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Abstract
Species distribution models and maps from large-scale biodiversity data are necessary 
for conservation management. One current issue is that biodiversity data are prone 
to taxonomic misclassifications. Methods to account for these misclassifications in 
multi-species distribution models have assumed that the classification probabilities 
are constant throughout the study. In reality, classification probabilities are likely to 
vary with several covariates. Failure to account for such heterogeneity can lead to 
biased prediction of species distributions. Here, we present a general multi-species 
distribution model that accounts for heterogeneity in the classification process. The 
proposed model assumes a multinomial generalised linear model for the classification 
confusion matrix. We compare the performance of the heterogeneous classification 
model to that of the homogeneous classification model by assessing how well they 
estimate the parameters in the model and their predictive performance on hold-out 
samples. We applied the model to gull data from Norway, Denmark and Finland, ob-
tained from the Global Biodiversity Information Facility. Our simulation study showed 
that accounting for heterogeneity in the classification process increased the precision 
of true species' identity predictions by 30% and accuracy and recall by 6%. Since all 
the models in this study accounted for misclassification of some sort, there was no 
significant effect of accounting for heterogeneity in the classification process on the 
inference about the ecological process. Applying the model framework to the gull 
dataset did not improve the predictive performance between the homogeneous and 
heterogeneous models (with parametric distributions) due to the smaller misclassi-
fied sample sizes. However, when machine learning predictive scores were used as 
weights to inform the species distribution models about the classification process, 
the precision increased by 70%. We recommend multiple multinomial regression to 
be used to model the variation in the classification process when the data contains 
relatively larger misclassified samples. Machine learning prediction scores should be 
used when the data contains relatively smaller misclassified samples.
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1  |  INTRODUC TION

Species distribution models are essential ecology and conser-
vation management tools that predict how natural and human 
factors affect biodiversity (Elith & Leathwick,  2009; Vermeiren 
et al., 2020). With increasing biodiversity data from multi-species 
surveys available to scientists, multi-species distribution models 
(hereafter mSDMs) and joint species distribution models (jSDMs) 
have become widely used in analysing these data to identify the 
important variables that drive species co-occurrences and pre-
dict the distribution of species in a community (Hui et al., 2015; 
Ovaskainen & Soininen, 2011; Pollock et al., 2014). These mSDMs 
model data at the community level by identifying how indi-
vidual taxa respond to environmental variables (Ovaskainen & 
Soininen, 2011). The jSDMs also quantify the residual correlation 
between taxa after the explanatory variables have been accounted 
for (Caradima et al., 2019; Pollock et al., 2014).

However, the biodiversity data obtained from these surveys can 
be subject to observation errors, and misclassification is a common 
source of this error. The misclassification may arise from imperfect 
classifiers (Spiers et  al.,  2022; Wright et  al.,  2020), observer error 
and many other sources. Species misclassification in multi-species 
surveys often involves reporting one species as another, resulting 
in false positives (where the species whose identity has been re-
ported is actually absent; Miller et al., 2011; Royle & Link, 2006) and 
false negatives (where the species whose identity was misclassified 
is present but reported as absent; MacKenzie et al., 2002). In this 
study, we use the term true states to describe the correct or actual 
observation identity we are interested in modelling. Although it is 
not always possible to know if individuals are correctly classified or 
not, it would be a great advantage if the observations were correctly 
classified (for example, through predictions from fitted species dis-
tribution that account for misclassification) rather than discarded 
once they were identified as false positives. False negatives and 
positives are mostly accounted for in occupancy models by jointly 
modelling them in the observation model (Kéry & Royle, 2020; Miller 
et al., 2011; Royle & Link, 2006). Failure to account for or correct 
these errors leads to biases in inferences about state variables such 
as occupancy probabilities, covariate effects and relative activity 
(Clare et al., 2021; Ferguson et al., 2015; Miller et al., 2015; Royle & 
Link, 2006; Wright et al., 2020), leading to an impairment in decision 
making (Hoekman, 2021).

The methods to deal with misclassification from biodiversity 
data can be grouped into data review methods and model-based 
methods (Clare et al., 2021). Data review methods require complete 

and proper data collection and processing methods. This process 
can be very demanding as it is challenging to control for misclassi-
fication. This makes the model-based methods more popular when 
working with large-scale datasets from large-scale biodiversity 
data vendors like the Global Biodiversity Information Facility (GBIF 
hereafter; GBIF.Org, 2022). Model-based methods estimate classifi-
cation probabilities jointly with the true state variables of interest. 
Model-based methods attempting to account for misclassification 
in multi-species occupancy models currently include modelling mis-
classification with detection heterogeneity (Clement et  al.,  2022; 
Ferguson et al., 2015; Louvrier et al., 2018), integrating multiple ob-
servers records with other methods such as distance sampling and 
N-Mixture models (Hoekman, 2021), supervised methods with extra 
information from observation confirmation or verification (Ferguson 
et  al.,  2015; Guillera-Arroita et  al.,  2017), site confirmation (Clare 
et  al.,  2021) and other calibrated methods. These methods need 
extra data from the verification process, which helps in estimat-
ing the misclassification probabilities in a semi-supervised setting 
(Spiers et al., 2022) and makes the parameters in the model iden-
tifiable (Guillera-Arroita et al., 2017). The above-mentioned studies 
have either used verified data collected on the site level (where the 
occupancy state of a species is known at a site and not at the individ-
ual sample level; Chambert, Waddle, et al., 2018), on aggregated in-
dividual sample level using a multinomial model with site-covariates 
(Wright et  al.,  2020) or on individual sample-level validation data 
which helps in modelling non-species identities (morphospecies) to 
species identities (Spiers et  al., 2022). It is also worth stating that 
some studies have explored accounting for misclassification in abun-
dance (Conn et al., 2013), capture–recapture (Augustine et al., 2020) 
and mixture (Guilbault et al., 2021) models.

Furthermore, these previous studies assumed that the misclassi-
fication probabilities are homogeneous (constant) across the study. 
In reality, the classification probabilities may vary with environmen-
tal covariates (such as field conditions; Conn et al., 2013) or observer 
experience (especially when ascertaining how well each observer 
classifies a report in citizen science projects will be informative; 
Arazy & Malkinson,  2021; Johnston et  al.,  2022), distance from a 
transect when using transect data (Conn et al., 2013), picture quality, 
etc. An attempt at modelling the heterogeneity in the classification 
process is to assume homogeneous classification probabilities and 
add the classification covariates to the ecological model. However, 
this approach may not solve the heterogeneity problem in the clas-
sification process since the estimates of the ecological process pa-
rameters only serve as informed priors to the classification process 
(Spiers et al., 2022).
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A more correct approach to model this heterogeneity is adding 
the covariate effect to the observation process. Some studies on 
dynamic false positive single-species occupancy models have mod-
elled temporal changes in false positives using year as a covariate 
(Kéry & Royle, 2020; Miller et al., 2013; Sutherland et al., 2013), 
showing the possibility to model misclassification trends over time. 
Our study attempts to model variation in classification probabili-
ties in mSDMs by modelling the probability of classifying an indi-
vidual with a multinomial generalised linear model as a function 
of covariates. To our knowledge, no previous work has been done 
on this. Failure to account for the heterogeneity in the misclassi-
fication probabilities can lead to biased estimates in the process 
model (such as species abundance, richness and occupancy proba-
bilities) and reduce the model's predictive performance (Chambert 
et al., 2015; Spiers et al., 2022; Wright et al., 2020).

Fitting a complex model with many parameters can result in an 
overfitted model. An overfitted model captures the pattern and 
noise in the training data but performs poorly on validation or test 
data (Montesinos López et  al.,  2022). The ecological process and 
observation model covariates can sometimes be highly correlated. 
These correlated covariates can inflate standard errors (reduce 
the precision) of the estimated parameters (Caradima et al., 2019; 
Roberts et al., 2017; Yu et al., 2015). To avoid overfitting the model, 
there is a need to perform variable selection and select the variables 
that are related to the state variable of interest (Fox et  al.,  2017; 
Murtaugh, 2009; O'Hara & Sillanpää, 2009).

Moreover, recent efforts to correctly classify observations from 
biodiversity surveys have relied on machine learning (hereafter 
ML) algorithms (Borowiec et al., 2022; Keshavan et al., 2019; Koch 
et al., 2022; Lotfian et al., 2021; Saoud et al., 2020; Suzuki-Ohno 
et  al.,  2022; Willi et  al.,  2019). These ML algorithms use sounds 
and/or images of observations to predict the true identity of the 
individual observations, and they can be trained to mimic expert 
verification of observations (Keshavan et al., 2019; Langenkämper 
et  al.,  2019; Ponti & Seredko,  2022). These ML algorithms use a 
prediction score (a value that shows the weight of predicting the 
observations as something else) to predict the possible list of the 
true identities of the individual reported observation. These pre-
diction scores and a list of possible true identities provide informa-
tion about the classification process of each observation. They can 
be used to model heterogeneity in the classification process. This 
study is the first to model the heterogeneity in the classification 
process by using the prediction scores to weigh the distribution of 
the reported observations and predict the distribution of the actual 
observation identities.

Here, we present a joint model that simultaneously models the 
true state variables of interest (relative abundance) and the hetero-
geneity in the classification process. Our model set-up extends the 
work done by Wright et al. (2020) and Spiers et al. (2022) by (a) allow-
ing the classification probabilities to vary with covariates, (b) using 
ML prediction scores as weights to account for heterogeneity in the 
classification process and (c) performing variable selection on the 
classification process covariate to check for potential mSDM overfit. 

Studies have already been done on comparing models that account 
for a ‘homogeneous’ classification process to those that do not ac-
count for misclassification (Chambert et al., 2015; Spiers et al., 2022; 
Wright et  al.,  2020). Therefore, we compare the classification per-
formance of our model with models that assume a homogeneous 
classification probability done by Wright et  al.  (2020) and Spiers 
et al. (2022) through simulation studies and not to models that do not 
account for misclassification. We parameterise our model with citizen 
science data on gulls in Norway, Finland and Denmark from iNatural-
ist (Matheson, 2014) downloaded from the GBIF (GBIF.Org, 2022).

2  |  METHODOLOGY

2.1  |  Model framework

The proposed framework starts by assuming we have individuals 
who are observed and classified into a state, known as the ‘reported’ 
or ‘classified’ state (there may be one of many at a location, but each 
individual is classified with a probability). We use ‘state(s)’ in this 
work to refer to taxon identity as well as any other identification 
category or morpho-states, that is individuals cannot be identified 
to their taxonomic states and are grouped based on their morphol-
ogy (Spiers et al., 2022). This state can be on any taxonomic level. 
We further assume that these individuals are verifiable (and we 
have information on the verification process) and that the verified 
state approximates the true state identity (that is, we assume that 
the verified information is free from misclassification). We describe 
an observation model for the individuals in Section 2.1.1 and define 
another model for the ecological process in Section 2.1.2.

2.1.1  |  Defining the observation model

The observation model in mSDMs usually accounts for observation 
errors such as imperfect detection, uneven sampling effort, misclas-
sification and many others. In this study, we account for only mis-
classification in the observation model of our mSDMs. Therefore, we 
use the term observation and classification process interchangeably.

To describe the observation model, we assume that obser-
vations are classified individually, irrespective of the data col-
lection protocol. Each individual observed can be classified into 
k = 1, 2, … ,K states (where K is the number of unique reported 
states identities of interest), and every reported information can be 
seen as a draw from the K reported states under consideration with 
a given probability. As mentioned above, these states could be on 
any taxonomic level or include any unidentified group. For exam-
ple, one could have four true states: common, herring, Audouin's 
and Sooty gull. These species can be reported in three states: large 
white-headed gulls, large black-headed gulls and others. It is worth 
mentioning here that the reported states do not necessarily include 
the individual species. An example of the classification probability 
(confusion matrix) is shown in Table 1.
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Let Ωjk be the probability that an individual true state j ∈ {1, … , J} 
(where J is the number of unique true states identities of interest) 
is classified as state k ∈ {1, … ,K}. The probabilities across all the 
possible k states sum to 1. In studies with homogeneous classifica-
tion probabilities, the confusion matrix for the classification can be 
expressed as:

where the rows correspond to the true state j and the columns corre-
spond to the reported states k.

We model the heterogeneity in the classification probabilities by 
fitting a multinomial generalised linear model (Fahrmeir et al., 2013) 
to each of the rows of ⟽ defined in Equation (1). We refer to this ap-
proach as the multiple multinomial generalised linear model (MMGLM, 
hereafter). For each individual s observed at a location (which can be 
fixed as in transects or breeding-bird survey fixed points or random), 
we define the linear predictor of the MMGLM as:

where �0jk is the intercept of the jth true state and kth reported state 
and �pjk is the jth true state and kth reported state effect of covari-
ate zps for individual s with the covariate index p ∈ {1, 2, … n}, with n 
being the number of covariates that drives the observation process. 
Using Equation (2) as the definition for the linear predictor, our esti-
mates of the parameters �0jk and �pjk are identifiable with reference 
to one reported state. That is, for each observed individual s and true 
state identity j, the classification probabilities (Ωjks) for each reported 
state k = 1, 2, … ,K − 1 with reference to state K is modelled as the 
logarithm of the ratio of linear predictors defined in Equation (2):

with the same definition of model parameters in Equation (2). The deri-
vation of Equation (3) from Equation (2) is shown in Appendix S1.

This general framework has J × (K−1) × (n−1) parameters to be es-
timated, where J is the number of true states, K is the number of 
reported states, and n is the number of covariates in the observation 
model. Estimating these parameters can be very computationally ex-
pensive as the number of true states, reported states and covariates 
increase, requiring significant numbers of misclassified individuals to 
estimate them. Therefore, we explored simplified forms of the gen-
eralised model in Equation (3).

A simplified case of Equation (3) assumes that the covariate zps 
only affects the probability of correctly classifying individuals. For 
example, when we want to model the heterogeneity in the classifi-
cation probabilities through the probability of correctly classifying 
the species. In this instance, �pjk = 0 for j ≠ k for covariate p, and 
these parameters are not estimated (This is our study scenario ‘fixed 
covariate’ in Table 2). This simplification reduces the number of pa-
rameters estimated for the observation process by n × (K − J − 1), 
where J is the number of true states, K is the number of reported 
states, and n is the number of observation model covariates. A fur-
ther simplification would also be to assume that, on average, all the 
true states have the same probability of being correctly classified; 
that is, �0jk is the same for all j = k (This is our study scenario ‘fixed-
intercov’ in Table 2). As such, the covariate effect �1jk for all j = k 
captures the classification process heterogeneity. The latter further 
reduces the number of parameters estimated by J–1. This last sim-
plification is useful, especially when individuals from different states 
are very similar, and one would expect their average classification 
probabilities to be the same.

Then, given that an individual s was sampled, the reported state 
of that individual is a draw from K states with probability Ωj.s:

where Ys is the reported observation identity and Vs is the true state 
identity obtained from the verification process for individual s.

2.1.2  |  Ecological process model

We now define an ecological process model for the true state distri-
bution. Although we have assumed that the reported observations 
are classified on individual levels, the definition of the process model 
can either be on an individual sample level (that is, individual true 
state information is present at each site, such that data obtained 
from a species list) or an aggregate sample level (for example, counts 
of all individuals across all true states at a location).
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(
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(4)Ys ∣ Vs = j ∼ Categorical
(
Ωj⋅s

)

True states

Reported states

Large white-headed gulls Large black-headed gulls Other gulls

Common gull 0.8 0.1 0.1

Herring gull 0.9 0 0.1

Audouin's gull 0 0.9 0.1

Sooty gull 0 1 0

TA B L E  1 Example of confusion matrix 
that applies to our model. Individual 
observations (referred to as reported 
states) are verified as the true states.
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We specify a relative abundance model (specifically a multino-
mial logit model) for each true state's ecological process. Our ob-
jective is to show how to model heterogeneity in the classification 
process and not to make inferences about the true state's abun-
dance, so we chose a model that was easier to fit and understand to 
describe the ecological process.

Let �js be the average number of individuals in true state 
j = 1, 2, … , J for individual s, which describes the abundance of the 
individuals over the study region D. This intensity can either be mod-
elled as an inhomogeneous process, which assumes that the data are 
dependent on the environment covariate, or as a log-Cox Gaussian 
Point process, where we assume a spatial dependency in the ob-
served data (Renner et al., 2015). Here, the mean intensity is mod-
elled using the inhomogeneous process and defined as:

where �0j is the intercept of state j, �qj is the effect of covariate with 
index q ∈

{
1, 2, … , ne

}
 on the intensity of true state j, xqs is the qth 

covariate that affects the observation individual s and ne is the number 
of covariates in the ecological process model. Note that we assume 
there are no species interactions or residual correlation in our relative 
abundance model, and this could have been added as a random effect 
in the true state intensity definition (Equation (5)).

Let pjs be the relative proportion (probability) that an individual s 
belongs to true state j. We estimate this probability from the mean 
intensities as follows:

where �js is defined in Equation (5).
The true state of each individual observation s is a realisation from 

a categorical distribution with probability pjs. This distribution assump-
tion indicates that we assume a single true state for every individual. 
When aggregate sample level data is available instead of individual 
sample data, then the total number of individuals in each true state fol-
lows a Poisson distribution with parameter � (as defined in Equation 5), 
and within that, the number of each recorded state follows a multi-
nomial distribution with probabilities Ω (as described in Section 2.1.1). 
This implies that there can be multiple individuals at each site, except 
that each of these individuals shares the same site-specific covariates.

In summary, the hierarchical framework of the proposed mSDMs 
is as follows:

where the definition of parameters is inherited from the models de-
fined in Equations (3) to (6).

This model specification for the ecological process used here is 
similar to the occupancy dynamics and encounter rate model used 
by Spiers et al. (2022) by eliminating the occupancy sub-model in the 
ecological process model; and similar to the model used by Wright 
et al. (2020) by assuming Poisson counts with intensity �is (refer to 
Table 3 for the link between our model framework and that of Spiers 
et al. (2022) and Wright et al. (2020)).

(5)ln
(
�js

)
= �0j +

ne∑

q=1

xqs × �qj,

(6)pjs =
�js

∑J

j
�js

,

(7)

ln
�
�js

�
=�0j+

ne�

q=1

xqs�qj;

pjs=
�js
∑

j�js
;

Vs ∼Categorical
�
p.s

�
;

ln

�
Ωjks

ΩjKs

�
=
�
�0jk−�0jK

�
+
�
�1jk−�1jK

�
×z1s+ … +

�
�njk−�njK

�
×zns;

Ys ∣Vs ∼Categorical
�
ΩVs ,⋅

�
,

TA B L E  2 Variations in the MMGLM for the observation model defined by Equation (8) and ecological process model defined by 
Equation (5) used as our study scenarios, with one covariate used for each model.

Classification probability 
type Study scenario Ecological process model Observation process model

Heterogeneous Variable/covariate ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s

(
�1jk − �1jK

)

Fixed covariate ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s�1jj ,

where �1jk = 0 for j ≠ k

Fixed intercov ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s�1jj ,

where �1jk = 0 for j ≠ k

and �0jk is the same for j = k

Homogeneous Intercept ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
= �0jk

Constant ln
(
�js

)
= �0j + x1s�1j + x2s�2j Ωjk ∼ Dirichlet

(
�jk

)
,

where �jk ∼ Exp(1)

Main ln
(
�js

)
= �0j + x1s�1j + x2s�2j + �z1s�3j Ωjk ∼ Dirichlet

(
�jk

)
,

where �jk ∼ Exp(1)

Note: There are three heterogeneous models: covariate, fixed covariate and fixed intercov and three homogeneous models: intercept, constant and 
main. The definitions of the parameters in this table are described in Sections 2.1.1–3.
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2.1.3  |  Variable selection

In this study, we performed Bayesian variable selection, specifically 
the spike and slab prior to the classification process covariates (for 
review of Bayesian variable selection see O'Hara & Sillanpää, 2009). 
For each of the classification process covariates, we re-define the 
linear predictor in Equation (2) as:

where �p is the indicator that variable p is selected with the expected 
probability �p. The variable selection indicator specified in Equation (8) 
jointly selects the variables affecting all the true states in the model but 
can also be state-specific (Ovaskainen & Abrego, 2020). Probabilities 
�j closer to 1 indicate that the variable contributes much to the model 
and should be selected, and those closer to 0 indicate that the variable 
contributes less and can be discarded.

2.2  |  Modelling heterogeneity using ML 
prediction scores

Some studies give weight to the true identities of the reported ob-
servations or state, for example, because they use machine learn-
ing to classify the observation. These prediction scores (such as F1 
score, mean square error and logarithmic loss) are not classification 
probabilities but are values that indicate how well the ML algorithm 
classifies data in the test sample. In comparison to the model pre-
sented in Section  2.1.1–3, the information available here are the 
categories of the observed or reported individuals and prediction 
scores, and we are interested in predicting the true identity of the 
reported individuals. We can use this information to model the het-
erogeneity in the classification process and predict the true state 
identity of individuals as follows:

where �ks is the intensity of reported state k for individual s and wkjs is 
the predictive score of the kth reported state to true state j for indi-
vidual s. The intensity of the reported state is modelled as an inhomo-
geneous process with covariate effects, similar to the intensity of the 
true state in Equation (5).

It must be noted that this approach is a non-parametric approach 
to account for heterogeneity in the classification whereas the 
MMGLM is a parametric approach. Moreover, modelling the hetero-
geneity in the classification process using ML prediction scores mod-
els the covariate effects on the expected abundance of the reported 
states and corrects them using the prediction scores as weights 

to obtain the relative abundance of the true states. However, the 
MMGLM models the covariate effect on the expected abundance 
of true states and estimates the heterogeneity in the classification 
process using a parametric model. The prediction of the true state 
identity is done by weighing the expected intensity of true states 
with the estimated classification covariate.

2.3  |  Generalisation of model framework

The classification component of the proposed framework general-
ises the existing mSDMs that account for misclassification in occu-
pancy models. Wright et al. (2020) provided a framework to account 
for the homogeneity in the classification process, and our model 
is connected to this by using the relationship between the multi-
nomial and the Poisson distribution (Steel,  1953) for the observa-
tion process as well as using a species-by-species constant model 
for the classification process (Table 3). Wright et al.  (2020) further 
provided arguments that their proposed models were generalised 
forms of models for the binary detection of two species (Chambert, 
Grant, et al., 2018), single species with count detections (Chambert 
et  al.,  2015) and single species with binary detections (Chambert, 
Waddle, et  al.,  2018). Since our proposed framework can be seen 
as a heterogeneous version of Wright et  al.  (2020), the classifica-
tion component of our framework is also a generalisable form of 
the models in Chambert et al. (2015), Chambert, Grant, et al. (2018) 
and Chambert, Waddle, et al.  (2018). Spiers et al.  (2022) provided 
an individual-level semi-supervised approach that estimates species 
misclassification with occupancy dynamics and encounter rates, and 
our model is connected to this if we assume a homogeneous clas-
sification process (that is �1jk = 0 for all true states j and reported 
states k) and assume that there is no occupancy sub-model for the 
ecological process (Table 3).

2.4  |  Simulation study

To demonstrate how our proposed model works and its use in pre-
diction, we performed a simulation study using J = 2 true states and 
K = 3 reported states over 1000 sites (we assume the locations in the 
simulations are discrete). We simulated two covariates for the eco-
logical process model and one for the observation model, all from 
a Normal distribution with a mean of 0 and variance of 1. The eco-
logical process intensity was simulated from Equation (5). The inter-
cepts of the model for the two true states were chosen as �01 = − 1 , 
�02 = 0 and the covariate effect for each true state was chosen as 
�11 = 4, �12 = − 2, �21 = 0 and �22 = 0 (that is, state 2 is used as a 
reference category). The intercept and covariate effect for the ob-
servation process was chosen as follows:

(8)
� jks=�0jk+

n∑

p=1

�pzps�pjk;

with �p ∼Bernoulli
(
�p
)

(9)

Ys ∼Categorical

�
�ks∑
k�ks

�

Vs ∣Ys ∼Categorical
�
pjks

�
;

with pjks=
�kswkjs

∑
k�kswkjs

�0 =

⎡
⎢
⎢
⎣

2 0.5 0

1 1 0

⎤
⎥
⎥
⎦
;�1 =

⎡
⎢
⎢
⎣

3 −1 0

−1 1 0

⎤
⎥
⎥
⎦
.
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These values were chosen to obtain significant sample sizes of 
misclassified states. We simulated 200 datasets with a heterogeneous 
classification process using the variable model in Table 2 (referred to 
as the ‘full model’), 200 with a homogeneous classification process by 
assuming �1 = 0 (a matrix of zeros) in Equation (3) (referred to as ‘re-
duced model’) and another 200 with the covariate effect for the classi-
fication process (using the variable model in Table 2) that is correlated 
to the ecological process covariate (referred to as ‘correlation model’). 
The first simulated dataset explored modelling heterogeneity's effect 
on the classification process, whereas the latter explored the effect 
of having correlated covariates for the classification and ecological 
process. The second assessed the effect of overfitting the classifica-
tion process model (adding heterogeneity to the classification process 
when it should be homogeneous). Moreover, we assessed the impact 
of the number of misclassified samples on the mSDMs predictive per-
formance. We increased the principal diagonal components of �0 by 
6 to obtain a reduction in the number of misclassified samples simu-
lated. The cross-tabulation between the true state and reported state 
samples across all the 200 simulations is summarised in Appendix S2: 
Table S1. We did not explore the effect of failing to account for misclas-
sification in this study since it has been well explored in the literature.

We randomly withheld 200 of the true state identities for each 
dataset simulated as our validation sample. The number of validation 
samples were not varied since Spiers et  al.  (2022) found that the 
number of validation samples had a modest effect on the model's 
predictive ability. We fitted the model under the various scenarios 
described in Table 2 to the data and evaluated the model's predictive 
performance on the validation sample.

2.5  |  Case study: Gulls dataset

The proposed model was used to analyse a gull dataset downloaded 
from GBIF (GBIF.Org, 2022). The database hosts over 2 billion oc-
currence observations with over a million observers (website vis-
ited on 17th February 2023). We were interested in the iNaturalist 
records since they have community verifications (Matheson, 2014). 
The observers collected these occurrence records and uploaded 
their observations with images and/or sounds that allowed for 
verification. The reported observations go through iNaturalist 
community verification and are accepted as research grade when 
two-thirds of the community agreed to the taxon identification 
(Ueda, 2020), at which point they are published on GBIF. We as-
sumed the community-accepted taxon name is the true state V. We 
checked the iNaturalist platform to track the identification process 
of the observations and use the first reported identification as the 
reported state Y.

We obtained observations for some species of gulls in Denmark, 
Finland and Norway from 2015 to 2022. Specifically, we selected 
great black-backed gulls (Larus marinus), herring (Larus argentatus), 
common gulls (Larus canus) and lesser black-backed gulls (Larus fus-
cus) because the iNaturalist website reported that these species are 
commonly misclassified as the other. Any other species reported 
apart from the above-mentioned species were labelled as ‘others’. 
We used annual precipitation (accessed from the raster package; 
Hijmans et al., 2015) as the ecological process covariate in the model 
since it has been noted in some literature to affect the distribution of 
sea birds such as gulls (Algimantas & Rasa, 2010; Jongbloed, 2016).

TA B L E  3 Extensions of our proposed models from homogeneous classification process studies done by Spiers et al. (2022) and Wright 
et al. (2020).

Author Model framework Link to our model

Wright et al. (2020) and the 
models their proposed 
framework generalises 
such as Chambert 
et al. (2015), Chambert, 
Grant, et al. (2018) and 
Chambert, Waddle, 
et al. (2018)

Ecological process: absolute counts zjs ∼ Bernoulli
(
� js

)
[
Vjks|zjs = 1

]
∼ Poisson

(
�jks

)
Ecological process: relative abundance
Assume no occupancy sub-model 
and for each individual, then �
Vjks

�
∼ Categorical

�
�jks ∕

∑
j�jks

�

Observation process:[
Yjks|Vjks = vjks, zjs = 1

]
∼ Multinomial

(
vjks|Ωjk

)
, where 

Ωjk ∼ Dirichlet(�)

Observation process:[
Yijs|Vijs = vjks

]
∼ Categorical

(
Ωjks

)
, where Ωjks 

can be chosen as any of the homogeneous 
models described in Table 2

Spiers et al. (2022) Ecological process: occupancy dynamics and encounter rates 
zjst ∼ Bernoulli

(
� jst

)
 �Vjist

�
∼ Categorical

�
�jistzjst∑
j�jistzjst

�
;

Ecological process: relative abundance
Choose t = 1 and ignore the occupancy 
sub-model.�

Vjis

�
∼ Categorical

�
�jis∑
s�jis

�
;

Classification process: 
[
Yjis|Vjis

]
∼ Categorical

(
Ωjk

)
, where 

Ωjk ∼ Dirichlet(�)

Classification process: [
Yjis|Vjis = 1

]
∼ Categorical

(
Ωjks

)
, where Ωjks 

can be chosen as any of the homogeneous 
models described in Table 2

Note: The table specifies the ecological process model for Wright et al. (absolute abundance model), Spiers et al. (occupancy dynamics and encounter 
rate model) and ours (relative abundance model); and also the observation model for Wright et al. and Spiers et al. (homogeneous classification 
process with classification probabilities simulated from Dirichlet distribution) and ours from heterogeneous models described in Table 2. Since 
our framework extends the work done by (Wright et al., 2020), it is safe to say that the classification component of our proposed framework are 
also generalised forms of Chambert et al. (2015), Chambert, Grant, et al. (2018) and Chambert, Waddle, et al. (2018). The index j refers to the true 
state identity, k refers to the reported state identity, s refers to the location in Spiers et al. (2022) and Wright et al. (2020) but refers to individuals 
in this study, i refers to the visit, and t refers to the year. In addition, the random variable Y refers to the reported observations, V to the verified 
observations and z to the occupancy state of the individuals.
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The data obtained were presence-only records. Exploratory 
analysis revealed that there were no multiple observations at the 
same location for our selected species. Therefore, we assumed that 
our locations were discrete and treated the data as a marked pro-
cess, where the individual species reported at a location is given a 
value of 1 and 0 for the other species in this study. If we had a spe-
cies list, we could have modelled it as a repeated marked process at 
the same location and treated the sites as a random effect. Out of 
the 3737 presence-only records retrieved, 964 were common gulls, 
333 were great black-backed gulls, 1091 were herring gulls, 339 
were lesser black-backed gulls, and 10 were others.

Citizen science data are known to be affected by several sources 
of bias. Some common biases are spatial bias (Johnston et al., 2022; 
Tang et al., 2021) and misclassifications (Johnston et al., 2022; Tulloch 
et al., 2013). We only accounted for the misclassifications in this study, 
as we are interested in explaining the classification process and not 
making inferences about the abundance of the gulls. Citizen scientists 
have been reportedly known to correctly classify species as they gain 
experience reporting the species (Vohland et al., 2021). We, therefore, 
modelled the variation in the classification process by using the num-
ber of reports made by each observer as a covariate in the classifica-
tion process. If an observer has more than 10 observations, the extra 
number of observations was calibrated at 10. We used this number 
of observations for an observer as a measure of experience (Johnston 
et  al.,  2018; Kelling et  al.,  2015), although there are other indices 
for measuring effort or experience of the citizen scientist (Santos-
Fernandez & Mengersen, 2021; Vohland et al., 2021).

We also used an ML algorithm to obtain prediction scores (spe-
cifically F1 score) for our downloaded data's possible true state 
identity. The ML algorithm was a Convolutional Neural Network (a 
modified form in Koch et al., 2022) trained with data from all citizen 
science observations of any species in Norway. Since the ML algo-
rithm is trained with all bird data from GBIF in Norway, we trained 
all our six study scenario models summarised in Table 2 with all data 
for our selected gull species in Norway and all data reported before 
2022 in Finland and Denmark and used all data reported in 2022 in 
Finland and Denmark as our validation sample. The summary of the 
classifications (true and false positives) in the training and validation 
sample is presented in Appendix S2: Tables S2 and S3.

2.6  |  Fitting and evaluating the model

We ran all the analyses with the Bayesian framework using the 
Markov chain Monte Carlo approach in the NIMBLE package (de 
Valpine et al., 2017) from the R software (R Core Team, 2022). We 
chose the priors for all ecological process model parameters from 
a normal distribution with a mean of 0 and standard deviation of 
10, and we chose the priors for the observation model parameters 
from Normal distribution with a mean of 0 and standard deviation 
of 1. For the scenarios: constant and main model, we chose the 
priors of the confusion matrix (Ω) from the Dirichlet distribution 

with parameter alpha (α), which has a prior of an exponential dis-
tribution with mean 1.

We ran 3 chains, each with 10,000 iterations; the first 5000 iter-
ations were chosen as the burn-in. We checked the convergence of 
the models by visually inspecting the trace plots and ignoring models 
with a Gelman-Rubin statistic (Brooks & Gelman, 1998) value >1.1. 
We kept a fifth of the remaining samples in each of the chains.

We used accuracy (the proportion of predicted true state iden-
tities from all the predictions of the validation samples), precision 
(the proportion of mismatched true states in the validation samples 
that were correctly classified from the predictions) and recall (the 
proportion of correct true states in the validation sample retrieved 
from the predictions) as performance metrics. We used a Bayesian 
approach and got the posterior distributions for the parameters. The 
posterior median is estimated and higher values of the validation 
metrics indicated the preferred model. We also checked how well 
the model estimated the ecological process parameters (�0, �1 and 
�2 ) and the classification process parameters (�0 and �1) by estimat-
ing the bias (difference between the true value and the estimated 
value) and precision of the parameters.

3  |  RESULTS

3.1  |  Simulation study

3.1.1  |  Predictive performance

We illustrated the gain in model performance by using the accu-
racy, recall and precision of our model's predictions (Figure  1a,b). 
When data was simulated from the full and correlated models, there 
was a strong indication that the predictive performance of mSDMs 
improved when the variability in the classification process was in-
cluded. That is the ‘variable’ model performed best for the full and 
correlation models with the highest accuracy, recall and precision 
values (Figure 1a(i–ii),b(i–ii)). The simplified heterogeneous models 
(fixed intercov and fixed covariate), however, did not perform any 
better than the homogeneous models (Figure  1a(i–ii),b(i–ii)). This 
suggested that simplifying the heterogeneous classification model 
did not improve predictive performance, and the heterogeneous 
model that captures the entire variability (in this case, variable 
model; Table 2) would be the best predictive model. When the clas-
sification process covariate was modelled as part of the observation 
process (main model), the model's predictive performance also per-
formed similarly to the homogeneous models (Figure 1a,b).

Overfitting a homogeneous classification process with a het-
erogenous one did not have any effect on the mSDM's predictive 
performance (Figure 1a(iii),b(iii)). We expected the overfitted hetero-
geneous models to have poor predictive performance (Montesinos 
López et al., 2022), but the heterogeneous and homogeneous per-
formed similarly (with equal recall, accuracy and precision across 
all six study models). The Bayesian variable selection probability 



    |  9 of 15ADJEI et al.

indicated that the homogeneous classification model was better 
(with the probability of including classification covariates in het-
erogeneous models being 0.359 ± 0.012; Appendix  S2: Table  S4). 
Although the simplified heterogeneous models did not yield im-
provement in predictive performance, they performed similarly to 
the variable model in the variable selection process.

3.1.2  |  Effect of number of misclassified samples

As we increased the number of misclassified samples in our simulated 
data, the precision increased by on average 30% and accuracy and 
recall increased by 6% (Figure 1a(i–ii),b(i–ii)). This decrease in accu-
racy and recall could be attributed to the reduced number of correct 
classifications in the simulated data as the number of misclassified 

samples increased (Appendix S2: Table S1). Moreover, the observa-
tion model parameters were estimated better when the number of 
misclassified samples was higher, leading to the high precision of 
predictions (Appendix S2: Figures S2 and S3). This suggested that 
our proposed model will be beneficial when one has many misclas-
sified samples.

3.1.3  |  Bias in observation and ecological 
process parameters

Although failure to account for misclassification in mSDMs can 
result in biased ecological process model parameters (Spiers 
et al., 2022; Wright et al., 2020), any method used to account for 
misclassification in mSDMs has a small effect on the accuracy and 

F I G U R E  1 Boxplot of validation metrics (accuracy, precision, recall) from the six study models defined in Table 2 on the two hundred 
(200) withheld samples out of the thousand (1000) samples simulated in each dataset. Accuracy is the proportion of withheld samples 
that were correctly classified, recall is the proportion of correctly classified samples that were retrieved from the withheld samples, and 
precision is the proportion of the misclassified samples that were correctly classified. Each boxplot shows the median and the interquartile 
range (25–75% quartiles). Each column shows the type of model used to simulate the dataset: ‘full’ refers to using the variable/covariate 
model in Table 2, ‘reduced’ refers to using the intercept model in Table 2 and ‘correlation’ refers to using the variable model in Table 2, 
but with correlated ecological and observation process covariates. The rows correspond to changes made to the number of misclassified 
samples in the simulated dataset: ‘Baseline’ refers to using the values defined in Section 2.4 and ‘Decrease’ refers to reducing the number of 
misclassified samples by diagonal elements of � by 6 as described in Section 2.4.
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precision of the ecological process parameters. The bias of the eco-
logical process parameters was consistently low for all six models, 
and the coverage was higher for all the scenarios under the full and 
reduced model (Appendix S2: Figure S1). All the scenarios studied 
accounted for misclassification of some sort, thereby correcting for 
the bias in the observation parameters estimates (Spiers et al., 2022; 
Wright et al., 2020). The observation model parameters were esti-
mated more accurately for the variable model than the other models 
(Appendix S2: Figures S2 and S3). This was only possible in the case 
where we had enough misclassified samples. This suggests that if 
the objective of a study is to predict true state identity with mSDMs, 
then modelling the full heterogeneity can improve predictive perfor-
mance; if the aim is inference on true state distribution, then hetero-
geneous models may not provide any advantage over homogeneous 
models.

3.2  |  Case study: Gull dataset

All six study scenario models performed equally well regarding their 
predictive performance with high accuracy and recall but smaller 
precision (Table 4). The poor precision value could not be attributed 
to the insignificance of the classification covariate (observer expe-
rience) in explaining the heterogeneity in the classification process 
since the variable selection probabilities are closer to 1 (Table 4) but 
to the small misclassification sample sizes (Appendix S2: Tables S2 
and S3). However, the precision increased from 10% to 80% (i.e. 
we were able to correctly classify eight out of the ten misclassi-
fied samples) when the heterogeneity in the classification process 
was accounted for by using the prediction scores from the Machine 
learning algorithm (Table  4). The ML algorithm's prediction scores 
were individual observation-specific, which provided direct informa-
tion to the observation process model. However, the six classifica-
tion models depended on the misclassified sample size to capture 
the heterogeneity in the classification process. This suggests that 
one remedy to improve mSDM's predictive performance for data 
with very small misclassified samples is to use ML weights to ac-
count for heterogeneity in mSDMs.

Although the study scenario models had smaller precision, it was 
observed that the probability of correctly classifying the gull species 
in Denmark, Finland and Norway increased with the experience of 
the observer (Figure 2). The pattern showed that observers have a 
higher chance of making mistakes on their first few reports, and they 
get better as the number of reports increased (Vohland et al., 2021).

4  |  DISCUSSION

The main objective of this paper was to propose a general frame-
work to account for misclassifications from imperfect classifications 
(such as those from surveys) and uncertain classifications (from au-
tomated classifiers) in mSDMs. This work builds on previous work 
by Spiers et  al.  (2022); Wright et  al.  (2020) by accounting for the 
heterogeneity in the classification probabilities while allowing the 
classified categories to be more than the verified species (such as 
unknown species, morphospecies etc.). Moreover, we assessed the 
effect of overfitting a homogeneous classification process on the 
predictive performance of mSDMs and provided ways of checking 
the overfitting of the classification process model.

Our study bridges the knowledge gap in the literature on ac-
counting for misclassification in mSDMs by modelling the hetero-
geneity in the classification process. Observation errors such as 
imperfect detection, sampling biases and misclassification, among 
many others, are inevitable in biodiversity data (Bird et  al.,  2014; 
Kéry & Royle, 2020; Miller et al., 2013). In this study, we accounted 
for only misclassification in the observation process. It is worth stat-
ing that the misclassification we accounted for could lead to both 
false positives and negatives in the biodiversity data. To model these 
misclassifications in this study, we presented the ecological process 
as one model and the observation process as another model in a 
hierarchical form. Under the assumption that the classification of 
observations is done on the individual level, we modelled the clas-
sification probabilities for each true state identity as a multinomial 
generalised linear model. This specification generalises the mod-
elling of the observation process to model effects of covariates as 
fixed or random effects or both. For example, one can estimate the 

Method Accuracy Precision Recall
Variable selection 
probability

Variable/Covariate 0.97 0.1 0.99 0.71

Constant 0.97 0.1 0.99 –

Intercept 0.97 0.1 0.99 –

Main 0.97 0.1 0.99 0.29

Fixed intercov 0.97 0.1 0.99 0.70

Fixed covariate 0.97 0.1 0.99 0.71

Machine Learning 0.89 0.8 0.90 –

Note: The accuracy is the proportion of correctly classified validated data, the precision is the 
proportion of mismatched identities that were correctly matched and recall is the proportion of 
correctly matched identities that were recovered. The number of validated samples was 384 out of 
which 10 were mismatched.

TA B L E  4 Validation metrics of the 
models under study on the withheld gull 
dataset.
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classification probabilities of each observer in volunteer-collected 
data by assuming a random observer effect. This formulation for the 
classification process also mitigates the modelling problems of using 
the Dirichlet distribution as the prior for the classification probabili-
ties (Spiers et al., 2022).

Furthermore, the specification of a separate state-space model 
for the ecological process in the proposed framework allows the 
use of various multi-species models (such as joint species distri-
bution models (Ovaskainen & Abrego, 2020; Tobler et al., 2019), 
Royle-Nichols model for abundance (Royle & Nichols,  2003), 
among many others) to model the distribution of the true states. 
With the classifications assumed to be done on individual sample 
levels, an ecological process model can be defined to link the true 
and reported states appropriately. For example, if species list (ob-
tained from checklists as provided by eBird; Sullivan et al., 2014; 
Johnston et al., 2021) are used to model species distributions, the 
record at each location can be treated as repeated observations 
(where each observation refers to a different individual species) at 

the same location. Our simulation study showed that the proposed 
model framework could estimate the process model parameters 
(with the bias of estimated parameters close to zero; Appendix S2: 
Figure S1), an observation noted in previous studies that use ob-
servation confirmation design to model misclassification in mSDMs 
(Kéry & Royle, 2020; Spiers et al., 2022; Wright et al., 2020). We 
have shown that the ecological process model presented in this 
study is a simplified form of occupancy and abundance models 
(in the sense that it ignores species occurrence) that account for 
misclassification (Table 3), so we believe our proposed framework 
can be extended to any design used to collect and verify data on 
the true states (for example, point processes, distance sampling, 
site confirmation and other multi-method design, etc.), and any 
model used to fit the data (for example, multi-state occupancy 
model (Kéry & Royle,  2020), joint species distribution models 
(Ovaskainen & Abrego, 2020; Tobler et al., 2019)). Although such 
extensions are possible, significant computational and/or practi-
cal challenges must be explored in future work. For example, joint 

F I G U R E  2 Summary of results from the model fit to gull dataset showing (a) Probability of correct classification for the common (Larus 
canus), herring (Larus argentatus), great black-backed (Larus marinus) and lesser black-backed gulls (Larus fuscus) and (b) the distribution of the 
experiences of the observers used in the modelling. The ribbon around the correct classification probability estimates represents the 95% 
credible interval of the estimates.



12 of 15  |     ADJEI et al.

species distribution models would estimate residual correlations 
between species in the ecological process model while simultane-
ously estimating misclassification probabilities among the species 
in the observation model. These additional parameters can cause 
the models to be non-identifiable or computationally expensive.

Modelling the ecological process with more complex models 
than the relative abundance models used in the study would add 
another level of hierarchical structure to the proposed frame-
work (for example, modelling detection probability or true occu-
pancy state). This complexity could introduce confounding of the 
ecological and observation process model parameters and, with 
frequentist estimation approaches, make the likelihood multi-
modal (Kéry & Royle, 2020). This study did not explore such is-
sues; further work can be done on this. A possible solution in the 
Bayesian framework to avoid such confounding issues would be 
to model the different processes with separate covariates, choose 
a good prior for the mSDM parameters and use repeated survey 
visit data to model the observation process (Kéry & Royle, 2020). 
Moreover, the identifiability or confounding issues could be tack-
led by using data with much information on detection and false 
positive detections, such as those derived from acoustic surveys 
(Clement et  al.,  2022) and integrating occupancy or count data 
that are not susceptible to misclassification, such as those from 
camera traps to those with misclassifications (Doser et al., 2021; 
Kéry & Royle, 2020).

Accounting for the heterogeneity in the classification process 
increases the predictive performance of mSDMs. The homo-
geneous classification models may sometimes be unable to ex-
plain the variation in the observation process (Conn et al., 2013), 
leading to poor model predictive performance due to overfitting 
(Montesinos López et  al.,  2022). The simulation study showed a 
30% increase in precision and a 6% increase in accuracy and re-
call when the heterogeneity in the classification process was ac-
counted for in the mSDMs (Figure 1a,b). However, there was no 
change in predictive performance when a heterogeneous classi-
fication model overfitted a homogeneous classification process 
(Figure 1a,b) due to the small classification covariate effect size, 
observed from the bias of parameter estimates and low Bayesian 
variable selection probability (Appendix S2: Figures S1–S3). Since 
the predicted posterior probability for the true state's identity 
heavily relies on the weights from the misclassification probability 
(Appendix S1), failure to account for heterogeneity in the classi-
fication process would mean our posterior probability would be 
incorrectly estimated. The incorrectly predicted probability would 
lead to the underestimation of the prediction of the ranges of cov-
erage and possibly abundance in the true states (Molinari-Jobin 
et  al.,  2012). It must be noted that this study did not compare 
mSDMs that account for misclassification to those that do not 
account for misclassification but can further infer from previous 
studies that perform this comparison that failure to account for 
any misclassification would also lead to underestimation of predic-
tion ranges and species distribution (Clare et al., 2021; Ferguson 
et al., 2015; Miller et al., 2015; Wright et al., 2020).

Fitting a more complex ecological process model with the covari-
ate that explains the heterogeneity of the classification process does 
not provide enough information to improve the mSDM's predictive 
performance. Previous studies have shown that the estimates of the 
ecological process model inform the estimation of the classification 
probabilities (Spiers et al., 2022), but the variability in the classifi-
cation process cannot be inferred from variability in the ecological 
process model (Figure  1a(i–iii), Appendix  S1). Ecologists should, 
therefore, model the variability in the classification in its process 
model to gain the advantage in the mSDMs predictive performance.

Our model was parameterised with volunteer-collected gull data. 
These volunteer-collected data have several sources of bias in their 
generation, such as spatial bias, and misidentification of species, 
among many others. We acknowledge that all these sources of bi-
ases may be present in the data, but we only modelled the misidenti-
fication of species by using the number of previously collected data 
as a proxy measure for the observer's experience in the classification 
process model. The predictive performance of the homogeneous 
and heterogeneous models was approximately the same due to small 
misclassified samples (19 misclassified out of 1382 samples in train-
ing data (Appendix  S2: Table  S2)) and 10 misclassified out of 378 
samples in validation data (Appendix S2: Table S3). However, the esti-
mated covariate effect shows how the experience affects the proba-
bility of classifying a new observation. Specifically, the probability of 
correctly identifying the correct species increases with the observ-
er's experience, as is noted in some literature (Johnston et al., 2018; 
Kelling et al., 2015; Santos-Fernandez & Mengersen, 2021; Vohland 
et  al.,  2021). Therefore, there is a trade-off between the model's 
ability to correctly classify mismatched data (precision) and under-
standing the covariate's effect driving the classification process 
when there are relatively small misclassified samples.

The inclusion of ML prediction scores in the mSDMs to account 
for the heterogeneity in the classification process increased the 
precision of our predictions by 70% (Table 4). These ML prediction 
scores are observation-specific and provide much information about 
the classification process to increase the precision of the model. The 
information from the ML does not depend on the misclassified sam-
ple sizes but on the quality of the images (Koch et al., 2022), making 
them advantageous to use in accounting for heterogeneity in the 
classification process when misclassified sample sizes are small (like 
we have in our gull data).

This study leaves room for further work to be done. We used 
1000 locations in our simulation study and 2737 locations in the 
case study. In some real-world applications, such as those that use 
acoustic survey data, collecting data at a few sites is feasible due to 
how expensive it is to collect the data (Darras et  al.,  2018; Doser 
et al., 2021; Efford et al., 2009). Further studies can explore the im-
pact of the number of study sites on the performance of the pro-
posed framework. Moreover, this study used two true states and 
three reported states, and the case study used four true states and 
five reported states. Increasing the number of true states and re-
ported states may affect the performance of our proposed model, 
which we have left for further studies.
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The proposed model framework in this study is flexible and can 
be generalised into any species distribution model and integrated 
distribution model. The framework proposed fits into the frame-
works provided by Spiers et  al.  (2022) and Wright et  al.  (2020) 
and any framework their study generalises. Our proposed clas-
sification process model, MMGLM, improved the predictive per-
formance of mSDMs, but it heavily relies on the misclassified 
sample size. Furthermore, the confusion matrix defined in the 
model framework allows for the classification of different taxo-
nomic groups, as opposed to just the species-by-species confu-
sion matrix in Wright et al. (2020) and including morphospecies in 
the classification categories (Spiers et al., 2022). This will make it 
possible for citizen science data analysts to account for the mis-
classification of data at any level in the data collection process. 
We recommend that variable or model selection is performed 
during the analysis to check for overfitting. Moreover, ecologists 
should explore using ML prediction scores (where the prediction 
scores are available) as weights in mSDMs that aim at predicting 
true state distributions, especially when the data has a small mis-
classified sample size.
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