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Abstract

In this opinion piece we highlight agent-based modeling as a key tool for exploration of cell-cell 

and cell-environmental interactions that drive cancer progression, therapeutic resistance, and 

metastasis. These biological phenomena are particularly suited to be captured at the cell-scale 

resolution only possible within agent-based or individual-based mathematical models. These 

modeling approaches complement experimental work (in vitro and in vivo systems) through 

parameterization and data extrapolation, but also feed forward to drive new experiments that test 

model-generated predictions.
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Designing multi-scale mathematical models of cancer

Cancer is an inherently multi-scale disease involving genetics, phenotype selection, 

ecological interactions, and the break down of tissue-scale homeostatic mechanisms. Due 

to the complex multiscale interactions at play within tumors, clinical or preclinical data is 

often collected at each scale: sequencing of genetic information, imaging of tissue-scale 

tumor density, histology or pathology of environmental or cell biomarkers, and positron 

emission tomography (PET) scans of the distribution of metastases. A systems approach is 

key to understanding, predicting, and treating cancer at each scale: intra-cellular, cellular, 

tissue, and body scale. In this opinion piece, we highlight agent-based modeling as an 

instrumental tool in the exploration of cell-cell and cell-environmental interactions which 

drive therapeutic resistance and metastasis. These modeling approaches are often referred to 

as hybrid modeling frameworks, making use of mathematics to integrate data across multiple 

temporal and spatial scales [1].
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Understanding cancer through a multi-scale, systems perspective

The use of mathematical modeling in cancer treatment has garnered increasing interest 

in recent years, as both a means of generating or testing hypotheses and as decision-

support tools for clinical practice. Though methods in applying mathematics to oncology 

vary widely (differential equations, stochastic models, partial differential equations, and 

many more), agent-based mathematical models are particularly suited to capture biological 

phenomena at the cell-scale resolution. Agent-based approaches, sometimes referred to as 

individual-based or cell-based, are commonly employed to model stochastic birth-death 

processes at the resolution of a single cell. The model tracks each individual agent (e.g. a 

tumor cell or host cell), each of which operates according a prescribed set of rules, which 

depend on the specific conditions that each cell finds itself in at a given time. Such models 

are ideal for capturing inherent stochasticity (random variation or noise) involved in cell 

growth and cell-cell competition. Cell birth and death events are probabilistic and therefore 

each simulation represents a unique realization of the model. Typically, many stochastic 

realizations are simulated and averaged, lending agent-based models (see Glossary) the 

advantage of generating not only the average outcome of a system but also the distribution 

of possible outcomes. This is ideal for modeling rare events that are difficult to measure or 

predict, such as accumulation of rare mutations [2], metastatic seeding by circulating tumor 

cells [3], parasexual recombination [4], and more.

The stochastic nature coupled with cell-scale resolution increases the computational 

complexity of solving these mathematical constructs. To simplify this process, there exist 

many software packages to aid the construction of cell-based models of cancer including 

PhysiCell [5], Hybrid Automata Library [6], and others [1]. Cells can be constrained to 

regular lattice grid, or in continuous off-lattice space [7]. Although spatial modeling is not 

necessary for an agent-based model (i.e., cells can compete under a well-mixed assumption 

where interactions are between all agents at once), modeling the explicit spatial structure 

of cellular processes often has a significant impact on evolution [8,9]. Furthermore, spatial 

modeling approaches are necessary for modeling systems where morphogenesis or other 

biological spatial patterns and structures are of importance [10].

Agent-based methods have been extensively applied to clinical sequencing data by 

comparing clinical summary statistics of patients to simulated data derived under a variety 

of assumptions. Branching processes (see Glossary) are simple individual-based models 

that can be simulated numerically by tracking the number of each cell type over time. These 

models account for every cell within the tumor, but can simulated in a computationally-

tractable manner by storing the total number of each cell type at each timestep in a vector 

(e.g. x = [x1, x2, x3, …] ). Stochastic branching process approaches can model common 

patterns of metastasis using subclonal lineage information in primary tumors and metastases. 

Similar approaches have been used to find that the large majority of driver gene mutations 

are common to all metastases [11], and to infer that a modest growth rate advantage 

of new drivers is insufficient to compensate for the time spent waiting for mutations to 

spontaneously occur [12]. Multi-type branching processes have also been used to study 

the effect of seeding patterns (single seeding, consecutive seeding, continuous seeding) on 

the relationship between primary and metastatic heterogeneity [13]. Though mathematical 
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modeling provides perfect information about each simulated cell, error-prone sequencing 

can be simulated to match the technology-limited depth of sequencing data and providing 

clinically relevant model-outputs. A key advantage of agent-based methods is their ability to 

capture stochasticity, particular at the cell-level. Cellular phenomena, such as reproduction 

and mutation rates, can simulated from probability distributions that lead to stochasticity in 

the spatial and temporal dimensions.

Agent-based methods facilitate integrative science in cancer

As the title of this manuscript suggests, agent-based approaches are uniquely suited to 

facilitate integrative science. Integrative science is a term used to define a team-science, as 

well as a multi-disciplinary, and collaborative style of scientific investigation that brings 

together mathematicians and biologists [14]. The capacity to collect experimental and 

clinical cancer data has continuously grown to levels that makes the biology that is inherent 

within these large datasets very difficult to grasp without mathematical tools. In order 

to avoid reductionist thinking that is often inevitable when scientific disciplines exist in 

non-collaborative silos, the skills of data-modelers must be combined with experimental 

insight.

This integrative science goal is shared by many, yet overcoming the lack of a shared 

scientific language or lack of shared methods in cross-disciplinary collaboration is difficult. 

It is our opinion that agent-based approaches provide a unique benefit in facilitating 

integrative science for several reasons.

First, the design of agent-based models facilitate the development of a shared language. 

Experimental biologists and clinicians use biological intuition to construct the “rules” of the 

model (see Box 1: Guide for Beginners) which mathematicians subsequently transcribe into 

a computational framework. Second, agent-based approaches are complementary to in vivo 

and in vitro experimental work, facilitating iterative feedback to calibrate parameters and 

extrapolation of behaviors for experiments not performed. This latter approach drives new 

experiments that test model-generated predictions [14].

Below, we discuss several broad biological processes which have been modeled using 

agent-based methods to gain insight into cancer progression or treatment: homeostasis, 

metabolism, tumor-immune ecology, and treatment resistance. Wherever possible, we 

highlight approaches which utilize integrative science, leveraging the full potential of 

interdisciplinary collaboration.

Developing a model of homeostasis disruption and melanoma progression 

through integrative science

Cancer progression must be considered within the context of dynamic feedback between 

the tumor, its microenvironmental conditions, and interactions with surrounding stromal 

populations. Normal tissues contain cellular processes, molecular and microenvironmental 

features which drive tissue function to maintain homeostatic regulation [15]. Viewing 

cancer as a departure from homeostasis helps consolidate recent findings that driver 
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mutations frequently occur in normal, healthy tissue, albeit with no indications of malignant 

growth [16]. This provides evidence that driver mutations alone are an insufficient 

condition for carcinogenesis to occur in individual patients. Constructing a complete 

view of carcinogenesis, cancer progression, and invasion must account for the coupling 

of evolutionary processes within the tumor to its dynamic interplay within the patient’s 

homeostatic ecosystem. While it is arguably difficult to model homeostatic systems 

experimentally, agent-based models can be constructed from first-principles with the ability 

to perform otherwise impossible experiments in the early stages of disease progression [17].

An illustrative example of agent-based modeling describing normal homeostatic 

maintenance of skin and the subsequent disruption as a route for melanoma development 

[18] is shown in figure 1. In vitro experiments showed that senescent dermal fibroblasts 

promote the growth of nontumorigenic melanoma cells and promote invasiveness of 

advanced melanoma cells. Motivated by these experiments, simulations were seeded with 

a heterogeneous spatial distribution population of senescent fibroblasts. In silico, senescent 

fibroblasts aid minimally transformed melanocytes with increased proliferation and invasion 

into the dermis. Fibroblasts produce environmental factors that regulate homeostasis in 

normal skin tissue. Disruption of fibroblasts during the onset of melanoma will affect skin 

homeostasis and feedback on initiation and progression.

The iterative process of integrative science is shown in figure 1C. The first step 

of brainstorming sessions with biologists and mathematical models is very often the 

construction of interaction diagrams. These diagrams contain the types of “agents” (e.g. 

fibroblasts, melanocytes, keratinocytes) and their interactions with each other and with 

diffusible growth factors (e.g. TGFβ, IL-1, etc). The model development was an iterative 

process through lengthy discussions between mathematicians and biologists of the key 

factors regulating both normal and transformed skin development and maintenance. Initially, 

all relevant factors were considered and were subsequently reduced and modified through 

further discussion and literature search. A key point of this process was to converge on a 

minimal number of cellular and microenvironmental elements that could both be modeled 

and quantified experimentally. One problem that arose early was separating factors that 

modulate normal skin homeostasis versus those that only emerge once cancer initiation has 

begun. Once we made this separation the final structure of the model emerged.

Only after consideration of homeostatic regulation within the model can accurate predictions 

be made. The baseline (non-cancerous) model enables us to quantify the contribution of 

each cell type to the overall aberrant population dynamics. For example, simulations show 

that systematic up regulation of the senescent fibroblast phenotype was insufficient to drive 

cancer but sufficient to disrupt the skin architecture, producing mole like structures. Also, 

in the absence of stromal senescence it was found that tissue homeostasis was able to 

suppress melanocyte transformation. However, when both melanocyte transformation and 

stromal senescence are combined then cancer progression rapidly emerged. The model 

was also used to investigate potential therapeutic opportunities targeting cell-cell or cell-

microenvironmental interactions, even if no such therapeutic option currently is available. In 

silico investigations are useful to identify therapeutic targets, mechanisms of resistance, 

or critical thresholds in parameter values that drive response or progression. Ideally, 
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mathematical modeling insight feeds an iterative loop to drive more experiments to test 

the newly generated hypotheses. This paper highlights the ability of agent-based approaches 

to provide insight into melanoma initiation where it otherwise may be costly or infeasible 

experimentally. In particular, homeostasis is difficult to model experimentally and in vivo 

approaches do not offer sufficient temporal detail to tease apart the interactions.

In a similar study for bone metastasis in prostate cancer, agent-based modeling first 

recapitulated the multicellular process of bone remodeling with mesenchymal stromal cells, 

osteoblasts, osteoclasts, and precursor cells [19]. The model recapitulates the “vicious cycle” 

of bone degradation in prostate cancer where cancer cells alter the bone remodeling process 

through expression of factors like RANKL, inducing bone resorption. Subsequently, growth 

factors such as TGFβ stimulates the survival and growth of metastatic prostate cancer 

cells, completing the vicious cycle. The co-opting of the normal homeostatic remodeling 

process by metastatic tumors yields the vicious cycle of bone degradation and tumor 

growth. Without careful consideration of homeostatic remodeling, it is difficult to address 

the treatment considerations of this vicious cycle.

Agent-based modeling is a suitable choice for investigating the role of cell competition and 

fitness effects in the early stages of malignant transformation. For example, these methods 

have been applied to show how competition between clones of similar fitness in mormal 

esophageal epithelium induces mutant cell fate to revert towards homeostasis [20]. Similarly, 

agent-based methods have shown the role of tissue architecture acting an evolutionary 

accelerant [21] and overriding cell-specific phenotypes [22]. Agent-based approaches also 

investigate competition between multiple cell types, including the role of stromal-to-tumor 

cell density on the efficacy of oncolytic virus treatment [23] or the “engineer versus pioneer” 

paradigm in degrading extracellular matrix barriers, giving way to cell-intrinsic proliferative 

phenotypes[24], a paradigm also important in immune escape [25] and cancer metabolism 

[26].

Iterative modeling elucidates the role of normal homeostasis in clonal 

expansion

The iterative process of integrative science (i.e. figure 1C) is often hidden to those outside of 

the original team. Typically, only the final iteration of the mathematical model is published, 

with previous model versions discarded on the metaphorical trash heap of scientific history. 

However, the published model in figure 1 underwent further refinement and iteration to 

address a controversy surrounding neutral evolution and clonal expansion within normal 

tissues [27]. Substantial accumulation of oncogenic driver mutations can occur in normal, 

healthy human tissues. These mutations do not appear to substantially disrupt homeostatic 

normal morphology. It is an open question how a mutant clone is able to expand within 

normal tissue: primarily the result of arising first and persisting, or the result of arising late, 

with a selective fitness advantage.

To answer this question, a simplified version of the previously mentioned hybrid cellular 

automaton model of the human epidermis was implemented (figure 2). In the simulation, the 

bulk of cellular division occurs within the basal layer with cells pushed upwards with ever-
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increasing chance of death. This leads to a homeostatic-balanced turnover in the epidermis, 

such that the overall population size of cells is roughly constant through the simulation. 

The model then assessed the effect of fitness-enhancing mutations (e.g. NOTCH1 or TP53) 

on maintaining that homeostatic balance. A cell with NOTCH1 mutations disrupts neutral 

dynamics through “blocking” neighboring cells from dividing into its local neighborhood 

and TP53 mutations are not subject to UV damage. Regardless of functional differences, 

in simulations of homeostatic tissue, non-neutral clones are subject to the same exponential 

size dependency that neutral clones are. The work suggests that subclone size reflects 

persistence rather than subclonal selective sweeps. Therefore, NOTCH1 and TP53 mutations 

must arise early to match observed clonal frequencies.

The implementation of this model using an agent-based approach is important for several 

reasons. First, the model enables direct comparison of simulated versus patient genetic 

data. Each individual simulated cell is embedded with base-pair resolution genes mutating 

at gene-specific mutation rates [28]. It can model lifelong human skin-cell dynamics 

that represent tissue architecture within the homeostatic epidermis with realistic mutation 

accumulation.

Second, the model provides a testbed for simulated experiments. Previous studies modeling 

clonality within the epidermis ask whether current technology is capable of measuring 

neutrality in normal tissue [29, 30], whereas this approach develops a testbed model that 

allows modelers to perform simulated experiments based. These simulated experiments 

often generate new hypotheses that drive new experiments, as explained in the next section.

Agent-based modeling as a method of generating hypotheses

Complex agent-based modeling is often used when direct measurement of specific 

parameters for a system is difficult or impossible. While seemingly counter-intuitive, the aim 

is to focus on specific mechanisms of interest and explore the range of behaviors that such a 

system generates, across a range of biologically reasonable parameter values. This approach 

is sometimes referred to as “hypothesis-generating modeling”, or forward modeling [31], 

where each set of parameter values may represent a different hypothesis. For example, 

agent-based methods help explain the role of spatial constraints on the “go-or-grow” 

hypothesis (the idea that cell motility and cell proliferation are dichotomous, antagonistic 

processes) by modeling competition between proliferative and migratory phenotypes [32]. 

Agent-based approaches have proved instrumental in determining the limits of currently 

available sequencing technology to detect the selection advantage of coexisting clones. 

For example, branching process models have been employed to estimate the selective 

advantage of driver mutations [2] or the deleterious effect of passenger mutation [33, 34] 

based on heterogeneity in tumor size and development time. These measurements are not 

without controversy, because conclusions depend on the choice of model [35], assumptions 

about spatial interactions [36, 37], turnover rates [21], as well as the number [38] and 

location [39] of samples taken. An integrative approach where hypothesis testing leads 

to specific experiments, feeding back to parameterize math models is an ideal workflow 

[14]. Calibration and parameterization of agent-based models is made challenging by 

computational complexity (e.g. the time required to perform simulations) and the number 
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of simulations that may be required to mitigate uncertainty arising from intrinsic model 

stochasticity. This second challenge is addressed in a recent review [40] covering methods 

for assessing uncertainty and sensitivity of parameters in agent-based models.

Iterative feedback between experimental and mathematical modeling 

explains the role of cancer metabolism in modulating cancer progression

Figure 3 provides an illustrative example of the power of multi-scale modeling in 

investigating the interplay between environmental and cellular heterogeneity and immune 

escape in ductal carcinomas in situ (DCIS). The nature of DCIS as an intrinsically structured 

disease [41] can be interrogated through the use of agent-based approaches which explicitly 

account for cell-cell interactions, heterogeneous microenvironments, with dynamic cross talk 

and feedback [42]. This model of metabolic heterogeneity which consists of a continuous 

range of glycolytic and acid resistant phenotypes [43] under immune predation [44]. 

Increased glucose consumption and acid production is a typical result of altered metabolism 

in cancers. This leads to the acidification of the surrounding microenvironment, ultimately 

provoking acid-mediated invasion [45]. Heterogeneity in glucose consumption on the cell 

scale is context-dependent on local variations in nutrients, growth factors, and surrounding 

cells (normal, stromal, immune), and is in part dependent on local vascularity of the tumor. 

An example simulation is shown in figure 3, where simulation parameters are tuned to 

alter vascular context in each quadrant (low/high vascular stability and low/high vascular 

renewal). Tumor phenotypes evolve through drift: small, random alterations which occur 

upon cellular division. The figure illustrates the ability of agent-based models to capture 

spatial and temporal stochasticity and heterogeneity. Variations in microenvironmental 

conditions of oxygen, pH levels, and glucose concentrations in each quadrant lead to local 

selection for advantageous phenotypes. Low vascularized regions serve as the breeding 

ground for aggressive metabolic phenotypes via increased acidity and selection for acid-

resistant phenotypes with high rates of glycolysis. In contrast, cells in the well-vascularized 

regions undergo lower selection pressure, and are less metabolically active. Eventually, 

the aggressive cells invade from their environment into the better-vascularized regions and 

accelerate tumor growth significantly.

This model was developed iteratively through collaboration between mathematical modelers 

and their experimental colleagues. The initial hypothesis of acid-mediated invasion [46] 

generated several previous mathematical models that tested various hypotheses about 

how glycolytic and acid-resistant phenotypes might evolve and/or behave [46–49]. As 

additional experimental studies of tumor acidosis and its sequelae in cancer development 

were performed [50–55], the spatiotemporal agent-based model in [43] was developed to 

further investigate the tumor microenvironment aspects that affected the evolution of these 

metabolically aggressive phenotypes, and the effect of therapies on this interaction. Initially, 

the focus of the model was on the tumor intrinsic properties and how they altered the 

microenvironment in ways that led to invasion. Results from the timing of buffer application 

in a murine model [53] suggested that there was a threshold effect, wherein early application 

prevented tumor growth while slightly later application had little effect. This discontinuity 

led modelers to focus on “critical mass” effects in the model, and the same results were able 
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to be attained in the model regarding buffer timing [43]. This led to hypotheses generated 

by the model about the success of new metastases based on their phenotype as well as 

the dose of the buffer, which was subsequently investigated in additional experiments [56]. 

Interdisciplinary discussions also led to the closer study of the dynamic vasculature, which 

emerged as a fundamental force shaping evolution in the model. Furthermore, predictions 

made by the model during its development fueled experimental results [55] that would 

otherwise have not been expected or tested.

This model has been used to test the accuracy of hypotheses by fitting experimental data 

using a wide range of assumptions about the rates of phenotypic drift and the cost/benefit 

ratio of the invasive niche-construction phenotype [42, 56]. This exploration rules out 

many hypotheses, while keeping others, and also serves to limit the scope of possible 

mechanisms and their parameterization. Otherwise, precise characterization or measurement 

of phenotype dynamics within an experimental system may be difficult. In contrast, agent-

based approaches provide the modeler with “perfect information” (exact information for 

each cell), enabling precise tracking of the timing and spatial orientation of tumor-immune 

interactions (fig. 3B), and the distribution of immune-escape tumor phenotypes like those 

expressing PD-L1 (fig. 3C).

Integration of experimental data with an extension of this mathematical model was key 

to investigating the role of acid-responsive macrophages in promoting tumor growth in 

a follow up study [57]. In silico macrophage behavior was calibrated by fitting a linear 

model to specific gene expression data collected in different in vitro ecological conditions. 

This integrative modeling approach was used to explore theoretical treatment targets. For 

example, when the pH-sensitivity of macrophages was removed from the model, survival 

rates increased in silico. This finding indicates the promising therapeutic potential of 

targeting acidic microenvironmental conditions to re-program macrophages to be anti-tumor, 

increasing patient survival. In contrast, the influence of pH-sensitivity would arguably 

be technically challenging (if not impossible) to quantify experimentally through direct 

manipulation of macrophage properties.

Hypotheses of carcinogenesis – and therefore modeling – must account for spatially 

heterogeneous environmental conditions with variation in cell phenotype response to 

conditions. Such models are often computationally intensive, requiring scaling simulations 

down in size or simulating only a two-dimensional slice of tumors. One study used 

computationally tractable hybrid mesoscale model to develop a new prognostic biomarker 

(normalized distance from 18F-fluorodeoxyglucose hotspot) by directly comparing model 

output to PET imaging data at a biologically realistic spatial scale [58]. Another integrative 

study used agent-based methods to show how gradients of metabolites can alter tumor-

associated macrophages differentiation, based on relative distance to vasculature [59].

Tumor ecology: immune and stromal interactions in agent-based modeling

The evolution of tumors is shaped by ecological interactions between tumor cells and the 

surrounding stroma and microenvironmental factors. Agent-based models often model each 

immune cell individually, allowing targeting of specific tumor cells and permitting selection 
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for a host of immune-escape mechanisms in localized niches. In the previous example 

(figure 3), T-cells, recruited from vessels, target tumor cells that then may evolve PD-L1 

expression to avoid immune predation. The distribution of PD-L1 roughly matches the 

distribution of T-cell interactions (figure 3B,C), except where alternative immune-escape 

mechanisms are available (here, the Warburg phenotypes in lower-left quadrant that acidify 

the environment, which causes T-cell deactivation). This example shows the complex 

feedback between tumor phenotype (PD-L1, Warburg), ecology (vasculature and immune 

recruitment), and invasion into homeostatic tissue. Another study compared simulations 

to antigen-hot or antigen-cold tumors from TCGA using a stochastic branching process 

to model negative selection of neoantigens during tumor growth [60]. Negative selection 

shapes variant allele frequency distributions, providing a signature of immuno-editing that is 

potentially a biomarker from clinical data [60].

Other models have highlighted the role “immuno-architecture” in predicting the effect of 

tumor-immune interactions on response to immune checkpoint inhibitors [61, 62] using 

a three-dimensional multi-scale agent-based modeling approach. Interestingly, although 

cytotoxic effector T-cells are recruited through spatially heterogeneous vasculature, the 

model predicted insensitivity to T-cell entry point via vascularization (e.g. core versus rim) 

on pre-treatment size and PD-L1 expression [61]. Often, immune ecology is studied using 

hybrid discrete-continuum approaches where microenvironmental factors are modeled 

using continuous partial-differential equations and immune or tumor cells are modeled as 

agents. One such study modeled six cell types: normal basal and luminal epithelial cells, 

tumor epithelium; native stroma (fibroblasts), reactive stroma (cancer-associated fibroblasts), 

and motile stroma, all interacting with three continuous microenvironmental variables: 

growth factor, MMP and ECM/basement membrane [63]. Results indicated that stromal 

ecology correlates with tumor growth, but inversely correlates with tumor phenotypic 

evolution (the growth factor and MMP production phenotypes).

The spatial location of ecological interactions also has implications for evolutionary 

dynamics [64]. In one study, clinical sequencing data from clear cell renal cell carcinoma 

patients indicated the presence of advanced, aggressive subclonal growth in the necrotic, 

hypoxic tumor center [65]. The tumor core was associated with high somatic copy number 

alteration (SCNA) burden, with greater propensity to seed metastases. Through clever use 

of agent-based modeling, authors were able to test the hypothesis that hypoxia-induced 

necrosis was required to maintain high levels of SCNA burden in the tumor core of the 

mathematical model.

Agent-based modeling investigates spatial interactions at the cell-scale 

that modulate treatment resistance

Agent-based approaches have also been used to investigate the effect of cell-cell interactions 

on treatment resistance. One study investigated the effect of uneven gradients of resource 

availability within tumor spheroids, noting that fitness differentials can arise from 

competition for space and oxygen in tumors [50]. The math model allowed only cells with 

sufficient space and nutrients to proliferate, which creates a decrease in cell fitness going 
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from tumor periphery to core. The authors concluded that lower doses of cyclin-dependent 

kinase inhibitors control tumor growth and resistance better than high doses, but only when 

resistance occurs in the tumor core.

Spatial competition with surrounding cells is particularly important to competitive release, 

which is a resistant population’s release from competition with treatment-sensitive cells after 

prolonged treatment removes most of the sensitive cells. Adaptive approaches to cancer 

treatment aim to minimize competitive release and maximize the competitive suppression 

of resistant cells through well-timed treatment holidays. The key role of spatial competition 

and heterogeneity in “adaptive therapy” has been investigated using agent-based models 

[66–68]. In one recent study, cancer cells that evolve along a continuous trade-off between 

fecundity and resistance (resistant cells proliferate more slowly) [67].

In vivo or clinical data can be used to inform the multiple scales within these agent-

based models. For example, an agent-based model of glioblastomas treated with a PDGF-

over-expressing retrovirus [69] tracks two cellular phenotypes: proliferative and migratory 

potential, which are dependent on environmental concentrations of PDGF. Integration of 

data collected to inform both tissue scale (serial MRI imaging) and cell scale (biopsies) 

processes were key to optimizing treatment predictions. Employing the same model 

parameterized by imaging alone led to variability in modeling dynamics with less reliable 

predictions. It’s important to note that other standard mathematical tools use continuum 

approaches (e.g. partial differential equations) and cannot account for cell-cell processes on 

that scale.

Concluding Remarks

As seen in the examples outlined above, agent-based methods facilitate integrative science 

in cancer research. These methods can integrate a wide variety of data including in vitro 

or in vivo experiments, sequencing data, and imaging. Given the fundamental unit of most 

agent-based models is a single cell, it seems obvious that we should try integrate them with 

newly emerging single-cell technologies to advance our understanding of cancer biology.

Single cell transcriptomics has enabled the quantification of heterogeneous cell populations 

and the reconstruction of cell fate trajectories through measurement of gene expression in 

individual cells. Subsequently, RNA velocity methods have estimated the rates of change 

of expression to predict the future state of individual cells [70, 71]. Even more recently, 

spatially resolved transcriptomics can quantify cellular heterogeneity while maintaining 

information of spatial context [72]. However, single cell methods typically do not account 

for the impact of cell-cell interactions on cell fate or their impact on evolutionary changes 

in phenotypic abundance over time. The benefit of single cell analysis is a detailed 

quantification of individual omic and phenotypic properties, but an understanding of 

competitive or cooperative interactions on the cellular level will be required to quantify 

the evolutionary dynamics of disease.

Agent-based methods can facilitate this by incorporating single cell data into models that 

can recapitulate important spatial summary statistics coming from spatial transcriptomics. 
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Agent-based methods were used in a similar fashion to help interpret summary statistics of 

genetics sequencing data, like the 1/f statistic [21,35–37]. Tools are already in development 

that integrate single cell sequencing with spatial quantitative systems pharmacology (QSP) 

modeling [73], providing deep insights for clinical outcome predictions in individual 

patients. Additionally, tools for base-pair resolution of mutation tracking in agent-based 

models have become recently available [28].

A major opportunity however, would be to exploit agent based models to integrate detailed 

single cell phenotyping (of cell relevant states) for a specific tissue with equivalent spatial 

transcription (of the same tissue) and play them forward in time (and through space) to 

predict what will happen and what treatment could be leveraged to ch5ange that outcome. 

The tools and potentially the data are emerging to make such an opportunity a not too distant 

reality (see Outstanding Questions box).
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Glossary

Agent-based model:
a mathematical model which explicitly tracks individual agents (i.e. cells) and their 

interactions with each other (either in a spatial or non-spatial setting). Also known as an 

individual-based model

Hybrid discrete-continuum model:
a mathematical model which combines agent-based models (discrete agents) with 

continuous partial-differential equation models (continuum). Typically diffusible molecules 

are modeled on the continuous scale and cells are modeled on the discrete scale

Branching process model:
a simple (and computationally-tractable) individual-based model that tracks the number 

of each cell type over time. These models are simulated numerically or mean-field 

approximations of the long-term dynamics and stochastic uncertainty can be used

Hypothesis-generating model:
beginning with a known (or suspected) causality, mathematical models are constructed 

to express this hypothesis in mathematical terms. The mathematical model is used as 

motivation for further experiments

Hypothesis-testing model:
beginning with experimental data, mathematical models are constructed to seek potential 

causalities driving the functional relationships between dependent and independent 

variables. If the model doesn’t fit the data, the hypothesis is rejected
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Highlights

• Agent-based models are well-suited for studying evolutionary and ecological 

processes in oncology. These models can incorporate many scales of 

biology, including genetics, molecular dynamics, cellular phenotypes, tissue 

mechanisms, and systemic properties. In particular, the interactions between 

these scales and components can be studied in detail.

• Interdisciplinary research in oncology is enhanced by the use of mathematical 

modeling to integrate knowledge and facilitate communication between fields. 

This leads to the generation of novel hypotheses that can be extensively 

explored within a computational model before moving to the wet lab and 

clinical settings.
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Box 1:

Guide for beginners

There are many software packages with the capability to design and implement agent-

based models of cancer. Each software exists on the spectrum from requiring minimal 

technical knowledge of computer programming (e.g. NetLogo) to intermediate (e.g. 

Hybrid Automata Library) and advanced flexibility (e.g. PhysiCell). A recommended 

approach for beginners with the desire to learn programming skills is to start with 

NetLogo implemented using the “Logo” language and following its design philosophy of 

low entry threshold without an upper ceiling.

One alternative is to take an integrative science approach: experts in computer 

programming construct the nuts and bolts of the modeling while experts in cancer 

biology advise on the construction of rules, expected emergent behavior, and data 

integration. Importantly, some software (e.g. PhysiCell, Hybrid Automata Library) 

facilitate iterative collaboration. For example, after the model is constructed it can be 

exported as a user-friendly graphical-user-interface (PhysiCell uses nanoHUB integration 

to visualize model output in a web browser), allowing a non-expert to change parameters 

and visualize the output with a few mouse clicks.

Rule construction:

The first step in designing an agent based model is deciding the “rules” of cell behavior 

and interaction between cell types and environmental factors. Cellular phenotypes may 

differ in replicative abilitiy, motility, survival, mutation likelihood, uptake or secretion 

of diffusible molecules, and more. Two cells in proximity can interact by competing 

for space upon replication, secreting growth factors. These rules should be implemented 

with the subject domain knowledge of biologists based on experimental data, biological 

intuition, or hypothesis generation (see Glossary).

Emergent behavior:

Emergent behaviors are phenomena that are not explicitly programmed into the model a 

priori. Instead, macroscopic patterns emerge from the complex, non-linear microscopic 

interactions that are the underlying “rules” of the model.

Data integration:

Integration of data in order to properly parameterize the agent-based model can take one 

of two forms. First, macroscopic data describing global behavior of the biological system 

can be fit to the emergent outcome of the model. Second, each underlying “rule” can be 

parameterized from experimental data in isolation.
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Outstanding Questions

1. What spatial and temporal scales are required for agent-based mathematical 

modeling to recapitulate biological processes: molecular-scale, cell-scale, 

organism-scale, population-scale?

2. How can integrative science reconcile increasingly complex mathematical 

models with available biological data?

3. How do we account for agent-based models’ stochasticity when applying it to 

patient-specific data in a translational setting?

4. Similarly, what are the appropriate clinical summary statistics that are useful 

to compare mathematical model outputs to clinical data?

5. What are the best practices for integrating data from emerging single-cell 

technologies into agent-based modeling?
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Figure 1. Multi-scale agent-based model of melanoma:
Figure reproduced from ref. 18. (A) Cross section of human normal skin (hematoxylin and 

eosin stained), where the epidermis contains a basal layer, melanocytes, and keratinocytes, 

while the dermis contains fibroblasts and extracellular matrix. (B) The computational 

simulated cross section (bottom) closely mimics the overall qualitative features of 

normal skin homeostasis. (C) The process to design the multi-scale required iterative 

discussions within an integrative science team. Experimental biologists in collaboration with 

mathematicians drew a series of interaction diagrams, culminating in a final model (right) 

that can recapitulate both normal skin homeostasis and melanoma dynamics.
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Figure 2: Multi-scale model of normal human epidermis:
Figure panels are reproduced from ref. 27. A) Homeostatic epidermis model with high-

resolution genomes. Rules flowchart shows how loss/replacement in the stem-cell niche at 

the basal layer are governed by a diffusible gradient of growth factor (GF). The model 

(bottom) investigates the effect of two fitness-enhancing mutations: NOTCH1 (middle) 

disrupts neutral dynamics through “blocking” neighboring cells from dividing into its 

local neighborhood while TP53 (right) are not subject to UV damage. B) Simulated 

dynamics matches patient biopsy clonal area frequency distributions. The inset shows log-10 

transformed first incomplete moment for the same random sampling of patient comparable 

simulations. C) Difference between Komlogrov–Smirnov test statistic (Dm,n) and critical 

value (Dα) for all patient biopsies to patient-specific model simulation’s first incomplete 

moment distributions. Red arrow denotes comparisons where the null hypothesis can be 

rejected.
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Figure 3: Mapping immune-escape with multiscale modeling:
A) Spatial map of the hybrid discrete-continuum mathematical model of cancer metabolism 

from references 43 and 44. Tumor cells colored by phenotype (normal, acid-resistant, 

Warburg) interact and compete for resources with normal cells (dark gray). Warburg 

emerges in areas of weak vascularization (bottom left). B) The tumor in panel A is color-

coded to recent immune interactions, which correlates with local vascular density. C) The 

tumor in panel A color-coded to PD-L1 expression recently employed for immune escape.
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