumor type-preferential dependencies, we examined genes with significant 

difference and lower (more essential) average CERES scores in MM vs. non-MM cell lines; 

in similar comparisons of a different tumor type vs. all others; or comparing MM lines vs. 

e.g., solid tumors. Statistical significance was assessed using empirical-Bayes moderated 

t-statistics using Limma software with an adjusted p-value of <0.05 and a difference in 

CERES score of <−0.2 between cell types was considered significant. To identify a refined 

list of candidate MM-preferential dependencies, we focused on genes which satisfied the 

following criteria: 1) adjusted p-value (FDR) <0.05 in Limma tests comparing CERES 

scores in MM vs. non-MM cell lines; 2) average CERES score difference of ≤−0.2 between 

MM vs. non-MM cell lines; 3) average CERES scores of ≤−0.2 in MM cell lines; 4) at 

least 15% MM cell lines with CERES score ≤−0.4; 5) the fraction of non-MM cell lines 

with ≤−0.4 CERES score is ≤0.8 (to filter-out broadly essential / “core essential” genes); 6) 

adjusted p-value (FDR) <0.05 in Fisher’s test comparing ranks of CERES scores in MM 

vs. non-MM cell lines; 7) log2(TPM+1) of ≥1.0 in at least 30% of MM cell lines tested 

(TPM: transcripts per million). For genes in the X chromosome, CERES-based correction 

for their copy number status was not applied in early versions of DepMap data. Such genes 

are indicated in gray for the respective DepMap releases (Extended Data Fig. 1a). We also 

compared MM vs. non-MM cell lines, using the same statistical tests as for CERES ranks, 

in terms of the distribution of DNA copy number-uncorrected ranks based on the MAGeCK 

algorithm59 of sgRNA depletion.

Molecular profiling and other datasets: Transcriptional profiles, DNA copy 

number status and mutational landscapes of human MM and non-MM cell lines 

examined were accessed from the Cancer Cell Line Encyclopedia (CCLE) portal (https://

portals.broadinstitute.org/ccle/data, data versions from 2017-2018) or the Dependency 

Map portal (https://depmap.org/portal). Transcriptional profiles, mutational and CNV data 

on MM tumor cells from patients and clinical data on progression-free survival (PFS) 

and overall survival (OS) of the CoMMpass study were accessed from the MMRF 

Researcher Gateway (https://research.themmrf.org/, data releases IA8-IA19): PFS and OS 

data were evaluated (e.g., Extended Data 4c-e) for patients receiving bortezomib plus 

IMID (immunomodulatory thalidomide derivative (IMID) (cBI group), bortezomib without 

IMID (B group), IMID plus carfilzomib (cIC group) and all patients (full set) of the 

datataset. Gene expression profiles on patient tumors with non-MM malignancies (e.g., in 

Extended Data Fig. 4a or Supplementary Fig.2-6) were derived from The Cancer Genome 

Atlas (TCGA) and accessed from https://gdac.broadinstitute.org/ (version 2016012800), 

https://portal.gdc.cancer.gov/. TCGA and MMRF CoMMpass data can also be retrieved 
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from the UCSC Xena platform61. For evaluation of gene expression, after a library size 

normalization and voom transformation62, the Limma moderated t-test was applied between 

samples of MM and TCGA (excluding acute myeloid leukemia [LAML]) to identify genes 

with FDR ≤0.05 and log2FC <−1.0 or above ≥1.0. The patterns of transcript expression 

for MM-preferential dependencies were also examined in publicly available datasets of 

samples representing different stages of MM or settings with distinct differences in 

the clinical or biological behavior of MM (GSE2113, GSE5900, GSE6477, GSE13591, 

GSE39754, GSE39925, GSE66293); or MM patients receiving bortezomib-based or other 

treatments (GSE19748, GSE9782) or MM cells interacting with BMSCs (GSE20540). IRF4 

target genes were identified previously5 (in datasets GSE8958, GSE9067, and GSE9367), 

and genes downregulated by IKZF1 or IKZF3 loss-of-function were derived in prior 

studies (GSE113031)19. ATAC-Seq data of MM lines (from GSE121912) were analyzed 

to determine accessible regions of chromatin with MACS2 (v2.1.0.20151222)63,64 using 

default parameters and a q-value of 0.01. Regions that overlapped ENCODE blacklisted 

regions were removed65. ATAC-seq data was normalized for reads per peak million (RPPM) 

for visualization using the following formula: RPPM = reads x (106 / total reads in 

autosomal peaks. Super accessible regions were determined using the GenomicRanges 

(v1.36.1) and GenomicAlignments (v1.20.1) packages in R (v3.6.3) where regions within 

12.5 kb were linked together excluding those within 2.5 kb of a transcription start site. 

Regions were ranked by accessibility (RPPM) and regions that were past the inflection point 

were considered super accessible regions. Genome-wide chromatin immunoprecipitation 

analyses (ChIP-Seq) for POU2AF1 (OCA-B) were accessed from GSE79480. Functional 

genomic data of retroviral gene-trap mutagenesis screen and a gene-editing screen for genes 

involved in ERAD regulation in KBM7 haploid cells were derived from45. The GDSC1 

and GDSC2 datasets of pharmacological screens were derived from the Genomics of Drug 

Sensitivity Project (66 and https://www.cancerrxgene.org/). The direct (physical) and indirect 

(functional) associations of the MM-preferential dependencies (Extended Data Fig. 1d), 

based on computational prediction, knowledge transfer between organisms, interactions 

aggregated from other (primary) databases or other resources integrated were visualized 

using the STRING database (String-DB, https://string-db.org/ v11.0)67.

Cloning of individual sgRNAs: sgRNAs for CRISPR-KO, CRISPRi and CRISPRa 

were packaged in pLVX-hyg-sgRNA1, pXPR-502 (RRID:Addgene_96923) and pXPR-050 

(RRID:Addgene_96925) as described. Briefly, target sgRNA oligos (Supplementary Table 

2) were mixed with Guide-it Oligo annealing buffer (Takara Bio 632630), denatured at 95°C 

or 2 min and cooled to 25°C over 15 min. Annealed oligos were ligated into gel-purified 

vectors using DNA Ligation Mighty Mix (Takara Bio USA, 6023) at 16 °C for ~30 minutes, 

transformed into Stellar™ Competent Cells (Takara Bio USA), with resulting colonies 

picked, expanded with DNA isolated using the QIAprep Spin Miniprep Kit (Qiagen, 27106), 

screened for inserts and the resulting plasmids sequenced.

Addback studies: In-frame fusion of sequences encoding HA-FKBP12F36V in 

pLEX_305-N-dTAG (Addgene, #91797) to the complementary DNA (cDNA) encoding 

IRF4 to yield HA-FKBP12F36V-IRF4 cDNA was performed by Gateway recombination 

(Invitrogen). Individual sgRNAs against intron–exon junctions (IEJs) of IRF4 were designed 
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using the Broad Institute sgRNA design portal (https://portals.broadinstitute.org/gpp/

public/analysis-tools/sgrna-design). All sgRNA sequences were synthesized by 

CustomArray Inc (Bothell, WA) and cloned into a pHKO9 vector (as described in 

https://media.addgene.org/cms/filer_public/4f/ab/4fabc269-56e2-4ba5-92bd-09dc89c1e862/

zhang_lenticrisprv2_and_lentiguide_oligo_cloning_protocol_1.pdf). Production of lentiviral 

particles for IRF4 fusion constructs and individual sgRNAs, and lentiviral transduction were 

performed based on published protocols68,69. The viability of cell populations transduced 

with HA-FKBP12F36V-IRF4, sgRNAs against intron-exon junctions of IRF4 or both was 

assessed 3 days after hygromycin selection for the last of the transductions (for the sgRNAs 

against IEJs of IRF4) using CellTiter-Glo (CTG, Promega).

Tumor cell viability assays:

In vitro anti-MM activity for small molecular-weight inhibitors.: CellTiter-Glo (CTG) 

assays were performed for studies with pan-PIM inhibitors LGB-321(AdooQ BioScience 

# A14420-5) or SGI-1776; the CBFB inhibitor (CBFBi) Ro5-3335 (Fisher Scientific # 

469410), the CARM1 inhibitor (CARM1i) Merck 217531 (EMD Millipore #217531), the 

SYVN1 inhibitor LS-102 (Fisher Scientific #NC1398267), and SIK inhibitor HG-9-91-01 

(MedChemexpress, HY-15776-5MG). Cell lines were seeded with inhibitor for 3-5 days as 

indicated. CTG assays at indicated timepoints were measured by a BioTek Synergy 2 plate 

reader (BioTek, Winooski, VA).

Assessment of cell viability after CRISPR gene editing, activation or 
interference.: Lenti-X-293T cells were transduced using lipofectamine with packaging 

plasmids psPAX2 (RRID:Addgene 12260) (5 μg) and MD2.G (RRID:Addgene_12259) (2.5 

μg) and plasmids encoding individual sgRNAs packaged in the pXPR_502 or pLVX-hyg-

sgRNA1 (5μg). Virus was collected after 24 hours and 1mL applied to 1 x 106 target cells.

For CRISPR gene editing studies, viability of KMS18 or OCI-My5 cells harboring Tet-

inducible SpCas9 construct and transduced with sgRNAs for genes of interest (details 

in Supplementary Table 3) were seeded (100 cells/well) into 384-well plates, in 10% Tet-

negative FBS media (50 μL) with or without Doxycycline (2 μg/mL) and add another 

50 μL media with or without Doxycycline (2 μg/mL) at day 7. CellTiter-Glo reagent 

was added to each well at day 14, and plates were read using a microplate reader. For 

CRISPR interference studies, KMS11 cells with Tet-inducible dCAS9_KRAB construct 

and transduced with sgRNAs (details in Supplementary Table 3) were seeded (0.3x106 cells/

well) into 24-well plates, in 10% Tet-negative FBS media 1 mL with or without Doxycycline 

(2 μg/mL), and seeded in 384 well plates. Media were changed every 3-4 days with cell 

viability checked by CellTiter-Glo at day 11.

For CRISPR activation, LP1 dCAS9-VP64 cells were plated in 1 mL of complete 

RPMI1640 medium per well in a 24-well plate. Cells were incubated in cell medium 

containing polybrene (4 μg/mL; Santa Cruz Biotechnology) and 1%HEPES (1M), and same 

amount of viral prep, were centrifuged at 1500 g for 2 h and incubated overnight at 37°C 

5%CO2. Media were changed next day and, after another 48 h, selection with puromycin 2 

μg/mL) for seven days. After 12 and 19 days from transduction, cells were detached from 
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flask by trypsin, allowed to recover at 1mL of complete medium. Then, 50 μL aliquots were 

seeded in 384-well plate and were assessed using CellTiter-Glo.

Competition assay evaluated by INDEL analysis: Competition assays with gene 

edited cells were performed as previous studies70. KMS18 cells stably transduced with 

Doxy-inducible SpCas9 were transduced with pLVX-hyg-sgRNA1 plasmid harboring 

specific gRNAs (Supplementary Table 3) and selected in Hygromycin B (350 μg/mL). 

OR12D2 KO cells and UBE2J1 KO cells were mixed at a 1:9 ratio and maintained with or 

without Doxycycline at 2 μg/mL (replenished every three or four days). Cells were collected 

at day 14 or 28. Genomic DNA was extracted from cell pellets and targeted lesion of sgRNA 

sequence were amplified by PCR and analyzed by next generation sequencing (MGH DNA 

core; https://dnacore.mgh.harvard.edu/new-cgi-bin/site/pages/crispr_sequencing_main.jsp). 

Indel analysis and estimation of % of cells with frameshift mutations was performed with 

CRISPRESSO (http://crispresso.pinellolab.org).

Immunoblotting.—Similar to prior studies70, cells (3 x 106 per condition) were collected 

and lysed using RIPA buffer (ThermoFisher) with protease/phosphatase inhibitor cocktail 

(Cell Signaling Technology) by incubating on ice for 10 min. Lysates were collected by 

centrifugation (15,000 g for 10 min at 4 °C) and lysate concentration was determined 

using BCA (ThermoFisher). Protein samples were resuspended in Bolt LDS sample buffer 

(NuPage, Invitrogen) with sample-reducing agent (NuPage), heated to 70°C for 10 min 

and 10-20μg/sample loaded on 4-12% Bis-Tris gels (NuPage) and run at 125V for 70 

min using MOPS running buffers. Gels were transferred onto PVDF membranes using 

SDS-based transfer buffer (NuPage), blocked in 5% skim milk in TBS-T for 1h and probed 

with primary antibodies overnight at 4 °C. Secondary antibodies in 1% skim milk in 

TBS-T were applied to the membranes for 1.5 h at room temperature prior to incubation 

in ECL (ThermoFisher #34075) substrate. Information on antibodies used in these studies 

is included in Supplementary Table 2. Immunoblots were visualized using a C-DiGit®Blot 

Scanner (LI-COR Biotechnology, Lincoln, NE).

RNA-sequencing.—Triplicate cultures of LP1 cells transduced with sgRNAs for CRISPR 

activation of POU2AF1 or control genes were pelleted and frozen at −80°C. RNA was 

extracted by RNeasy Plus Mini Kit (Qiagen 74134) and ERCC RNA Spike-In Mix 

(Thermo Fisher 4456740) was added at the first step of extraction. RNA sequencing was 

performed by the Molecular Biology Core Facilities (MBCF, DFCI). results are available 

(GSE186997). RNA-seq raw data processing and generation of gene read counts was 

performed with STAR71. Analysis performed with edgeR Bioconductor package involved 

ERCC-based normalization, a generalized linear model and, for the likelihood ratio test, 

pooling of the coefficients of each sgRNA within the control or POU2AF1 activation 

groups. Gene set enrichment analysis (GSEA) was performed using the pre-ranked option 

(e.g., ranking according to -log10FDR x log2FC) with custom sets representing genes 

suppressed by loss of function of IRF4, IKZF1, IKZF35,19 or genes upregulated with MYC 

amplification (e.g., Kim_MYC_Amplification_Targets_UP), using default settings (through 

Gene Pattern, https://www.genepattern.org/).
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Subgenome-scale CRISPR editing studies in vitro and in vivo

A library of 1372 oligonucleotides for sgRNAs was designed to include typically 4 

guides per gene for each of 184 genes, including 89 MM-preferential dependencies; broad-

spectrum oncogenes; select tumor suppressor genes (e.g. PTEN); and genes with limited 

in vitro essentiality in MM cells, including some with significantly higher expression in 

MM vs. non-MM lines, and 155 olfactory receptor (OR) genes “DNA cutting” control 

sgRNAs. These oligonucleotides were synthesized in pooled format (CustomArray), PCR-

amplified and gel-purified using a Qiagen gel extraction kit and used as template for a 

second PCR reaction with the flanking sequence to attach to the lentiGuide-Puro vector. 

After gel purification, 0.1 pmol of PCR product, 90 ng of lentiguide-puro and Gibson 

assembly kit with water were incubated for 30 min at 16°C. Next, 1200 ng of the resulting 

plasmid DNA was transformed into 300 μL of ElectroMAX Stbl4 electrocompetent cells 

by electroporation and put into 2.5 mL of SOC medium before being shaken 1 hr at 37°C. 

After incubation, cells were plated in 3 mL of medium on a total of 3 bioassay plates and 

incubated for 16 hr at 37°C. After 16 hrs of incubation, cells are collected with 30 mL of 

cold LB each by biospreader and pelleted at 4°C at 6000 g for 15min. Plasmid DNA was 

extracted using the QIAGEN Plasmid Plus Maxi Kit. Lenti-X-293T cells were plated in 

T175 culture flasks in DMEM with 10%FBS and incubated overnight. The next day, cells 

were transduced using lipofectamine with the library plasmids (30 μg) and MD2.G encoding 

VSV-G (12.5 μg). Viral supernatants were collected after 24h and stored at −80°C prior to 

use.

SpCas9-expressing cell lines (KMS11, XG-7, RPCI-WM and BCWM1) were incubated 

for 16 hrs in cell medium containing 8 μg/mL polybrene, 10mM HEPES (pH 7.4) 

and viral prep (6 mL) diluted to achieve transfection rate of 0.3. After the end of the 

incubation with the viral preps, cells were washed and incubated for an additional two 

days. Transduced cells were treated with puromycin (2 μg/mL) for up to 7 days after 

3 days from transduction. The RPCI-WM and BCWM1 cell lines transduced with this 

focused sgRNA library were cultured (3 replicates per cell line) in vitro for 3 weeks. 

At the end of this incubation, tumor cells were collected, and PCR amplification and 

next-generation sequencing of the samples were performed53,70, to quantify the abundance 

of sgRNAs. The KMS11 and XG7 cell lines transduced with this focused sgRNA library 

were introduced in vivo into bicalcium phosphate (BCP) particles: the latter had been 

loaded with human primary mesenchymal bone marrow stromal cells, cultured ex vivo 

under conditions favoring osteogenic differentiation of these stromal cells46 and implanted 

subcutaneously (two scaffolds per mouse) into 8-week-old NSG female mice. Seven weeks 

after scaffold implantation, 1.5 million KMS11-SpCas9 or XG-7-SpCas9 cells transduced 

with the focused sgRNA library were injected directly into the scaffolds (5 mice for KMS11 

and 8 for XG7 study). Without exceeding the maximal tumor burden (20mm of diameter 

in any direction) permitted by DFCI IACUC, tumors were removed, and processed for 

DNA isolation (Blood & Cell Culture DNA Maxi Kit #13362), pooling of material from 

the same mouse, PCR amplification and next-generation sequencing53,70, to quantify the 

abundance sgRNAs for genes of interest (vs sgRNAs for control OR genes). Read counts 

normalized according to the OR control sgRNAs were analyzed, with averaging of read 

counts examined both before (e.g., Fig. 8a) and after (e.g., Fig. 8b,c) log2 transformation, 
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yielding concordant conclusions regarding the patterns of depletion for sgRNAs targeting 

MM-preferential dependencies.

Statistics and Reproducibility: To identify and further characterize genes preferentially 

essential for MM, this study involved multiple essentiality metrics and criteria for the 

identification of these genes; corroboration of results across multiple iterations of genome-

scale screens; functional characterization of many of these genes; integration of their 

molecular features across multiple datasets; and alternative methods of analyses of data 

(information on additional approaches for data analyses not included in this study are 

available through the corresponding author). Details on sample size(s) and statistical 

test(s) are provided in the respective sections. Statistical tests were two-sided (except 

rank aggregation analyses), and distribution of individual data points was assumed to be 

normal, but this was not formally tested. No statistical methods were used to predetermine 

sample sizes, but in this study these sample sizes (e.g., numbers of replicates in CRISPR 

experiments) were similar to those reported in prior publications4. Animal studies were 

performed according to a protocol approved by the Dana-Farber Cancer Institute Animal 

Care and Use Committee and did not involve treatment administration; thus randomization 

was not pertinent. For other experiments, data collection and analysis were not performed 

in a manner blinded to the conditions of the experiment. Further information on research 

design is available in the Nature Research Reporting Summary linked to this article.

de Matos Simoes et al. Page 20

Nat Cancer. Author manuscript; available in PMC 2024 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Figure 1 ∣. MM-preferential dependencies in genome-scale CRISPR-based gene 
editing screens
a, Summary matrix of results for identification of MM-preferential dependencies 
in genome-scale CRISPR-based gene-editing screens from different releases of the 
Dependency Map program. The criteria used to identify MM preferential dependencies 

in the 20Q4v2 Dependency Map data were also applied in earlier releases (18Q3 to 

20Q3). The matrix summarizes results for all genes that met these criteria in at least 

one of the releases. Black or white indicate, respectively, that a gene did vs. did not 

meet criteria for MM preferential dependency in the respective data release (gray signifies 
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that CERES scores were not calculated for a given gene in the data release). b, MM-
preferential dependencies clustered according to molecular pathways represented in 
this group of genes. Color-coded heatmaps for CERES scores following the format 

of Fig. 1a. Genes are clustered based on their related functional groups, pathways, or 

biological functions, based on aggregate information from the literature. c-d, Molecular 
pathways enriched for MM-preferential dependencies. c, Schematic representation of 

functional groups represented in the MM-preferential dependencies, such as transcription 

factors/co-factors, other regulators of transcriptional responses and chromatic signaling; 

kinases serving as upstream regulators of these pathways (e.g., kinases activating NF-κB); or 

endoplasmic reticulum/Golgi regulators. d, Visualization of the direct (physical) and indirect 

(functional) associations of the MM-preferential dependencies, based on computational 

prediction, knowledge transfer between organisms, interactions aggregated from other 

(primary) databases or other resources integrated and visualized by the online STRING 

database (https://string-db.org/, v11.0)67.
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Extended Data Figure 2 ∣. Additional metrics of essentiality for MM preferential dependencies.
a-b, Ranks of CERES scores or DNA copy number-uncorrected ranks of sgRNA 
depletion for MM-preferential dependencies. Essentiality metrics are depicted in color-

coded heatmaps similar in format to Fig. 1a, with results presented for MM lines as a matrix 

(each line in a separate column) while results for non-MM lines are stacked separately for 

each gene from lowest to highest essentiality (from left to right in each row). For each cell 

line, the top 3000 genes with the lowest CERES scores (in a) or with most pronounced 

sgRNA depletion based on MAGeCK rank aggregation (in b) are depicted in green or 

purple, respectively. For each cell line, the top 100 genes with highest CERES scores (in 

a) or highest MAGeCK ranks for sgRNA enrichment (in b) are depicted in purple and 

yellow/orange, respectively, according to the respective color-coded scales.
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c-d, Patterns of depletion for shRNAs targeting genes defined by CRISPR as MM-
preferential dependencies. c, DEMETER2 scores are depicted as a matrix for MM (n=13 

cell lines; right) and as separate stacked plots for non-MM (n=461 cell lines; left), according 

to the color-coded scale (black/ blue for shRNA depletion; yellow/orange/brown for shRNA 

enrichment; white for DEMETER2 scores between −0.4 and +0.4; and gray for genes not 

examined in the shRNA screen of the respective cell line). d, DEMETER2 scores for key 

examples of MM-preferential dependencies are depicted (in rows) for both non-MM (left) 

and MM lines (right) as stacked bar graphs, according to the color-coded scale.

Extended Data Figure 3 ∣. Patterns of expression of MM-preferential dependencies in MM vs 
non-MM cell lines.
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RNA-Seq data (CCLE dataset) for MM-preferential dependencies in MM vs. non-MM cell 

lines. Transcript levels (log2(TPM+1)) for each gene (row) across MM and non-MM cell 

lines are scaled by maximum value resulting in a value range between 0 and 1 and presented 

as stacked bar plots. Color bars on the side of the graph denote different clusters of genes, 

defined based on analyses of Fig. 3 (based on 2-sided limma t-test FDR and log2FC of 

differential expression of each gene in MM vs non-MM lines).

Extended Data Figure 4 ∣. Patterns of transcript levels for MM-preferential dependencies in 
different biological or clinical contexts.
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a, RNA-Seq data for MM-preferential dependencies in patient-derived tumor samples 
for MM vs. non-MM. Transcript levels (presented as stacked plots) for each gene (row) 

across MM (n=591 samples; MMRF CoMMpass study, IA8 release) and non-MM (n=11060 

samples, TCGA; accessed from GDAC). Raw counts were voom normalized, negative voom 
values were set to zero, scaled by maximum value for each gene, resulting in a value range 

between 0 and 1. Concordant observations also obtained with other versions of MMRF 

and TCGA datasets. b, Comparative analyses of transcript levels for MM-preferential 
dependencies in different stages of myelomagenesis or settings with distinct differences 
in clinical or biological aggressiveness of MM. Heatmap summarizes results from 

comparisons performed between groups of samples within each of the gene expression 

profiling datasets indicated in the figure. Red and blue denote statistically significant 

(FDR<0.05, Limma t-test, log2FC > 1.0 or < −1.0) up- or down-regulation, respectively, 

for a gene in a given group of samples vs. its indicated comparator group. Genes in gray 

do not have perfect match probes in the respective array. White indicates no statistically 

significant difference for a given comparison. Number of samples per group is indicated 

next to each comparison. c-e, Transcript levels of most MM-preferential dependencies 
do not consistently correlate with adverse clinical outcome. c, Overall survival (OS) or 

progression free survival (PFS) were examined for MM patients at high vs. intermediate 

vs. low tertiles of expression of each MM-preferential dependency in each dataset indicated 

in the graph (see Methods). Red and blue denote statistically significant (at FDR<0.05, 

two-sided log-rank test) correlation of transcript levels for a given gene with adverse or 

favorable, respectively, clinical outcome (white indicates FDR>0.05). d-e, Cumulative plots 

summarizing results of c, in terms of OS (d), or PFS (e), between MM patients with high vs. 

intermediate vs. low tertile of expression of each gene in each dataset indicated in the graph. 

For each potential FDR value (x-axis), the y-axis depicts, separately for OS or PFS in each 

dataset, the cumulative fraction of MM-preferential dependencies exhibiting FDR levels 

equal or lower to those depicted in each respective position of the x-axis. For all evaluated 

datasets, <25% of MM-preferential dependencies exhibit FDR<0.05 for the correlation of 

transcript levels with PFS or OS. Number of patient samples in c-e is indicated for each 

dataset.
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Extended Data Figure 5 ∣. Genomic landscape of MM-preferentially essential genes.
a, Mutational and DNA copy number data for MM-preferential dependencies in MM vs. 

non-MM cell lines is included in heatmaps of CERES scores (similar to the format of Fig. 

1a). Green stars represent non-synonymous mutations; while CNV gains and losses are 

depicted by “+” or “−”, respectively. In stacked plots for non-MM cell lines, green stars 

are also stacked and are not linked with the CERES scores in respective lines. b, Rank of 

genes with most frequent CNV gains in MM patient tumor samples (N = 932 samples; N = 

18,057 genes with CERES data (20Q4v2) and CNV data in CoMMpass study, IA15 release): 

MM-preferential dependencies are highlighted in red and their gene symbols are labeled for 

those MM-preferential dependencies ranked in the top 200 genes (genes are ranked on the 

x-axis on a log2 scale). c, Top hotspots for gain of structural variants (SVs) ranked based on 

their frequency in MM patient tumor samples (CoMMpass study), derived from analyses of 
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Rustad et al13. MM-preferential dependencies residing in 8 of these hotspots are highlighted, 

and those in bold have not been previously proposed as candidate drivers of the respective 

hotspots. Gray denotes hotspots which contain no genes evaluated in the genome-scale 

CRISPR screens. d, Heat maps for CERES scores in MM vs. non-MM lines of genes in each 

of the 8 SV gain hotspots of panel c that contain MM-preferential dependencies.

Extended Data Figure 6 ∣. Overlap or proximity of chromatin accessible regions with MM-
preferential dependencies.
a, Plot of stitched regions of chromatin accessibility with average ATAC-seq signal (RPPM) 

across 22 MM cell lines shown in gray. Black lines denote the inflection point that denotes 

super-accessible (SA) regions. Regions within 100 kb of MM-preferential dependencies 

are denoted by red tick marks on the bottom and the odds ratio (OR) and P-value 
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(two-sided Fisher’s exact test) of enrichment of MM-preferential dependencies found near 

super-accessible regions are shown. b, Heatmap of chromatin accessible regions within 

100 kb of MM-preferential dependencies across 22 MM cell lines. c-f, Genomic plots of 

ATAC-seq for select examples of MM-dependencies (PRDM1, IRF4, POU2AF1, UBE2J1) 

that overlap with super-accessible (SA) regions. Each cell line is shown in a transparent 

gray and the average is shown in black. Note the proximity of IRF4 and DUSP22 and 

the multiple prominent areas of accessible chromatin within intronic regions of DUSP22. 

g, Hierarchical clustering of MM cell lines based on their CERES scores for MM 
preferential dependencies. MM cell lines are annotated for their status for genomic events, 

such as translocations targeting CCND1, CCND2, CCND3, MAF, MAFB, MMSET/NSD2, 

mutations for KRAS or NRAS, loss-of-function for TP53; or the functional status of their 

dependence (based in CRISPR data) on either MAF or MAFB.
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Extended Data Figure 7 ∣. Comparative analysis of CERES scores for MM preferential 
dependencies in MM vs other hematologic malignancies vs. solid tumors.
Results are presented in a manner similar to Fig. 1, with stacked bar plots for solid tumors 

(left); separate matrices for cell lines from non-MM hematologic malignancies (middle) 

vs. MM (right). Genes are included in 7 different clusters determined based on the criteria 

included in the color-coded bars on the right-hand side of the graph (FDR of comparison of 

CERES scores and difference in average CERES scores in MM vs. non-MM hematologic 

cell lines; Fisher’s test FDR for comparison of CERES ranks; absolute difference in % of 

MM vs. non-MM hematologic cell lines with CERES scores ≤ −0.4; and % of MM lines 

with CERES score ≤ −0.4). Results highlight that several MM-preferential dependencies are 

shared between MM and other hematologic malignancies, but many others are preferentially 

de Matos Simoes et al. Page 30

Nat Cancer. Author manuscript; available in PMC 2024 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



essential only for MM cell lines, a statement also supported by results of Extended Data Fig. 

8.

Extended Data Figure 8 ∣. MM-preferential dependencies with distinct vs. overlapping roles in 
MM vs. other hematologic neoplasias or solid tumors.
a, Heat map for MM-preferential dependencies, summarizing their potential roles as 

preferential dependencies for other malignancies. Color coding indicates the difference in 

average CERES score for each gene in a given tumor type vs. all others: black/blue or 

red/orange denote FDR<0.05 and lower or higher, respectively, average CERES scores for a 

given gene in the respective neoplasia vs. all other cancer types. White denotes FDR>0.05. 

b-c, t-SNE plots of cell lines (depicted as dots), from MM, leukemias, lymphomas or 

other neoplasias, clustered according to RNA-Seq profiles b, or CERES scores c, for MM-
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preferential dependencies. RPKM data in b from CCLE [2018] for lines with matching 

20Q4v2 CERES scores (N=15, 33, 16, 505 lines, respectively). In c, N=19, 44, 20, 706 lines, 

respectively (20Q4v2). d, Numbers of CRISPR-defined preferential dependencies (y-axis; 

identified based on the same criteria applied for MM) vs. number of lines for each indicated 

tumor type (x-axis). e, Volcano plot of -log10FDR (Limma t-test) for comparison of CERES 

scores in MM vs non-MM hematopoietic cell lines (y-axis) vs. difference in average CERES 

scores in MM vs. non-MM cell hematopoietic lines (x-axis). MM-preferential dependencies 

(identified in this study by comparison of MM vs. all non-MM cell lines) are depicted in 

red and orange, respectively, if they did vs. did not exhibit significantly lower CERES scores 

in MM compared with non-MM hematopoietic lines. f-h, Dependencies with differential 

role in MM vs. solid tumors or vs. B-cell lymphomas. Volcano plots for comparisons of 

CERES scores in MM lines (N=19) vs. f, all non-MM cell lines, from both hematologic 

malignancies and solid tumors (N=768; also see Supplementary Table 1); g, only solid 

tumor cell lines (N=701); h, B cell lymphoma lines (N=13) (x-axis: difference in average 

CERES scores between respective groups; y-axis: -log10FDR, Limma t-test). Red dots 

in each plot indicate genes satisfying criteria for more pronounced essentiality in MM 

compared with the respective groups of cell lines; i, Venn diagram highlighting genes 

with differential role in MM vs. solid tumors or B-cell lymphomas, based on panels f-h. 

j, CERES scores for genes that do not meet criteria for MM-preferential dependencies 

(comparison of MM vs. all other non-MM lines), but are more essential in MM vs. solid 

tumors or B-cell lymphomas, based on panels f-h.
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Extended Data Figure 9 ∣. Pattern of essentiality for genes downstream of IRF4 or IKZF1/
IKZF3.
CERES scores for genes previously defined as a, IRF4 target genes in MM cells5 or b, genes 

that are downregulated by loss-of-function of IKZF1 or IKZF3 (GSE113031) are depicted 

in a heatmap format (similar to Fig. 1) and in clusters of genes which (i) can be considered 

“core essential” genes (e.g., CERES <−0.4 in ≥90% of cell lines across cancers); (ii) meet all 

criteria for MM-preferential dependencies vs. other genes that have CERES scores <−0.4 in 

(iii) >50% of MM cell lines tested, (iv) 30-50% of MM cell lines tested; (v) <30% of MM 

cell lines tested; or (vi) none of the MM cell lines tested.
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Extended Data Figure 10 ∣. Molecular and functional studies of POU2AF1 and ER-associated 
dependencies.
a-b, Immunoblotting analyses to confirm that protein levels of POU2AF1 are decreased 

with Doxy-inducible CRISPR interference (a, KMS11 cells) and increased with CRISPR 

activation (b, LP-1 cells) compared to cells with sgRNAs for control OR genes. Beta-

actin a, or vinculin b, were probed as loading controls in the same respective membrane 

concurrently with POU2AF1. c, Relative numbers of viable LP-1 cells with CRISPR-based 

activation of POU2AF1 vs. a control OR gene (day 12 after end of transduction with 

sgRNAs for POU2AF1; results qualitatively concordant with those at later time-point in 

Fig. 6b). CTG assay, mean +/− SEM results; n=6 independent replicate cell cultures per 

condition; one-way ANOVA and Tukey’s post-hoc test (detailed results included in Source 
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Data), p<0.001 for each POU2AF1 sgRNA vs. OR12D2 sgRNA). d, Immunoblotting for 

UBE2J1 after doxy-inducible CRISPR-based KO of UBE2J1 (or a control OR gene). 

Vinculin was probed as loading control concurrently with the staining for UBE2J1. Each 

experiment in a-d was performed once. e, UBE2J1, its dislocon complex partners SEL1L, 
SYVN1, and other ER-related MM preferential dependencies are among the top “hits” 

in two genome-scale screens (using retroviral gene-trap mutagenesis and CRISPR gene-

editing)45 for genes involved in ERAD regulation (in KBM7 haploid cells). f, In vitro 
bortezomib treatment (24 h) of KMS18 cells with Doxy-inducible CRISPR KO of SYVN1 
or control OR genes. (CTG; mean +/− SEM; n=8 independent replicate cell cultures for 

drug-free control and n=4 independent replicate cell cultures per drug dose for each KO; 

2-way analyses of variance (p<0.001); detailed results of Tukey post-hoc tests included in 

Source Data). g-h, Patterns of CERES scores in MM (n=19) and non-MM (n=770) lines 

for g, ER/ERAD/Golgi-related genes and h, select ER genes. Results are presented similar 

to format of Fig. 1. Highlighted gene symbols include MM-preferential dependencies (red); 

examples of core essential genes (green); and genes which do not meet all criteria for 

MM-preferential dependencies but are recurrently essential for MM cell lines and are linked 

with the function of the ER glycoprotein quality control system (blue) and the ER translocon 

system (purple).
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Figure 1 ∣. Myeloma–preferential dependencies identified by genome-scale CRISPR-based gene-
editing screens.
a, Color-coded heatmaps depict CERES scores, as a quantitative metric of dependence of 

human tumor cell lines to each gene in CRISPR/Cas9 gene-editing screens (AVANA sgRNA 

library). CERES scores for MM lines (n=19) are depicted as a matrix (right side of graph) 

of cell lines (in columns) and genes (in rows). For non-MM lines (n=770), data are depicted 

for each gene (row) in stacked bar graphs, which visualize the CERES score of each gene 

in descending order (from left to right). Black or dark blue signifies negative CERES scores 

compatible with pronounced sgRNA depletion of a given gene for a specific cell line. 

MM-preferential dependencies were identified based on average CERES scores in MM cell 
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lines ≤−0.2; difference in average CERES scores in MM vs. non-MM lines ≤−0.2; two-sided 

limma t-test with adjusted p-value (FDR) <0.05 for comparison of CERES scores; and 

additional criteria outlined in Methods. b, Pie chart of the distribution of MM-preferential 

dependencies to different functional groups, pathways, or biological functions.
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Figure 2 ∣. Integrated molecular profiling analyses for MM-preferential dependencies.
CIRCOS plot summarizing results of integrated molecular analyses for MM-preferential 

dependencies (more details in Figs. 3, 4 and Extended Data Fig. 3-6) to examine whether 

most of them are among the top genes with most frequent molecular alterations (for 

example, mutations, DNA copy number gains or differential expression) in MM cells. 

Concentric circles depict for each gene: (1-2) fraction of MM (1; “ceres”) or non-MM (2; 

“ceresother”) lines with CERES scores ≤−0.4; (3) fraction of MM lines with DEMETER 

scores ≤−0.4 (“dem”); (4-6) fraction of MM cell lines with non-synonymous mutations (4; 

“mut”; see Extended Data Fig. 5), CNV loss (5; “cnvdel”) or CNV gain (6; “cnvamp”) (see 

Extended Data Fig. 5); (7) fraction of MM cell lines with a super-accessible chromatin 
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region annotated by closest proximity to the gene of interest (“access”). Circles 8-12 

summarize whether expression of a gene is higher in (8) MM vs. non-MM cell lines of 

CCLE (“ccle”; see Fig. 3 and Extended Data Fig. 3); (9) tumor samples from patients with 

MM (CoMMpass study) vs. non-MM patients (TCGA) (“tcga”; see Extended Data Fig. 

4a); (10) MM patient samples vs. normal PCs (“mm”; see Extended Data Fig. 4b); (11) 

PCL (or advanced MM) vs. early/newly diagnosed MM (“pcl”; see Extended Fig. 4b); (12) 

patients with shorter PFS (“pfs”; see Extended Data Fig. 4c); and (13) when MM cells are 

co-cultured with bone marrow stromal cells (BMSCs) (“bmsc”) in dataset GSE20540. For 

circles 8 and 9, transcripts with log2FC>1.0 and FDR <0.05 are in green or orange, if they 

rank (based on FDR), respectively, in the top 1-50 or 51-100 most upregulated genes (white 

depicts genes that did not satisfy all these criteria). Each of the circles 10-13 integrates 

several individual comparisons (see Methods) and depicts (based on the color-coded scale) 

the fraction of these comparisons with upregulation by log2FC ≥1.0 and FDR ≤0.05 and 

ranking (based on FDR) in the top 100 most upregulated genes.
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Figure 3 ∣. Most MM-preferential dependencies do not rank among the top overexpressed genes 
in MM vs non-MM cell lines.
a, Scatter plot depicting for each gene the log2FC of differential expression in MM (n=25) 

vs. non-MM (n=991) cell lines in CCLE (x-axis) vs. average differences in CERES score (y-

axis, see Supplementary Table 1) in MM vs non-MM lines in CRISPR gene editing screens 

(N = 17,436 genes with matching gene symbols between CCLE and CERES data). The plot 

highlights genes that are (i) preferentially essential and in the top N = 200 overexpressed 

genes (log2FC>1.0, two-sided limma t-test, FDR<0.05, ranking based on log2FC) in MM 

(blue circles); (ii) the top N = 200 overexpressed genes that are not preferentially essential 

in MM (red dots); (iii) a MM-preferential dependency that is under-expressed (log2FC<−1.0, 

FDR<0.05) in MM vs. non-MM cell lines in CCLE (purple dot); (iv) other MM preferential-
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dependencies that are not in the top N = 200 overexpressed genes (black dots) and (v) other 

genes (gray dots). b, Heat-maps for MM (N = 19 cell lines) (right; matrix) and non-MM 

(N = 770 cell lines) (left; stacked bars) depict CERES scores of the top N = 200 most 

upregulated genes in MM vs. non-MM cell lines (CCLE) for which both transcript and 

CERES data are available (significantly upregulated genes were ranked according to log2FC 

of differential expression, distinctly from the FDR-based ranking of differentially expressed 

genes for Fig. 2). Gene symbols are depicted for the minority of top upregulated genes that 

represent MM-preferential dependencies. Gene expression data for a, was accessed from the 

initial CCLE portal, with concordant observations based on subsequent releases of these data 

through DepMap portal.
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Figure 4 ∣. Landscape of single nucleotide variants and DNA copy number variants for MM-
preferentially essential genes.
a, Frequency of non-synonymous single nucleotide variants (SNVs) in N=940 samples from 

MM patients (CoMMpass study, IA17 release). MM-preferential dependencies (as defined 

in Fig. 1a, Supplementary Table 1) are highlighted in blue. b,c, Ranking of MM-preferential 

dependencies and other genes in terms of statistical significance (FDR, two-sided Fisher’s 

test) of the frequency of CNV gains (b) or losses (c) in MM (n=33) vs. non-MM (n=1721) 

lines of CCLE panel (based on data and annotation from DepMap 22Q1 release, concordant 

observations with other releases). d, Frequency of MM-preferential dependencies (MM-dep; 

red) and other (gray) genes that fall in sites of common CNV gains, including hyperdiploid 

(HD) chromosomes (e.g., 3, 5, 7, 9, 11, 15, 19, 21) in MM. e, Frequency of CNV gains 
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in CoMMpass samples for MM-preferential dependencies and all other genes stratified by 

hyperdiploid (HD) chromosomes, chromosome 1q, and other. f, Average DNA copy number 

in CoMMpass samples for MM preferential dependencies vs. other genes stratified by HD, 

chromosome 1q, other, chromosome 1p, chromosome 17p and chromosome 13q. P-values 

are from two-sided Fisher’s exact test (d) or two-sided Mann-Whitney U-test (e-f). Panels 

e-f evaluated N=932 patient samples for 19054 genes with DNA copy number data available 

in the CoMMpass study (IA15 release).
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Fig. 5 ∣. CERES scores for reported substrates or targets for thalidomide derivatives.
a, Heatmaps depict CERES scores for known/proposed substrates or targets of thalidomide 

derivatives. Results as depicted as a matrix for N=19 MM cell lines (right side of graph) 

and stacked bar plots for N=770 non-MM cell lines (with format and color-coding similar to 

other figures, e.g., Fig. 1a). Gene symbols (for N=39 genes) are highlighted in red for MM-

preferential dependencies whose protein products are known (IKZF1, IKZF3) or recently 

proposed (ARID2) neo-substrates for thalidomide derivatives; black for “core essential” 

genes; blue for genes that are not “core essential” or MM-preferentially essential and have 

CERES scores <−0.4 in ≥2 MM lines tested; and gray or orange for other known or reported 

CRBN neo-substrates / targets of thalidomide derivatives.

b, Dot plot depicting for each gene the −log10FDR (Limma t-test) for comparison of 

CERES scores in MM (N =19 cell lines) vs non-MM (N = 768 cell lines) (y-axis) vs. the 
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difference in average CERES scores in MM vs. non-MM cell lines (x-axis) (N=18,119 

genes, also see Supplementary Table 1). Genes whose protein products are known or 

proposed targets/neosubstrates of thalidomide or its derivatives are highlighted in red dots 

and those genes (IKZF3, IKZF1 and ARID2) that also meet the criteria for MM-preferential 

dependencies are highlighted by their symbols.
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Fig. 6: ∣. Biological role of POU2AF1 in MM cells.
a,b, Relative number of viable cells after Doxy-inducible CRISPR interference (CRISPRi) 

(KMS-11 cells, 11 days after sgRNA transduction) (a) or CRISPR activation (CRISPRa) 

(LP-1 cells, 19 days after sgRNA transduction) (b) of POU2AF1 vs. control OR genes. 

CTG assays, N = 8 (a) or N = 6 (b) independent replicate cell cultures per condition; 

mean±SEM, one-way analysis of variance (ANOVA) and Tukey’s post-hoc test (detailed 

results in source data), P < 0.001 for each POU2AF1 sgRNA vs. OR gene sgRNA). c–
f, Transcriptional signature of POU2AF1 overexpression in LP1 MM cells: volcano plot 

of transcripts differentially expressed in LP1 cells with CRISPR activation of POU2AF1 
vs. OR controls (blue line denotes FDR = 0.05) (c); HLA class II transcript levels with 

POU2AF1 activation vs. control (d); TF DNA-binding motifs enriched in sites of chromatin 

binding of POU2AF1, where top ten most statistically significant motifs (in black) include 

POU2AF1 partner Oct2 (POU2F2), whereas others include motifs for TFs relevant to 

MM, such as Myc, PU.1-IRF, NF-κB, PRDM1 and CREB5, which is overexpressed 

with POU2AF1 activation (e); GSEA plots examining the transcriptional signature of 

POU2AF1 activation identify enrichment for genes previously determined as targets of 
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IRF4, IKZF3, IKZF1 or Myc (P < 0.001, for each plot) (f). g–l, POU2AF1 binding motifs 

are enriched in chromatin accessible regions near select MM-preferential dependencies: 

ATAC-seq signal at POU2AF1 binding motifs in 12 MM DepMap cell lines (top), with 

the POU2AF1 consensus binding motif shown (bottom) (g); MM-preferential dependencies 

with significant enrichment of POU2AF1 binding motifs in chromatin accessible regions 

(odds ratio of enrichment lines denoting 95% confidence intervals shown, Fisher’s exact 

test) (h); correlation of transcript levels in N = 768 newly diagnosed primary MM specimens 

(CoMMpass study, IA15 release) for POU2AF1 expression with genes downregulated 

(down), not significantly changed (none) or upregulated (up) by CRISPR activation of 

POU2AF1 (i); correlation of POU2AF1 expression with transcript levels of MM-preferential 

dependencies (MM-Dep; N = 116 genes) or all other N = 55,092 genes (two-sided t-test for 

i and j; box plots denote median, lower/upper quartiles, with whiskers extending up to 1.5 

times the interquartile range of the box) (j); gene expression correlation between POU2AF1 
(x axis) and IRF2 (y axis) in N = 768 patient samples (CoMMpass study IA15 release), 

with significance determined by edgeR and FDR corrected), and gene expression measured 

in fragments per kilobase per million reads (FPKM) (k); genome plot of IRF2 showing MM 

chromatin accessible regions (MM peaks), POU2AF1 consensus binding motifs (POU2AF1) 

with motifs overlapping accessible chromatin (red), and a composite ATAC profile of 12 

MM lines (l).
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Figure 7: ∣. Biological role of UBE2J1 and other ER-associated MM-preferential dependencies.
a–d, Doxy-inducible CRISPR KO of ER-associated MM preferential dependencies or 

control OR genes in KMS-18 (a, c and d) or OCI-My5 (b) MM cells. Cells were cultured 

with or without Doxy (14 days in a–c; 14 or 28 days in d). In a–c, cell viability was 

evaluated by CTG (mean ± SEM), one-way ANOVA and Tukey’s post-hoc tests (see source 

data) at P < 0.001 for each ER gene sgRNA (except HERPUD1 in b) vs. each of the OR 

sgRNAs; 80, 32 and 40 independent replicate cell cultures/sgRNA in a–c, respectively. In 

d, KMS18 cells with Doxy-inducible SpCas9 and transduced with sgRNA against UBE2J1 
or OR2D12 were mixed at a 9:1 ratio, respectively, in a competition assay. INDEL analyses 

(at days 14 and 28) calculated the relative percentage of cells with CRISPR-induced 
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frameshift mutations of UBE2J1. e, In vitro treatment with SYVN1 inhibitor LS-102 (5 

days; vertical dotted line represents reported in vitro half maximal inhibitory concentration 

(IC50) for inhibition of this target). CTG; mean; biological replicates N = 30 independent 

replicate cell cultures for drug-free controls in both lines, n = 3 or 4 independent replicate 

cell cultures, respectively, in L363 and KMS27 MM cells for each drug dose; nonlinear 

curve fitting with variable slope (four parameters). f, Immunobloting for BiP, a marker 

of ER stress, in KMS18 cells with Doxy-inducible CRISPR KO of UBE2J1 or control 

OR gene, cultured with versus without Doxy. g,h, In vitro bortezomib treatment (24 h) of 

KMS18 (g) or OPM-2 (h) cells with Doxy-inducible CRISPR KO of HERPUD1 or control 

OR genes. (CTG; mean ± SEM; n = 8 independent replicate cell cultures for drug-free 

controls and n = 4 independent replicate cell cultures per drug dose for each KO; two-way 

ANOVA (P < 0.001); detailed results of Tukey posthoc tests in source data). i, Schematic 

figure of ER-associated dependencies. MM-preferential ER dependencies (blue symbols) 

involve ER membrane protein complexes mediating dislocation of misfolded ER proteins 

to cytosol (e.g. HERPUD1, SEL1L) and associated ER-specific E2/E3 enzymes (SYVN1, 

UBE2J1, UBE2G2); enzymes (e.g. DPM1, ALG3, ALG9) required for N-glycan-dependent 

surveillance of quality control for luminal ER glycoproteins; chaperones (e.g. DNAJB11, 

DNAJBC3) for BiP complexes with misfolded proteins; and the known ER stress-sensor 

IRE1a (ERN1) and its downstream transcription factor XBP1.
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Figure 8 ∣. In vivo studies to validate the role of key examples of MM-preferential dependencies 
identified in vitro.
a, Results from study of KMS11 cells in the “humanized” BM-like scaffold-based in 
vivo model using a single-gene CRISPR KO system. The graph depicts, for each gene 

N=88 MM-preferential dependencies with in vitro CERES scores of <0.4 in KMS11 cells), 

the log2FC of averaged read counts for each of their sgRNAs (blue dots for individual 

values; red bar for average). The region highlighted in gray delineates the upper and lower 

limit of the 95% CIs for log2FC of averaged read counts for sgRNAs of OR genes as 

controls. Genes for which their sgRNA log2fold change are outside the 95% CIs for the 

OR gene sgRNAs were considered to have depletion or enrichment. Gene symbols for 
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MM-preferential dependencies with CERES scores <−0.4 in KMS11 in vitro are indicated 

in dark blue vs. light blue if these genes did vs. did not exhibit, respectively, depletion of 

3-4 out of 4 sgRNAs per gene in vivo. MM-preferential dependencies with CERES scores 

>−0.4 in KMS11 in vitro are indicated in dark green vs. light green, if these genes did vs. 

did not exhibit, respectively, depletion of 3-4 sgRNAs per gene in vivo. b, Average log2FC 

of read counts for sgRNAs of N=184 genes (4 sgRNAs/gene) in KMS11 cells in the in vivo 
humanized BM-like scaffold-based model (N=5 mice) (y-axis) and their respective CERES 

score in KMS11 cell line in vitro (x-axis). c, Scatterplot of average log2FC of read counts 

for sgRNAs of genes examined through sub-genome scale focused CRISPR KO study of 

the KMS11 cells (N=5 mice) (y-axis) vs. XG-7 cells (N=8 mice) (x-axis) in the in vivo 
humanized BM-like scaffold-based model.
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