Table 3.
Performance of four models for predicting the occurrence of cervical cancer.
| Model | AUC | Accuracy | Sensitivity | Specificity | ||||
|---|---|---|---|---|---|---|---|---|
| Training | Validation | Training | Validation | Training | Validation | Training | Validation | |
| Logistic regression | 0.813 | 0.772 | 0.712 | 0.688 | 0.907 | 0.870 | 0.616 | 0.598 |
| Supportive vector machine | 0.752 | 0.639 | 0.745 | 0.645 | 0.678 | 0.600 | 0.822 | 0.679 |
| Random forest | 0.671 | 0.703 | 0.663 | 0.696 | 0.745 | 0.778 | 0.597 | 0.627 |
| Decisive tree | 0.718 | 0.726 | 0.718 | 0.725 | 0.763 | 0.775 | 0.669 | 0.672 |
| eXtreme gradient boosting | 0.807 | 0.768 | 0.741 | 0.703 | 0.911 | 0.836 | 0.606 | 0.597 |
| Neural network | 0.812 | 0.772 | 0.712 | 0.688 | 0.931 | 0.902 | 0.536 | 0.519 |