Skip to main content
. 2024 Feb 22;11:1294230. doi: 10.3389/fmed.2024.1294230

Table 3.

Performance of four models for predicting the occurrence of cervical cancer.

Model AUC Accuracy Sensitivity Specificity
Training Validation Training Validation Training Validation Training Validation
Logistic regression 0.813 0.772 0.712 0.688 0.907 0.870 0.616 0.598
Supportive vector machine 0.752 0.639 0.745 0.645 0.678 0.600 0.822 0.679
Random forest 0.671 0.703 0.663 0.696 0.745 0.778 0.597 0.627
Decisive tree 0.718 0.726 0.718 0.725 0.763 0.775 0.669 0.672
eXtreme gradient boosting 0.807 0.768 0.741 0.703 0.911 0.836 0.606 0.597
Neural network 0.812 0.772 0.712 0.688 0.931 0.902 0.536 0.519