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Abstract
Species	distribution	models	and	maps	from	large-	scale	biodiversity	data	are	necessary	
for	conservation	management.	One	current	issue	is	that	biodiversity	data	are	prone	
to	 taxonomic	misclassifications.	Methods	 to	 account	 for	 these	misclassifications	 in	
multi-	species	distribution	models	have	assumed	 that	 the	classification	probabilities	
are	constant	throughout	the	study.	In	reality,	classification	probabilities	are	likely	to	
vary	with	several	covariates.	Failure	 to	account	 for	such	heterogeneity	can	 lead	 to	
biased	prediction	of	species	distributions.	Here,	we	present	a	general	multi-	species	
distribution	model	that	accounts	for	heterogeneity	in	the	classification	process.	The	
proposed	model	assumes	a	multinomial	generalised	linear	model	for	the	classification	
confusion	matrix.	We	compare	the	performance	of	the	heterogeneous	classification	
model	to	that	of	the	homogeneous	classification	model	by	assessing	how	well	they	
estimate	the	parameters	in	the	model	and	their	predictive	performance	on	hold-	out	
samples.	We	applied	the	model	to	gull	data	from	Norway,	Denmark	and	Finland,	ob-
tained	from	the	Global	Biodiversity	Information	Facility.	Our	simulation	study	showed	
that	accounting	for	heterogeneity	in	the	classification	process	increased	the	precision	
of	true	species'	identity	predictions	by	30%	and	accuracy	and	recall	by	6%.	Since	all	
the	models	in	this	study	accounted	for	misclassification	of	some	sort,	there	was	no	
significant	effect	of	accounting	for	heterogeneity	in	the	classification	process	on	the	
inference	 about	 the	 ecological	 process.	Applying	 the	model	 framework	 to	 the	 gull	
dataset	did	not	improve	the	predictive	performance	between	the	homogeneous	and	
heterogeneous	models	 (with	parametric	distributions)	due	 to	 the	 smaller	misclassi-
fied	sample	sizes.	However,	when	machine	 learning	predictive	scores	were	used	as	
weights	 to	 inform	 the	 species	distribution	models	 about	 the	 classification	process,	
the	precision	increased	by	70%.	We	recommend	multiple	multinomial	regression	to	
be	used	to	model	the	variation	in	the	classification	process	when	the	data	contains	
relatively	larger	misclassified	samples.	Machine	learning	prediction	scores	should	be	
used	when	the	data	contains	relatively	smaller	misclassified	samples.
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1  |  INTRODUC TION

Species	 distribution	 models	 are	 essential	 ecology	 and	 conser-
vation	 management	 tools	 that	 predict	 how	 natural	 and	 human	
factors	 affect	 biodiversity	 (Elith	 &	 Leathwick,	 2009;	 Vermeiren	
et	al.,	2020).	With	increasing	biodiversity	data	from	multi-	species	
surveys	 available	 to	 scientists,	multi-	species	 distribution	models	
(hereafter	mSDMs)	and	joint	species	distribution	models	(jSDMs)	
have	become	widely	used	 in	analysing	these	data	to	 identify	the	
important	 variables	 that	 drive	 species	 co-	occurrences	 and	 pre-
dict	 the	distribution	of	species	 in	a	community	 (Hui	et	al.,	2015; 
Ovaskainen	&	Soininen,	2011;	Pollock	et	al.,	2014).	These	mSDMs	
model	 data	 at	 the	 community	 level	 by	 identifying	 how	 indi-
vidual	 taxa	 respond	 to	 environmental	 variables	 (Ovaskainen	 &	
Soininen,	2011).	The	jSDMs	also	quantify	the	residual	correlation	
between	taxa	after	the	explanatory	variables	have	been	accounted	
for	(Caradima	et	al.,	2019;	Pollock	et	al.,	2014).

However,	the	biodiversity	data	obtained	from	these	surveys	can	
be	subject	to	observation	errors,	and	misclassification	is	a	common	
source	of	this	error.	The	misclassification	may	arise	from	imperfect	
classifiers	 (Spiers	et	 al.,	2022;	Wright	et	 al.,	2020),	 observer	error	
and	many	other	 sources.	 Species	misclassification	 in	multi-	species	
surveys	often	 involves	 reporting	one	 species	 as	 another,	 resulting	
in	 false	 positives	 (where	 the	 species	whose	 identity	 has	 been	 re-
ported	is	actually	absent;	Miller	et	al.,	2011;	Royle	&	Link,	2006)	and	
false	negatives	(where	the	species	whose	identity	was	misclassified	
is	present	but	 reported	as	absent;	MacKenzie	et	al.,	2002).	 In	 this	
study,	we	use	the	term	true	states	to	describe	the	correct	or	actual	
observation	 identity	we	are	 interested	 in	modelling.	Although	 it	 is	
not	always	possible	to	know	if	individuals	are	correctly	classified	or	
not,	it	would	be	a	great	advantage	if	the	observations	were	correctly	
classified	(for	example,	through	predictions	from	fitted	species	dis-
tribution	 that	 account	 for	 misclassification)	 rather	 than	 discarded	
once	 they	 were	 identified	 as	 false	 positives.	 False	 negatives	 and	
positives	are	mostly	accounted	for	 in	occupancy	models	by	 jointly	
modelling	them	in	the	observation	model	(Kéry	&	Royle,	2020;	Miller	
et	al.,	2011;	Royle	&	Link,	2006).	Failure	 to	account	 for	or	correct	
these	errors	leads	to	biases	in	inferences	about	state	variables	such	
as	 occupancy	 probabilities,	 covariate	 effects	 and	 relative	 activity	
(Clare	et	al.,	2021;	Ferguson	et	al.,	2015;	Miller	et	al.,	2015;	Royle	&	
Link,	2006;	Wright	et	al.,	2020),	leading	to	an	impairment	in	decision	
making	(Hoekman,	2021).

The	 methods	 to	 deal	 with	 misclassification	 from	 biodiversity	
data	 can	 be	 grouped	 into	 data	 review	methods	 and	model-	based	
methods	(Clare	et	al.,	2021).	Data	review	methods	require	complete	

and	 proper	 data	 collection	 and	 processing	methods.	 This	 process	
can	be	very	demanding	as	it	 is	challenging	to	control	for	misclassi-
fication.	This	makes	the	model-	based	methods	more	popular	when	
working	 with	 large-	scale	 datasets	 from	 large-	scale	 biodiversity	
data	vendors	like	the	Global	Biodiversity	Information	Facility	(GBIF	
hereafter;	GBIF.Org,	2022).	Model-	based	methods	estimate	classifi-
cation	probabilities	jointly	with	the	true	state	variables	of	interest.	
Model-	based	methods	 attempting	 to	 account	 for	misclassification	
in	multi-	species	occupancy	models	currently	include	modelling	mis-
classification	 with	 detection	 heterogeneity	 (Clement	 et	 al.,	 2022; 
Ferguson	et	al.,	2015;	Louvrier	et	al.,	2018),	integrating	multiple	ob-
servers	records	with	other	methods	such	as	distance	sampling	and	
N-	Mixture	models	(Hoekman,	2021),	supervised	methods	with	extra	
information	from	observation	confirmation	or	verification	(Ferguson	
et	 al.,	2015;	 Guillera-	Arroita	 et	 al.,	 2017),	 site	 confirmation	 (Clare	
et	 al.,	 2021)	 and	 other	 calibrated	 methods.	 These	 methods	 need	
extra	 data	 from	 the	 verification	 process,	 which	 helps	 in	 estimat-
ing	 the	misclassification	 probabilities	 in	 a	 semi-	supervised	 setting	
(Spiers	et	al.,	2022)	 and	makes	 the	parameters	 in	 the	model	 iden-
tifiable	(Guillera-	Arroita	et	al.,	2017).	The	above-	mentioned	studies	
have	either	used	verified	data	collected	on	the	site	level	(where	the	
occupancy	state	of	a	species	is	known	at	a	site	and	not	at	the	individ-
ual	sample	level;	Chambert,	Waddle,	et	al.,	2018),	on	aggregated	in-
dividual	sample	level	using	a	multinomial	model	with	site-	covariates	
(Wright	 et	 al.,	2020)	 or	 on	 individual	 sample-	level	 validation	 data	
which	helps	in	modelling	non-	species	identities	(morphospecies)	to	
species	 identities	 (Spiers	et	 al.,	2022).	 It	 is	 also	worth	 stating	 that	
some	studies	have	explored	accounting	for	misclassification	in	abun-
dance	(Conn	et	al.,	2013),	capture–recapture	(Augustine	et	al.,	2020)	
and	mixture	(Guilbault	et	al.,	2021)	models.

Furthermore,	these	previous	studies	assumed	that	the	misclassi-
fication	probabilities	are	homogeneous	(constant)	across	the	study.	
In	reality,	the	classification	probabilities	may	vary	with	environmen-
tal	covariates	(such	as	field	conditions;	Conn	et	al.,	2013)	or	observer	
experience	 (especially	 when	 ascertaining	 how	well	 each	 observer	
classifies	 a	 report	 in	 citizen	 science	 projects	 will	 be	 informative;	
Arazy	&	Malkinson,	2021;	 Johnston	 et	 al.,	2022),	 distance	 from	 a	
transect	when	using	transect	data	(Conn	et	al.,	2013),	picture	quality,	
etc.	An	attempt	at	modelling	the	heterogeneity	in	the	classification	
process	 is	 to	assume	homogeneous	classification	probabilities	and	
add	the	classification	covariates	to	the	ecological	model.	However,	
this	approach	may	not	solve	the	heterogeneity	problem	in	the	clas-
sification	process	since	the	estimates	of	the	ecological	process	pa-
rameters	only	serve	as	informed	priors	to	the	classification	process	
(Spiers	et	al.,	2022).
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A	more	correct	approach	to	model	this	heterogeneity	is	adding	
the	covariate	effect	to	the	observation	process.	Some	studies	on	
dynamic	false	positive	single-	species	occupancy	models	have	mod-
elled	temporal	changes	in	false	positives	using	year	as	a	covariate	
(Kéry	&	Royle,	2020;	Miller	et	al.,	2013;	Sutherland	et	al.,	2013),	
showing	the	possibility	to	model	misclassification	trends	over	time.	
Our	study	attempts	to	model	variation	 in	classification	probabili-
ties	in	mSDMs	by	modelling	the	probability	of	classifying	an	indi-
vidual	with	 a	multinomial	 generalised	 linear	model	 as	 a	 function	
of	covariates.	To	our	knowledge,	no	previous	work	has	been	done	
on	this.	Failure	to	account	for	the	heterogeneity	 in	the	misclassi-
fication	probabilities	 can	 lead	 to	biased	estimates	 in	 the	process	
model	(such	as	species	abundance,	richness	and	occupancy	proba-
bilities)	and	reduce	the	model's	predictive	performance	(Chambert	
et	al.,	2015;	Spiers	et	al.,	2022;	Wright	et	al.,	2020).

Fitting	a	complex	model	with	many	parameters	can	result	in	an	
overfitted	 model.	 An	 overfitted	 model	 captures	 the	 pattern	 and	
noise	in	the	training	data	but	performs	poorly	on	validation	or	test	
data	 (Montesinos	 López	 et	 al.,	2022).	 The	 ecological	 process	 and	
observation	model	covariates	can	sometimes	be	highly	correlated.	
These	 correlated	 covariates	 can	 inflate	 standard	 errors	 (reduce	
the	precision)	of	 the	estimated	parameters	 (Caradima	et	al.,	2019; 
Roberts	et	al.,	2017;	Yu	et	al.,	2015).	To	avoid	overfitting	the	model,	
there	is	a	need	to	perform	variable	selection	and	select	the	variables	
that	 are	 related	 to	 the	 state	 variable	 of	 interest	 (Fox	 et	 al.,	 2017; 
Murtaugh,	2009;	O'Hara	&	Sillanpää,	2009).

Moreover,	recent	efforts	to	correctly	classify	observations	from	
biodiversity	 surveys	 have	 relied	 on	 machine	 learning	 (hereafter	
ML)	algorithms	(Borowiec	et	al.,	2022;	Keshavan	et	al.,	2019;	Koch	
et	al.,	2022;	 Lotfian	et	al.,	2021;	Saoud	et	al.,	2020;	Suzuki-	Ohno	
et	 al.,	 2022;	Willi	 et	 al.,	 2019).	 These	ML	 algorithms	 use	 sounds	
and/or	 images	 of	 observations	 to	 predict	 the	 true	 identity	 of	 the	
individual	 observations,	 and	 they	 can	 be	 trained	 to	mimic	 expert	
verification	of	observations	(Keshavan	et	al.,	2019;	Langenkämper	
et	 al.,	 2019;	 Ponti	 &	 Seredko,	 2022).	 These	ML	 algorithms	 use	 a	
prediction	 score	 (a	 value	 that	 shows	 the	weight	 of	 predicting	 the	
observations	as	 something	else)	 to	predict	 the	possible	 list	of	 the	
true	 identities	 of	 the	 individual	 reported	 observation.	 These	 pre-
diction	scores	and	a	list	of	possible	true	identities	provide	informa-
tion	about	the	classification	process	of	each	observation.	They	can	
be	used	to	model	heterogeneity	 in	 the	classification	process.	This	
study	 is	 the	 first	 to	model	 the	 heterogeneity	 in	 the	 classification	
process	by	using	the	prediction	scores	to	weigh	the	distribution	of	
the	reported	observations	and	predict	the	distribution	of	the	actual	
observation	identities.

Here,	we	present	a	 joint	model	 that	simultaneously	models	 the	
true	state	variables	of	interest	(relative	abundance)	and	the	hetero-
geneity	 in	the	classification	process.	Our	model	set-	up	extends	the	
work	done	by	Wright	et	al.	(2020)	and	Spiers	et	al.	(2022)	by	(a)	allow-
ing	 the	classification	probabilities	 to	vary	with	covariates,	 (b)	using	
ML	prediction	scores	as	weights	to	account	for	heterogeneity	in	the	
classification	 process	 and	 (c)	 performing	 variable	 selection	 on	 the	
classification	process	covariate	to	check	for	potential	mSDM	overfit.	

Studies	have	already	been	done	on	comparing	models	that	account	
for	a	 ‘homogeneous’	classification	process	 to	 those	that	do	not	ac-
count	for	misclassification	(Chambert	et	al.,	2015;	Spiers	et	al.,	2022; 
Wright	 et	 al.,	2020).	 Therefore,	we	 compare	 the	 classification	per-
formance	 of	 our	 model	 with	 models	 that	 assume	 a	 homogeneous	
classification	 probability	 done	 by	 Wright	 et	 al.	 (2020)	 and	 Spiers	
et	al.	(2022)	through	simulation	studies	and	not	to	models	that	do	not	
account	for	misclassification.	We	parameterise	our	model	with	citizen	
science	data	on	gulls	in	Norway,	Finland	and	Denmark	from	iNatural-
ist	(Matheson,	2014)	downloaded	from	the	GBIF	(GBIF.Org,	2022).

2  |  METHODOLOGY

2.1  |  Model framework

The	 proposed	 framework	 starts	 by	 assuming	 we	 have	 individuals	
who	are	observed	and	classified	into	a	state,	known	as	the	‘reported’	
or	‘classified’	state	(there	may	be	one	of	many	at	a	location,	but	each	
individual	 is	 classified	with	 a	 probability).	We	 use	 ‘state(s)’	 in	 this	
work	 to	 refer	 to	 taxon	 identity	 as	well	 as	 any	other	 identification	
category	or	morpho-	states,	 that	 is	 individuals	cannot	be	 identified	
to	their	taxonomic	states	and	are	grouped	based	on	their	morphol-
ogy	(Spiers	et	al.,	2022).	This	state	can	be	on	any	taxonomic	level.	
We	 further	 assume	 that	 these	 individuals	 are	 verifiable	 (and	 we	
have	 information	on	the	verification	process)	and	that	the	verified	
state	approximates	the	true	state	 identity	 (that	 is,	we	assume	that	
the	verified	information	is	free	from	misclassification).	We	describe	
an	observation	model	for	the	individuals	in	Section	2.1.1	and	define	
another	model	for	the	ecological	process	in	Section	2.1.2.

2.1.1  |  Defining	the	observation	model

The	observation	model	in	mSDMs	usually	accounts	for	observation	
errors	such	as	imperfect	detection,	uneven	sampling	effort,	misclas-
sification	and	many	others.	 In	this	study,	we	account	for	only	mis-
classification	in	the	observation	model	of	our	mSDMs.	Therefore,	we	
use	the	term	observation	and	classification	process	interchangeably.

To	 describe	 the	 observation	 model,	 we	 assume	 that	 obser-
vations	 are	 classified	 individually,	 irrespective	 of	 the	 data	 col-
lection	 protocol.	 Each	 individual	 observed	 can	 be	 classified	 into	
k = 1, 2, … ,K	 states	 (where	K	 is	 the	 number	 of	 unique	 reported	
states	identities	of	interest),	and	every	reported	information	can	be	
seen	as	a	draw	from	the	K	reported	states	under	consideration	with	
a	given	probability.	As	mentioned	above,	these	states	could	be	on	
any	taxonomic	 level	or	 include	any	unidentified	group.	For	exam-
ple,	one	could	have	 four	 true	 states:	 common,	herring,	Audouin's	
and	Sooty	gull.	These	species	can	be	reported	in	three	states:	large	
white-	headed	gulls,	large	black-	headed	gulls	and	others.	It	is	worth	
mentioning	here	that	the	reported	states	do	not	necessarily	include	
the	individual	species.	An	example	of	the	classification	probability	
(confusion	matrix)	is	shown	in	Table 1.
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Let Ωjk	be	the	probability	that	an	individual	true	state	j ∈ {1, … , J} 
(where	J	 is	the	number	of	unique	true	states	 identities	of	 interest)	
is	 classified	as	 state	k ∈ {1, … ,K}.	The	probabilities	across	all	 the	
possible k	states	sum	to	1.	In	studies	with	homogeneous	classifica-
tion	probabilities,	the	confusion	matrix	for	the	classification	can	be	
expressed	as:

where	the	rows	correspond	to	the	true	state	j	and	the	columns	corre-
spond	to	the	reported	states	k.

We	model	the	heterogeneity	in	the	classification	probabilities	by	
fitting	a	multinomial	generalised	linear	model	(Fahrmeir	et	al.,	2013)	
to	each	of	the	rows	of	⟽	defined	in	Equation	(1).	We	refer	to	this	ap-
proach	as	the	multiple	multinomial	generalised	linear	model	(MMGLM,	
hereafter).	For	each	individual	s	observed	at	a	location	(which	can	be	
fixed	as	in	transects	or	breeding-	bird	survey	fixed	points	or	random),	
we	define	the	linear	predictor	of	the	MMGLM	as:

where �0jk	is	the	intercept	of	the	jth	true	state	and	kth	reported	state	
and	�pjk is the jth	true	state	and	kth	reported	state	effect	of	covari-
ate	zps	for	individual	s	with	the	covariate	index	p ∈ {1, 2, … n},	with	n 
being	the	number	of	covariates	that	drives	the	observation	process.	
Using	Equation	(2)	as	the	definition	for	the	linear	predictor,	our	esti-
mates	of	the	parameters	�0jk	and	�pjk	are	identifiable	with	reference	
to	one	reported	state.	That	is,	for	each	observed	individual	s	and	true	
state	identity	j,	the	classification	probabilities	(Ωjks)	for	each	reported	
state	k = 1, 2, … ,K − 1	with	reference	to	state	K	 is	modelled	as	the	
logarithm	of	the	ratio	of	linear	predictors	defined	in	Equation	(2):

with	the	same	definition	of	model	parameters	in	Equation	(2).	The	deri-
vation	of	Equation	(3)	from	Equation	(2)	is	shown	in	Appendix	S1.

This	general	framework	has	J × (K−1) × (n−1)	parameters	to	be	es-
timated,	where	 J	 is	 the	number	of	 true	 states,	K	 is	 the	number	of	
reported	states,	and	n	is	the	number	of	covariates	in	the	observation	
model.	Estimating	these	parameters	can	be	very	computationally	ex-
pensive	as	the	number	of	true	states,	reported	states	and	covariates	
increase,	requiring	significant	numbers	of	misclassified	individuals	to	
estimate	them.	Therefore,	we	explored	simplified	forms	of	the	gen-
eralised	model	in	Equation	(3).

A	simplified	case	of	Equation	(3)	assumes	that	the	covariate	zps 
only	affects	the	probability	of	correctly	classifying	 individuals.	For	
example,	when	we	want	to	model	the	heterogeneity	in	the	classifi-
cation	probabilities	 through	the	probability	of	correctly	classifying	
the	 species.	 In	 this	 instance,	�pjk = 0	 for	 j ≠ k	 for	 covariate	p,	 and	
these	parameters	are	not	estimated	(This	is	our	study	scenario	‘fixed	
covariate’	in	Table 2).	This	simplification	reduces	the	number	of	pa-
rameters	 estimated	 for	 the	 observation	 process	 by	n × (K − J − 1),	
where J	 is	 the	number	of	true	states,	K	 is	 the	number	of	reported	
states,	and	n	is	the	number	of	observation	model	covariates.	A	fur-
ther	simplification	would	also	be	to	assume	that,	on	average,	all	the	
true	states	have	the	same	probability	of	being	correctly	classified;	
that	is,	�0jk	is	the	same	for	all	 j = k	(This	is	our	study	scenario	‘fixed-	
intercov’	 in	Table 2).	As	 such,	 the	covariate	effect	�1jk	 for	all	 j = k 
captures	the	classification	process	heterogeneity.	The	latter	further	
reduces	the	number	of	parameters	estimated	by	J–1.	This	last	sim-
plification	is	useful,	especially	when	individuals	from	different	states	
are	very	similar,	and	one	would	expect	 their	average	classification	
probabilities	to	be	the	same.

Then,	given	that	an	individual	s	was	sampled,	the	reported	state	
of	that	individual	is	a	draw	from	K	states	with	probability	Ωj.s:

where Ys	is	the	reported	observation	identity	and	Vs	is	the	true	state	
identity	obtained	from	the	verification	process	for	individual	s.

2.1.2  |  Ecological	process	model

We	now	define	an	ecological	process	model	for	the	true	state	distri-
bution.	Although	we	have	assumed	that	the	reported	observations	
are	classified	on	individual	levels,	the	definition	of	the	process	model	
can	either	be	on	an	 individual	sample	 level	 (that	 is,	 individual	 true	
state	 information	 is	 present	 at	 each	 site,	 such	 that	 data	 obtained	
from	a	species	list)	or	an	aggregate	sample	level	(for	example,	counts	
of	all	individuals	across	all	true	states	at	a	location).

(1)Ω=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω1

Ω2

⋮

ΩJ

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11 Ω11 ⋯ Ω1k ⋯ Ω1K

Ω21 Ω22 ⋯ Ω2k ⋯ Ω2K

⋮ ⋮ ⋯ ⋮ ⋯ ⋮

ΩJ1 ΩJ2 ⋯ ΩJk ⋯ ΩJK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2)

� jks=�0jk+

n�

p=1

zps×�pjk

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�011 �012 ⋯ �01K

�021 �022 ⋯ �02K

⋮ ⋮ ⋯ ⋮

�0J1 �0J2 ⋯ �0JK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ … +

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�n11 �n12 ⋯ �n1K

�n21 �n22 ⋯ �n2K

⋮ ⋮ ⋯ ⋮

�nJ1 �nJ2 ⋯ �nJK

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×zns

(3)ln

(
Ωjks

ΩjKs

)
=
(
�0jk−�0jK

)
+
(
�1jk−�1jK

)
×z1s+ … +

(
�njk−�njK

)
×zns

(4)Ys ∣ Vs = j ∼ Categorical
(
Ωj⋅s

)

True states

Reported states

Large white- headed gulls Large black- headed gulls Other gulls

Common	gull 0.8 0.1 0.1

Herring	gull 0.9 0 0.1

Audouin's	gull 0 0.9 0.1

Sooty	gull 0 1 0

TA B L E  1 Example	of	confusion	matrix	
that	applies	to	our	model.	Individual	
observations	(referred	to	as	reported	
states)	are	verified	as	the	true	states.
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We	specify	a	relative	abundance	model	 (specifically	a	multino-
mial	 logit	model)	 for	 each	 true	 state's	 ecological	 process.	Our	ob-
jective	is	to	show	how	to	model	heterogeneity	in	the	classification	
process	 and	 not	 to	 make	 inferences	 about	 the	 true	 state's	 abun-
dance,	so	we	chose	a	model	that	was	easier	to	fit	and	understand	to	
describe	the	ecological	process.

Let �js	 be	 the	 average	 number	 of	 individuals	 in	 true	 state	
j = 1, 2, … , J	for	individual	s,	which	describes	the	abundance	of	the	
individuals	over	the	study	region	D.	This	intensity	can	either	be	mod-
elled	as	an	inhomogeneous	process,	which	assumes	that	the	data	are	
dependent	on	the	environment	covariate,	or	as	a	log-	Cox	Gaussian	
Point	 process,	where	we	 assume	 a	 spatial	 dependency	 in	 the	 ob-
served	data	(Renner	et	al.,	2015).	Here,	the	mean	intensity	is	mod-
elled	using	the	inhomogeneous	process	and	defined	as:

where �0j	is	the	intercept	of	state	 j,	�qj	is	the	effect	of	covariate	with	
index	q ∈

{
1, 2, … , ne

}
	on	the	intensity	of	true	state	 j,	xqs is the qth 

covariate	that	affects	the	observation	individual	s	and	ne	is	the	number	
of	covariates	 in	 the	ecological	process	model.	Note	 that	we	assume	
there	are	no	species	interactions	or	residual	correlation	in	our	relative	
abundance	model,	and	this	could	have	been	added	as	a	random	effect	
in	the	true	state	intensity	definition	(Equation	(5)).

Let pjs	be	the	relative	proportion	(probability)	that	an	individual	s 
belongs	to	true	state	j.	We	estimate	this	probability	from	the	mean	
intensities	as	follows:

where �js	is	defined	in	Equation	(5).
The	true	state	of	each	individual	observation	s	is	a	realisation	from	

a	categorical	distribution	with	probability	pjs.	This	distribution	assump-
tion	indicates	that	we	assume	a	single	true	state	for	every	individual.	
When	 aggregate	 sample	 level	 data	 is	 available	 instead	 of	 individual	
sample	data,	then	the	total	number	of	individuals	in	each	true	state	fol-
lows	a	Poisson	distribution	with	parameter	�	(as	defined	in	Equation 5),	
and	within	 that,	 the	number	of	each	 recorded	state	 follows	a	multi-
nomial	distribution	with	probabilities	Ω	(as	described	in	Section	2.1.1).	
This	implies	that	there	can	be	multiple	individuals	at	each	site,	except	
that	each	of	these	individuals	shares	the	same	site-	specific	covariates.

In	summary,	the	hierarchical	framework	of	the	proposed	mSDMs	
is	as	follows:

where	the	definition	of	parameters	 is	 inherited	from	the	models	de-
fined	in	Equations	(3)	to	(6).

This	model	specification	for	the	ecological	process	used	here	is	
similar	to	the	occupancy	dynamics	and	encounter	rate	model	used	
by	Spiers	et	al.	(2022)	by	eliminating	the	occupancy	sub-	model	in	the	
ecological	process	model;	and	similar	to	the	model	used	by	Wright	
et	al.	(2020)	by	assuming	Poisson	counts	with	intensity	�is	(refer	to	
Table 3	for	the	link	between	our	model	framework	and	that	of	Spiers	
et	al.	(2022)	and	Wright	et	al.	(2020)).

(5)ln
(
�js

)
= �0j +

ne∑

q=1

xqs × �qj,

(6)pjs =
�js

∑J

j
�js

,

(7)

ln
�
�js

�
=�0j+

ne�

q=1

xqs�qj;

pjs=
�js
∑

j�js
;

Vs ∼Categorical
�
p.s

�
;

ln

�
Ωjks

ΩjKs

�
=
�
�0jk−�0jK

�
+
�
�1jk−�1jK

�
×z1s+ … +

�
�njk−�njK

�
×zns;

Ys ∣Vs ∼Categorical
�
ΩVs ,⋅

�
,

TA B L E  2 Variations	in	the	MMGLM	for	the	observation	model	defined	by	Equation	(8)	and	ecological	process	model	defined	by	
Equation	(5)	used	as	our	study	scenarios,	with	one	covariate	used	for	each	model.

Classification probability 
type Study scenario Ecological process model Observation process model

Heterogeneous Variable/covariate ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s

(
�1jk − �1jK

)

Fixed	covariate ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s�1jj ,

where �1jk = 0	for	 j ≠ k

Fixed	intercov ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
=
(
�0jk − �0jK

)
+ �z1s�1jj ,

where �1jk = 0	for	 j ≠ k

and	�0jk	is	the	same	for	 j = k

Homogeneous Intercept ln
(
�js

)
= �0j + x1s�1j + x2s�2j ln

(
Ωjks

ΩjKs

)
= �0jk

Constant ln
(
�js

)
= �0j + x1s�1j + x2s�2j Ωjk ∼ Dirichlet

(
�jk

)
,

where �jk ∼ Exp(1)

Main ln
(
�js

)
= �0j + x1s�1j + x2s�2j + �z1s�3j Ωjk ∼ Dirichlet

(
�jk

)
,

where �jk ∼ Exp(1)

Note:	There	are	three	heterogeneous	models:	covariate,	fixed	covariate	and	fixed	intercov	and	three	homogeneous	models:	intercept,	constant	and	
main.	The	definitions	of	the	parameters	in	this	table	are	described	in	Sections	2.1.1–3.
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2.1.3  |  Variable	selection

In	this	study,	we	performed	Bayesian	variable	selection,	specifically	
the	spike	and	slab	prior	to	the	classification	process	covariates	(for	
review	of	Bayesian	variable	selection	see	O'Hara	&	Sillanpää,	2009).	
For	each	of	 the	classification	process	covariates,	we	 re-	define	 the	
linear	predictor	in	Equation	(2)	as:

where �p	is	the	indicator	that	variable	p	is	selected	with	the	expected	
probability	�p.	The	variable	selection	indicator	specified	in	Equation	(8)	
jointly	selects	the	variables	affecting	all	the	true	states	in	the	model	but	
can	also	be	state-	specific	(Ovaskainen	&	Abrego,	2020).	Probabilities	
�j	closer	to	1	indicate	that	the	variable	contributes	much	to	the	model	
and	should	be	selected,	and	those	closer	to	0	indicate	that	the	variable	
contributes	less	and	can	be	discarded.

2.2  |  Modelling heterogeneity using ML 
prediction scores

Some	studies	give	weight	to	the	true	identities	of	the	reported	ob-
servations	or	state,	 for	example,	because	 they	use	machine	 learn-
ing	to	classify	the	observation.	These	prediction	scores	(such	as	F1 
score,	mean	square	error	and	logarithmic	loss)	are	not	classification	
probabilities	but	are	values	that	indicate	how	well	the	ML	algorithm	
classifies	data	 in	the	test	sample.	 In	comparison	to	the	model	pre-
sented	 in	 Section	 2.1.1–3,	 the	 information	 available	 here	 are	 the	
categories	 of	 the	 observed	 or	 reported	 individuals	 and	 prediction	
scores,	and	we	are	interested	in	predicting	the	true	identity	of	the	
reported	individuals.	We	can	use	this	information	to	model	the	het-
erogeneity	 in	 the	 classification	process	 and	predict	 the	 true	 state	
identity	of	individuals	as	follows:

where �ks	is	the	intensity	of	reported	state	k	for	individual	s	and	wkjs is 
the	predictive	score	of	the	kth	reported	state	to	true	state	j	for	indi-
vidual	s.	The	intensity	of	the	reported	state	is	modelled	as	an	inhomo-
geneous	process	with	covariate	effects,	similar	to	the	intensity	of	the	
true	state	in	Equation	(5).

It	must	be	noted	that	this	approach	is	a	non-	parametric	approach	
to	 account	 for	 heterogeneity	 in	 the	 classification	 whereas	 the	
MMGLM	is	a	parametric	approach.	Moreover,	modelling	the	hetero-
geneity	in	the	classification	process	using	ML	prediction	scores	mod-
els	the	covariate	effects	on	the	expected	abundance	of	the	reported	
states	 and	 corrects	 them	 using	 the	 prediction	 scores	 as	 weights	

to	obtain	 the	 relative	 abundance	of	 the	 true	 states.	However,	 the	
MMGLM	models	 the	covariate	effect	on	 the	expected	abundance	
of	true	states	and	estimates	the	heterogeneity	in	the	classification	
process	using	a	parametric	model.	The	prediction	of	the	true	state	
identity	 is	done	by	weighing	 the	expected	 intensity	of	 true	 states	
with	the	estimated	classification	covariate.

2.3  |  Generalisation of model framework

The	classification	component	of	the	proposed	framework	general-
ises	the	existing	mSDMs	that	account	for	misclassification	in	occu-
pancy	models.	Wright	et	al.	(2020)	provided	a	framework	to	account	
for	 the	 homogeneity	 in	 the	 classification	 process,	 and	 our	 model	
is	 connected	 to	 this	 by	 using	 the	 relationship	 between	 the	multi-
nomial	 and	 the	Poisson	distribution	 (Steel,	1953)	 for	 the	observa-
tion	process	 as	well	 as	using	 a	 species-	by-	species	 constant	model	
for	the	classification	process	(Table 3).	Wright	et	al.	 (2020)	further	
provided	 arguments	 that	 their	 proposed	models	were	 generalised	
forms	of	models	for	the	binary	detection	of	two	species	(Chambert,	
Grant,	et	al.,	2018),	single	species	with	count	detections	(Chambert	
et	 al.,	2015)	 and	 single	 species	with	binary	detections	 (Chambert,	
Waddle,	 et	 al.,	 2018).	 Since	our	proposed	 framework	can	be	 seen	
as	 a	 heterogeneous	 version	of	Wright	 et	 al.	 (2020),	 the	 classifica-
tion	 component	 of	 our	 framework	 is	 also	 a	 generalisable	 form	 of	
the	models	in	Chambert	et	al.	(2015),	Chambert,	Grant,	et	al.	(2018)	
and	Chambert,	Waddle,	et	al.	 (2018).	Spiers	et	al.	 (2022)	provided	
an	individual-	level	semi-	supervised	approach	that	estimates	species	
misclassification	with	occupancy	dynamics	and	encounter	rates,	and	
our	model	 is	connected	to	this	 if	we	assume	a	homogeneous	clas-
sification	process	 (that	 is	�1jk = 0	 for	all	 true	states	 j	and	reported	
states	k)	and	assume	that	there	is	no	occupancy	sub-	model	for	the	
ecological	process	(Table 3).

2.4  |  Simulation study

To	demonstrate	how	our	proposed	model	works	and	its	use	in	pre-
diction,	we	performed	a	simulation	study	using	J = 2	true	states	and	
K = 3	reported	states	over	1000	sites	(we	assume	the	locations	in	the	
simulations	are	discrete).	We	simulated	two	covariates	for	the	eco-
logical	process	model	and	one	for	 the	observation	model,	all	 from	
a	Normal	distribution	with	a	mean	of	0	and	variance	of	1.	The	eco-
logical	process	intensity	was	simulated	from	Equation	(5).	The	inter-
cepts	of	the	model	for	the	two	true	states	were	chosen	as	�01 = − 1 ,	
�02 = 0	and	the	covariate	effect	for	each	true	state	was	chosen	as	
�11 = 4,	�12 = − 2,	�21 = 0	and	�22 = 0	 (that	 is,	 state	2	 is	used	as	a	
reference	category).	The	intercept	and	covariate	effect	for	the	ob-
servation	process	was	chosen	as	follows:

(8)
� jks=�0jk+

n∑

p=1

�pzps�pjk;

with �p ∼Bernoulli
(
�p
)

(9)

Ys ∼Categorical

�
�ks∑
k�ks

�

Vs ∣Ys ∼Categorical
�
pjks

�
;

with pjks=
�kswkjs

∑
k�kswkjs

�0 =

⎡
⎢
⎢
⎣

2 0.5 0

1 1 0

⎤
⎥
⎥
⎦
;�1 =

⎡
⎢
⎢
⎣

3 −1 0

−1 1 0

⎤
⎥
⎥
⎦
.
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These	 values	 were	 chosen	 to	 obtain	 significant	 sample	 sizes	 of	
misclassified	states.	We	simulated	200	datasets	with	a	heterogeneous	
classification	process	using	the	variable	model	in	Table 2	(referred	to	
as	the	‘full	model’),	200	with	a	homogeneous	classification	process	by	
assuming	�1 = 0	(a	matrix	of	zeros)	in	Equation	(3)	(referred	to	as	‘re-
duced	model’)	and	another	200	with	the	covariate	effect	for	the	classi-
fication	process	(using	the	variable	model	in	Table 2)	that	is	correlated	
to	the	ecological	process	covariate	(referred	to	as	‘correlation	model’).	
The	first	simulated	dataset	explored	modelling	heterogeneity's	effect	
on	 the	classification	process,	whereas	 the	 latter	explored	 the	effect	
of	 having	 correlated	 covariates	 for	 the	 classification	 and	 ecological	
process.	The	second	assessed	the	effect	of	overfitting	the	classifica-
tion	process	model	(adding	heterogeneity	to	the	classification	process	
when	it	should	be	homogeneous).	Moreover,	we	assessed	the	impact	
of	the	number	of	misclassified	samples	on	the	mSDMs	predictive	per-
formance.	We	increased	the	principal	diagonal	components	of	�0	by	
6	to	obtain	a	reduction	in	the	number	of	misclassified	samples	simu-
lated.	The	cross-	tabulation	between	the	true	state	and	reported	state	
samples	across	all	the	200	simulations	is	summarised	in	Appendix	S2: 
Table	S1.	We	did	not	explore	the	effect	of	failing	to	account	for	misclas-
sification	in	this	study	since	it	has	been	well	explored	in	the	literature.

We	randomly	withheld	200	of	the	true	state	identities	for	each	
dataset	simulated	as	our	validation	sample.	The	number	of	validation	
samples	were	 not	 varied	 since	 Spiers	 et	 al.	 (2022)	 found	 that	 the	
number	of	validation	samples	had	a	modest	effect	on	 the	model's	
predictive	ability.	We	fitted	the	model	under	the	various	scenarios	
described	in	Table 2	to	the	data	and	evaluated	the	model's	predictive	
performance	on	the	validation	sample.

2.5  |  Case study: Gulls dataset

The	proposed	model	was	used	to	analyse	a	gull	dataset	downloaded	
from	GBIF	(GBIF.Org,	2022).	The	database	hosts	over	2 billion	oc-
currence	observations	with	over	a	million	observers	 (website	vis-
ited	on	17th	February	2023).	We	were	interested	in	the	iNaturalist	
records	since	they	have	community	verifications	(Matheson,	2014).	
The	 observers	 collected	 these	 occurrence	 records	 and	 uploaded	
their	 observations	 with	 images	 and/or	 sounds	 that	 allowed	 for	
verification.	 The	 reported	 observations	 go	 through	 iNaturalist	
community	verification	and	are	accepted	as	 research	grade	when	
two-	thirds	 of	 the	 community	 agreed	 to	 the	 taxon	 identification	
(Ueda,	2020),	 at	which	point	 they	are	published	on	GBIF.	We	as-
sumed	the	community-	accepted	taxon	name	is	the	true	state	V.	We	
checked	the	iNaturalist	platform	to	track	the	identification	process	
of	the	observations	and	use	the	first	reported	identification	as	the	
reported	state	Y.

We	obtained	observations	for	some	species	of	gulls	in	Denmark,	
Finland	and	Norway	 from	2015	 to	2022.	Specifically,	we	 selected	
great	 black-	backed	 gulls	 (Larus marinus),	 herring	 (Larus argentatus),	
common	gulls	(Larus canus)	and	lesser	black-	backed	gulls	(Larus fus-
cus)	because	the	iNaturalist	website	reported	that	these	species	are	
commonly	 misclassified	 as	 the	 other.	 Any	 other	 species	 reported	
apart	 from	the	above-	mentioned	species	were	 labelled	as	 ‘others’.	
We	 used	 annual	 precipitation	 (accessed	 from	 the	 raster	 package;	
Hijmans	et	al.,	2015)	as	the	ecological	process	covariate	in	the	model	
since	it	has	been	noted	in	some	literature	to	affect	the	distribution	of	
sea	birds	such	as	gulls	(Algimantas	&	Rasa,	2010;	Jongbloed,	2016).

TA B L E  3 Extensions	of	our	proposed	models	from	homogeneous	classification	process	studies	done	by	Spiers	et	al.	(2022)	and	Wright	
et	al.	(2020).

Author Model framework Link to our model

Wright	et	al.	(2020)	and	the	
models their proposed 
framework	generalises	
such	as	Chambert	
et	al.	(2015),	Chambert,	
Grant,	et	al.	(2018)	and	
Chambert,	Waddle,	
et	al.	(2018)

Ecological process: absolute counts zjs ∼ Bernoulli
(
� js

)
[
Vjks|zjs = 1

]
∼ Poisson

(
�jks

)
Ecological process: relative abundance
Assume	no	occupancy	sub-	model	
and	for	each	individual,	then	�
Vjks

�
∼ Categorical

�
�jks ∕

∑
j�jks

�

Observation process:[
Yjks|Vjks = vjks, zjs = 1

]
∼ Multinomial

(
vjks|Ωjk

)
,	where	

Ωjk ∼ Dirichlet(�)

Observation process:[
Yijs|Vijs = vjks

]
∼ Categorical

(
Ωjks

)
,	where	Ωjks 

can	be	chosen	as	any	of	the	homogeneous	
models	described	in	Table 2

Spiers	et	al.	(2022) Ecological process: occupancy dynamics and encounter rates 
zjst ∼ Bernoulli

(
� jst

)
 �Vjist

�
∼ Categorical

�
�jistzjst∑
j�jistzjst

�
;

Ecological process: relative abundance
Choose t = 1	and	ignore	the	occupancy	
sub-	model.�

Vjis

�
∼ Categorical

�
�jis∑
s�jis

�
;

Classification process: 
[
Yjis|Vjis

]
∼ Categorical

(
Ωjk

)
,	where	

Ωjk ∼ Dirichlet(�)

Classification process: [
Yjis|Vjis = 1

]
∼ Categorical

(
Ωjks

)
,	where	Ωjks 

can	be	chosen	as	any	of	the	homogeneous	
models	described	in	Table 2

Note:	The	table	specifies	the	ecological	process	model	for	Wright	et	al.	(absolute	abundance	model),	Spiers	et	al.	(occupancy	dynamics	and	encounter	
rate	model)	and	ours	(relative	abundance	model);	and	also	the	observation	model	for	Wright	et	al.	and	Spiers	et	al.	(homogeneous	classification	
process	with	classification	probabilities	simulated	from	Dirichlet	distribution)	and	ours	from	heterogeneous	models	described	in	Table 2.	Since	
our	framework	extends	the	work	done	by	(Wright	et	al.,	2020),	it	is	safe	to	say	that	the	classification	component	of	our	proposed	framework	are	
also	generalised	forms	of	Chambert	et	al.	(2015),	Chambert,	Grant,	et	al.	(2018)	and	Chambert,	Waddle,	et	al.	(2018).	The	index	j	refers	to	the	true	
state	identity,	k	refers	to	the	reported	state	identity,	s	refers	to	the	location	in	Spiers	et	al.	(2022)	and	Wright	et	al.	(2020)	but	refers	to	individuals	
in	this	study,	i	refers	to	the	visit,	and	t	refers	to	the	year.	In	addition,	the	random	variable	Y	refers	to	the	reported	observations,	V	to	the	verified	
observations	and	z	to	the	occupancy	state	of	the	individuals.
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The	 data	 obtained	 were	 presence-	only	 records.	 Exploratory	
analysis	 revealed	 that	 there	were	 no	multiple	 observations	 at	 the	
same	location	for	our	selected	species.	Therefore,	we	assumed	that	
our	 locations	were	discrete	and	treated	the	data	as	a	marked	pro-
cess,	where	the	individual	species	reported	at	a	 location	is	given	a	
value	of	1	and	0	for	the	other	species	in	this	study.	If	we	had	a	spe-
cies	list,	we	could	have	modelled	it	as	a	repeated	marked	process	at	
the	same	location	and	treated	the	sites	as	a	random	effect.	Out	of	
the	3737	presence-	only	records	retrieved,	964	were	common	gulls,	
333	 were	 great	 black-	backed	 gulls,	 1091	 were	 herring	 gulls,	 339	
were	lesser	black-	backed	gulls,	and	10	were	others.

Citizen	science	data	are	known	to	be	affected	by	several	sources	
of	bias.	Some	common	biases	are	spatial	bias	 (Johnston	et	al.,	2022; 
Tang	et	al.,	2021)	and	misclassifications	(Johnston	et	al.,	2022;	Tulloch	
et	al.,	2013).	We	only	accounted	for	the	misclassifications	in	this	study,	
as	we	are	 interested	 in	explaining	 the	classification	process	and	not	
making	inferences	about	the	abundance	of	the	gulls.	Citizen	scientists	
have	been	reportedly	known	to	correctly	classify	species	as	they	gain	
experience	reporting	the	species	(Vohland	et	al.,	2021).	We,	therefore,	
modelled	the	variation	in	the	classification	process	by	using	the	num-
ber	of	reports	made	by	each	observer	as	a	covariate	in	the	classifica-
tion	process.	If	an	observer	has	more	than	10	observations,	the	extra	
number	of	observations	was	calibrated	at	10.	We	used	 this	number	
of	observations	for	an	observer	as	a	measure	of	experience	(Johnston	
et	 al.,	 2018;	 Kelling	 et	 al.,	 2015),	 although	 there	 are	 other	 indices	
for	 measuring	 effort	 or	 experience	 of	 the	 citizen	 scientist	 (Santos-	
Fernandez	&	Mengersen,	2021;	Vohland	et	al.,	2021).

We	also	used	an	ML	algorithm	to	obtain	prediction	scores	(spe-
cifically	 F1	 score)	 for	 our	 downloaded	 data's	 possible	 true	 state	
identity.	The	ML	algorithm	was	a	Convolutional	Neural	Network	(a	
modified	form	in	Koch	et	al.,	2022)	trained	with	data	from	all	citizen	
science	observations	of	any	species	in	Norway.	Since	the	ML	algo-
rithm	is	trained	with	all	bird	data	from	GBIF	in	Norway,	we	trained	
all	our	six	study	scenario	models	summarised	in	Table 2	with	all	data	
for	our	selected	gull	species	in	Norway	and	all	data	reported	before	
2022	in	Finland	and	Denmark	and	used	all	data	reported	in	2022	in	
Finland	and	Denmark	as	our	validation	sample.	The	summary	of	the	
classifications	(true	and	false	positives)	in	the	training	and	validation	
sample	is	presented	in	Appendix	S2:	Tables	S2	and	S3.

2.6  |  Fitting and evaluating the model

We	 ran	 all	 the	 analyses	 with	 the	 Bayesian	 framework	 using	 the	
Markov	chain	Monte	Carlo	approach	 in	 the	NIMBLE	package	 (de	
Valpine	et	al.,	2017)	from	the	R	software	(R	Core	Team,	2022).	We	
chose	the	priors	for	all	ecological	process	model	parameters	from	
a	normal	distribution	with	a	mean	of	0	and	standard	deviation	of	
10,	and	we	chose	the	priors	for	the	observation	model	parameters	
from	Normal	distribution	with	a	mean	of	0	and	standard	deviation	
of	 1.	 For	 the	 scenarios:	 constant	 and	main	model,	we	 chose	 the	
priors	of	 the	 confusion	matrix	 (Ω)	 from	 the	Dirichlet	distribution	

with	parameter	alpha	(α),	which	has	a	prior	of	an	exponential	dis-
tribution	with	mean	1.

We	ran	3	chains,	each	with	10,000	iterations;	the	first	5000	iter-
ations	were	chosen	as	the	burn-	in.	We	checked	the	convergence	of	
the	models	by	visually	inspecting	the	trace	plots	and	ignoring	models	
with	a	Gelman-	Rubin	statistic	(Brooks	&	Gelman,	1998)	value	>1.1. 
We	kept	a	fifth	of	the	remaining	samples	in	each	of	the	chains.

We	used	accuracy	(the	proportion	of	predicted	true	state	iden-
tities	 from	all	 the	predictions	of	 the	 validation	 samples),	 precision	
(the	proportion	of	mismatched	true	states	in	the	validation	samples	
that	were	correctly	 classified	 from	 the	predictions)	 and	 recall	 (the	
proportion	of	correct	true	states	in	the	validation	sample	retrieved	
from	the	predictions)	as	performance	metrics.	We	used	a	Bayesian	
approach	and	got	the	posterior	distributions	for	the	parameters.	The	
posterior	median	 is	 estimated	 and	 higher	 values	 of	 the	 validation	
metrics	 indicated	 the	preferred	model.	We	also	checked	how	well	
the	model	estimated	the	ecological	process	parameters	(�0,	�1	and	
�2 )	and	the	classification	process	parameters	(�0	and	�1)	by	estimat-
ing	the	bias	 (difference	between	the	true	value	and	the	estimated	
value)	and	precision	of	the	parameters.

3  |  RESULTS

3.1  |  Simulation study

3.1.1  |  Predictive	performance

We	 illustrated	 the	 gain	 in	model	 performance	 by	 using	 the	 accu-
racy,	 recall	 and	 precision	 of	 our	model's	 predictions	 (Figure 1a,b).	
When	data	was	simulated	from	the	full	and	correlated	models,	there	
was	a	strong	indication	that	the	predictive	performance	of	mSDMs	
improved	when	the	variability	 in	 the	classification	process	was	 in-
cluded.	That	is	the	‘variable’	model	performed	best	for	the	full	and	
correlation	models	with	 the	 highest	 accuracy,	 recall	 and	 precision	
values	 (Figure 1a(i–ii),b(i–ii)).	The	simplified	heterogeneous	models	
(fixed	 intercov	and	 fixed	 covariate),	 however,	 did	not	perform	any	
better	 than	 the	 homogeneous	 models	 (Figure 1a(i–ii),b(i–ii)).	 This	
suggested	 that	 simplifying	 the	heterogeneous	 classification	model	
did	 not	 improve	 predictive	 performance,	 and	 the	 heterogeneous	
model	 that	 captures	 the	 entire	 variability	 (in	 this	 case,	 variable	
model; Table 2)	would	be	the	best	predictive	model.	When	the	clas-
sification	process	covariate	was	modelled	as	part	of	the	observation	
process	(main	model),	the	model's	predictive	performance	also	per-
formed	similarly	to	the	homogeneous	models	(Figure 1a,b).

Overfitting	 a	 homogeneous	 classification	 process	 with	 a	 het-
erogenous	one	did	not	have	any	effect	on	 the	mSDM's	predictive	
performance	(Figure 1a(iii),b(iii)).	We	expected	the	overfitted	hetero-
geneous	models	to	have	poor	predictive	performance	(Montesinos	
López	et	al.,	2022),	but	the	heterogeneous	and	homogeneous	per-
formed	 similarly	 (with	 equal	 recall,	 accuracy	 and	 precision	 across	
all	 six	 study	 models).	 The	 Bayesian	 variable	 selection	 probability	
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indicated	 that	 the	 homogeneous	 classification	 model	 was	 better	
(with	 the	 probability	 of	 including	 classification	 covariates	 in	 het-
erogeneous	 models	 being	 0.359 ± 0.012;	 Appendix	 S2:	 Table	 S4).	
Although	 the	 simplified	 heterogeneous	 models	 did	 not	 yield	 im-
provement	 in	predictive	performance,	 they	performed	 similarly	 to	
the	variable	model	in	the	variable	selection	process.

3.1.2  |  Effect	of	number	of	misclassified	samples

As	we	increased	the	number	of	misclassified	samples	in	our	simulated	
data,	the	precision	increased	by	on	average	30%	and	accuracy	and	
recall	increased	by	6%	(Figure 1a(i–ii),b(i–ii)).	This	decrease	in	accu-
racy	and	recall	could	be	attributed	to	the	reduced	number	of	correct	
classifications	in	the	simulated	data	as	the	number	of	misclassified	

samples	increased	(Appendix	S2:	Table	S1).	Moreover,	the	observa-
tion	model	parameters	were	estimated	better	when	the	number	of	
misclassified	 samples	was	 higher,	 leading	 to	 the	 high	 precision	 of	
predictions	 (Appendix	S2:	Figures	S2	and	S3).	This	 suggested	 that	
our	proposed	model	will	be	beneficial	when	one	has	many	misclas-
sified	samples.

3.1.3  |  Bias	in	observation	and	ecological	
process	parameters

Although	 failure	 to	 account	 for	 misclassification	 in	 mSDMs	 can	
result	 in	 biased	 ecological	 process	 model	 parameters	 (Spiers	
et	al.,	2022;	Wright	et	al.,	2020),	 any	method	used	 to	account	 for	
misclassification	in	mSDMs	has	a	small	effect	on	the	accuracy	and	

F I G U R E  1 Boxplot	of	validation	metrics	(accuracy,	precision,	recall)	from	the	six	study	models	defined	in	Table 2	on	the	two	hundred	
(200)	withheld	samples	out	of	the	thousand	(1000)	samples	simulated	in	each	dataset.	Accuracy	is	the	proportion	of	withheld	samples	
that	were	correctly	classified,	recall	is	the	proportion	of	correctly	classified	samples	that	were	retrieved	from	the	withheld	samples,	and	
precision	is	the	proportion	of	the	misclassified	samples	that	were	correctly	classified.	Each	boxplot	shows	the	median	and	the	interquartile	
range	(25–75%	quartiles).	Each	column	shows	the	type	of	model	used	to	simulate	the	dataset:	‘full’	refers	to	using	the	variable/covariate	
model	in	Table 2,	‘reduced’	refers	to	using	the	intercept	model	in	Table 2	and	‘correlation’	refers	to	using	the	variable	model	in	Table 2,	
but	with	correlated	ecological	and	observation	process	covariates.	The	rows	correspond	to	changes	made	to	the	number	of	misclassified	
samples	in	the	simulated	dataset:	‘Baseline’	refers	to	using	the	values	defined	in	Section	2.4	and	‘Decrease’	refers	to	reducing	the	number	of	
misclassified	samples	by	diagonal	elements	of	�	by	6	as	described	in	Section	2.4.
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precision	of	the	ecological	process	parameters.	The	bias	of	the	eco-
logical	process	parameters	was	consistently	 low	for	all	six	models,	
and	the	coverage	was	higher	for	all	the	scenarios	under	the	full	and	
reduced	model	 (Appendix	S2:	Figure	S1).	All	 the	scenarios	studied	
accounted	for	misclassification	of	some	sort,	thereby	correcting	for	
the	bias	in	the	observation	parameters	estimates	(Spiers	et	al.,	2022; 
Wright	et	al.,	2020).	The	observation	model	parameters	were	esti-
mated	more	accurately	for	the	variable	model	than	the	other	models	
(Appendix	S2:	Figures	S2	and	S3).	This	was	only	possible	in	the	case	
where	we	had	enough	misclassified	 samples.	This	 suggests	 that	 if	
the	objective	of	a	study	is	to	predict	true	state	identity	with	mSDMs,	
then	modelling	the	full	heterogeneity	can	improve	predictive	perfor-
mance;	if	the	aim	is	inference	on	true	state	distribution,	then	hetero-
geneous	models	may	not	provide	any	advantage	over	homogeneous	
models.

3.2  |  Case study: Gull dataset

All	six	study	scenario	models	performed	equally	well	regarding	their	
predictive	 performance	with	 high	 accuracy	 and	 recall	 but	 smaller	
precision	(Table 4).	The	poor	precision	value	could	not	be	attributed	
to	the	insignificance	of	the	classification	covariate	(observer	expe-
rience)	in	explaining	the	heterogeneity	in	the	classification	process	
since	the	variable	selection	probabilities	are	closer	to	1	(Table 4)	but	
to	the	small	misclassification	sample	sizes	(Appendix	S2:	Tables	S2	
and	 S3).	 However,	 the	 precision	 increased	 from	 10%	 to	 80%	 (i.e.	
we	 were	 able	 to	 correctly	 classify	 eight	 out	 of	 the	 ten	misclassi-
fied	samples)	when	the	heterogeneity	 in	 the	classification	process	
was	accounted	for	by	using	the	prediction	scores	from	the	Machine	
learning	 algorithm	 (Table 4).	 The	ML	 algorithm's	 prediction	 scores	
were	individual	observation-	specific,	which	provided	direct	informa-
tion	to	the	observation	process	model.	However,	the	six	classifica-
tion	models	depended	on	 the	misclassified	 sample	 size	 to	capture	
the	 heterogeneity	 in	 the	 classification	 process.	 This	 suggests	 that	
one	 remedy	 to	 improve	mSDM's	 predictive	 performance	 for	 data	
with	 very	 small	misclassified	 samples	 is	 to	 use	ML	weights	 to	 ac-
count	for	heterogeneity	in	mSDMs.

Although	the	study	scenario	models	had	smaller	precision,	it	was	
observed	that	the	probability	of	correctly	classifying	the	gull	species	
in	Denmark,	Finland	and	Norway	increased	with	the	experience	of	
the	observer	(Figure 2).	The	pattern	showed	that	observers	have	a	
higher	chance	of	making	mistakes	on	their	first	few	reports,	and	they	
get	better	as	the	number	of	reports	increased	(Vohland	et	al.,	2021).

4  |  DISCUSSION

The	main	objective	of	 this	paper	was	 to	propose	a	general	 frame-
work	to	account	for	misclassifications	from	imperfect	classifications	
(such	as	those	from	surveys)	and	uncertain	classifications	(from	au-
tomated	classifiers)	 in	mSDMs.	This	work	builds	on	previous	work	
by	 Spiers	 et	 al.	 (2022);	Wright	 et	 al.	 (2020)	 by	 accounting	 for	 the	
heterogeneity	 in	 the	 classification	 probabilities	while	 allowing	 the	
classified	categories	 to	be	more	 than	 the	verified	species	 (such	as	
unknown	species,	morphospecies	etc.).	Moreover,	we	assessed	the	
effect	 of	 overfitting	 a	 homogeneous	 classification	 process	 on	 the	
predictive	performance	of	mSDMs	and	provided	ways	of	checking	
the	overfitting	of	the	classification	process	model.

Our	 study	 bridges	 the	 knowledge	 gap	 in	 the	 literature	 on	 ac-
counting	 for	misclassification	 in	mSDMs	by	modelling	 the	 hetero-
geneity	 in	 the	 classification	 process.	 Observation	 errors	 such	 as	
imperfect	 detection,	 sampling	 biases	 and	misclassification,	 among	
many	 others,	 are	 inevitable	 in	 biodiversity	 data	 (Bird	 et	 al.,	2014; 
Kéry	&	Royle,	2020;	Miller	et	al.,	2013).	In	this	study,	we	accounted	
for	only	misclassification	in	the	observation	process.	It	is	worth	stat-
ing	 that	 the	misclassification	we	accounted	 for	could	 lead	 to	both	
false	positives	and	negatives	in	the	biodiversity	data.	To	model	these	
misclassifications	in	this	study,	we	presented	the	ecological	process	
as	 one	model	 and	 the	 observation	 process	 as	 another	model	 in	 a	
hierarchical	 form.	Under	 the	 assumption	 that	 the	 classification	 of	
observations	is	done	on	the	individual	level,	we	modelled	the	clas-
sification	probabilities	for	each	true	state	identity	as	a	multinomial	
generalised	 linear	 model.	 This	 specification	 generalises	 the	 mod-
elling	of	the	observation	process	to	model	effects	of	covariates	as	
fixed	or	random	effects	or	both.	For	example,	one	can	estimate	the	

Method Accuracy Precision Recall
Variable selection 
probability

Variable/Covariate 0.97 0.1 0.99 0.71

Constant 0.97 0.1 0.99 –

Intercept 0.97 0.1 0.99 –

Main 0.97 0.1 0.99 0.29

Fixed	intercov 0.97 0.1 0.99 0.70

Fixed	covariate 0.97 0.1 0.99 0.71

Machine	Learning 0.89 0.8 0.90 –

Note:	The	accuracy	is	the	proportion	of	correctly	classified	validated	data,	the	precision	is	the	
proportion	of	mismatched	identities	that	were	correctly	matched	and	recall	is	the	proportion	of	
correctly	matched	identities	that	were	recovered.	The	number	of	validated	samples	was	384	out	of	
which	10	were	mismatched.

TA B L E  4 Validation	metrics	of	the	
models	under	study	on	the	withheld	gull	
dataset.
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classification	 probabilities	 of	 each	 observer	 in	 volunteer-	collected	
data	by	assuming	a	random	observer	effect.	This	formulation	for	the	
classification	process	also	mitigates	the	modelling	problems	of	using	
the	Dirichlet	distribution	as	the	prior	for	the	classification	probabili-
ties	(Spiers	et	al.,	2022).

Furthermore,	the	specification	of	a	separate	state-	space	model	
for	the	ecological	process	 in	the	proposed	framework	allows	the	
use	of	various	multi-	species	models	 (such	as	 joint	 species	distri-
bution	models	 (Ovaskainen	&	Abrego,	2020;	Tobler	et	al.,	2019),	
Royle-	Nichols	 model	 for	 abundance	 (Royle	 &	 Nichols,	 2003),	
among	many	others)	to	model	the	distribution	of	the	true	states.	
With	the	classifications	assumed	to	be	done	on	individual	sample	
levels,	an	ecological	process	model	can	be	defined	to	link	the	true	
and	reported	states	appropriately.	For	example,	if	species	list	(ob-
tained	from	checklists	as	provided	by	eBird;	Sullivan	et	al.,	2014; 
Johnston	et	al.,	2021)	are	used	to	model	species	distributions,	the	
record	at	each	 location	can	be	 treated	as	 repeated	observations	
(where	each	observation	refers	to	a	different	individual	species)	at	

the	same	location.	Our	simulation	study	showed	that	the	proposed	
model	 framework	 could	 estimate	 the	 process	model	 parameters	
(with	the	bias	of	estimated	parameters	close	to	zero;	Appendix	S2: 
Figure	S1),	an	observation	noted	in	previous	studies	that	use	ob-
servation	confirmation	design	to	model	misclassification	in	mSDMs	
(Kéry	&	Royle,	2020;	Spiers	et	al.,	2022;	Wright	et	al.,	2020).	We	
have	 shown	 that	 the	 ecological	 process	model	 presented	 in	 this	
study	 is	 a	 simplified	 form	 of	 occupancy	 and	 abundance	models	
(in	the	sense	that	 it	 ignores	species	occurrence)	that	account	for	
misclassification	(Table 3),	so	we	believe	our	proposed	framework	
can	be	extended	to	any	design	used	to	collect	and	verify	data	on	
the	true	states	 (for	example,	point	processes,	distance	sampling,	
site	 confirmation	 and	 other	 multi-	method	 design,	 etc.),	 and	 any	
model	 used	 to	 fit	 the	 data	 (for	 example,	 multi-	state	 occupancy	
model	 (Kéry	 &	 Royle,	 2020),	 joint	 species	 distribution	 models	
(Ovaskainen	&	Abrego,	2020;	Tobler	et	al.,	2019)).	Although	such	
extensions	are	possible,	 significant	 computational	 and/or	practi-
cal	challenges	must	be	explored	in	future	work.	For	example,	joint	

F I G U R E  2 Summary	of	results	from	the	model	fit	to	gull	dataset	showing	(a)	Probability	of	correct	classification	for	the	common	(Larus 
canus),	herring	(Larus argentatus),	great	black-	backed	(Larus marinus)	and	lesser	black-	backed	gulls	(Larus fuscus)	and	(b)	the	distribution	of	the	
experiences	of	the	observers	used	in	the	modelling.	The	ribbon	around	the	correct	classification	probability	estimates	represents	the	95%	
credible	interval	of	the	estimates.
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species	distribution	models	would	estimate	 residual	 correlations	
between	species	in	the	ecological	process	model	while	simultane-
ously	estimating	misclassification	probabilities	among	the	species	
in	the	observation	model.	These	additional	parameters	can	cause	
the	models	to	be	non-	identifiable	or	computationally	expensive.

Modelling	the	ecological	process	with	more	complex	models	
than	the	relative	abundance	models	used	in	the	study	would	add	
another	 level	 of	 hierarchical	 structure	 to	 the	 proposed	 frame-
work	(for	example,	modelling	detection	probability	or	true	occu-
pancy	state).	This	complexity	could	introduce	confounding	of	the	
ecological	and	observation	process	model	parameters	and,	with	
frequentist	 estimation	 approaches,	 make	 the	 likelihood	 multi-	
modal	 (Kéry	&	Royle,	2020).	This	study	did	not	explore	such	 is-
sues;	further	work	can	be	done	on	this.	A	possible	solution	in	the	
Bayesian	framework	to	avoid	such	confounding	 issues	would	be	
to	model	the	different	processes	with	separate	covariates,	choose	
a	good	prior	for	the	mSDM	parameters	and	use	repeated	survey	
visit	data	to	model	the	observation	process	(Kéry	&	Royle,	2020).	
Moreover,	the	identifiability	or	confounding	issues	could	be	tack-
led	by	using	data	with	much	 information	on	detection	and	false	
positive	detections,	such	as	those	derived	from	acoustic	surveys	
(Clement	 et	 al.,	2022)	 and	 integrating	 occupancy	 or	 count	 data	
that	are	not	susceptible	 to	misclassification,	such	as	 those	from	
camera	traps	to	those	with	misclassifications	(Doser	et	al.,	2021; 
Kéry	&	Royle,	2020).

Accounting	for	the	heterogeneity	in	the	classification	process	
increases	 the	 predictive	 performance	 of	 mSDMs.	 The	 homo-
geneous	 classification	 models	 may	 sometimes	 be	 unable	 to	 ex-
plain	the	variation	in	the	observation	process	(Conn	et	al.,	2013),	
leading	to	poor	model	predictive	performance	due	to	overfitting	
(Montesinos	 López	et	 al.,	2022).	 The	 simulation	 study	 showed	a	
30%	 increase	 in	precision	and	a	6%	 increase	 in	accuracy	and	re-
call	when	the	heterogeneity	 in	the	classification	process	was	ac-
counted	 for	 in	 the	mSDMs	 (Figure 1a,b).	However,	 there	was	no	
change	 in	 predictive	 performance	when	 a	 heterogeneous	 classi-
fication	 model	 overfitted	 a	 homogeneous	 classification	 process	
(Figure 1a,b)	due	 to	 the	small	classification	covariate	effect	size,	
observed	from	the	bias	of	parameter	estimates	and	low	Bayesian	
variable	selection	probability	(Appendix	S2:	Figures	S1–S3).	Since	
the	 predicted	 posterior	 probability	 for	 the	 true	 state's	 identity	
heavily	relies	on	the	weights	from	the	misclassification	probability	
(Appendix	S1),	 failure	 to	account	 for	heterogeneity	 in	 the	classi-
fication	process	would	mean	our	 posterior	 probability	would	 be	
incorrectly	estimated.	The	incorrectly	predicted	probability	would	
lead	to	the	underestimation	of	the	prediction	of	the	ranges	of	cov-
erage	 and	 possibly	 abundance	 in	 the	 true	 states	 (Molinari-	Jobin	
et	 al.,	 2012).	 It	 must	 be	 noted	 that	 this	 study	 did	 not	 compare	
mSDMs	 that	 account	 for	 misclassification	 to	 those	 that	 do	 not	
account	 for	misclassification	but	can	 further	 infer	 from	previous	
studies	 that	 perform	 this	 comparison	 that	 failure	 to	 account	 for	
any	misclassification	would	also	lead	to	underestimation	of	predic-
tion	ranges	and	species	distribution	(Clare	et	al.,	2021;	Ferguson	
et	al.,	2015;	Miller	et	al.,	2015;	Wright	et	al.,	2020).

Fitting	a	more	complex	ecological	process	model	with	the	covari-
ate	that	explains	the	heterogeneity	of	the	classification	process	does	
not	provide	enough	information	to	improve	the	mSDM's	predictive	
performance.	Previous	studies	have	shown	that	the	estimates	of	the	
ecological	process	model	inform	the	estimation	of	the	classification	
probabilities	 (Spiers	et	al.,	2022),	but	 the	variability	 in	 the	classifi-
cation	process	cannot	be	inferred	from	variability	in	the	ecological	
process	 model	 (Figure 1a(i–iii),	 Appendix	 S1).	 Ecologists	 should,	
therefore,	model	 the	 variability	 in	 the	 classification	 in	 its	 process	
model	to	gain	the	advantage	in	the	mSDMs	predictive	performance.

Our	model	was	parameterised	with	volunteer-	collected	gull	data.	
These	volunteer-	collected	data	have	several	sources	of	bias	in	their	
generation,	 such	 as	 spatial	 bias,	 and	 misidentification	 of	 species,	
among	many	others.	We	acknowledge	that	all	these	sources	of	bi-
ases	may	be	present	in	the	data,	but	we	only	modelled	the	misidenti-
fication	of	species	by	using	the	number	of	previously	collected	data	
as	a	proxy	measure	for	the	observer's	experience	in	the	classification	
process	 model.	 The	 predictive	 performance	 of	 the	 homogeneous	
and	heterogeneous	models	was	approximately	the	same	due	to	small	
misclassified	samples	(19	misclassified	out	of	1382	samples	in	train-
ing	 data	 (Appendix	 S2:	 Table	 S2))	 and	 10	misclassified	 out	 of	 378	
samples	in	validation	data	(Appendix	S2:	Table	S3).	However,	the	esti-
mated	covariate	effect	shows	how	the	experience	affects	the	proba-
bility	of	classifying	a	new	observation.	Specifically,	the	probability	of	
correctly	identifying	the	correct	species	increases	with	the	observ-
er's	experience,	as	is	noted	in	some	literature	(Johnston	et	al.,	2018; 
Kelling	et	al.,	2015;	Santos-	Fernandez	&	Mengersen,	2021;	Vohland	
et	 al.,	2021).	 Therefore,	 there	 is	 a	 trade-	off	 between	 the	model's	
ability	to	correctly	classify	mismatched	data	(precision)	and	under-
standing	 the	 covariate's	 effect	 driving	 the	 classification	 process	
when	there	are	relatively	small	misclassified	samples.

The	inclusion	of	ML	prediction	scores	in	the	mSDMs	to	account	
for	 the	 heterogeneity	 in	 the	 classification	 process	 increased	 the	
precision	of	our	predictions	by	70%	(Table 4).	These	ML	prediction	
scores	are	observation-	specific	and	provide	much	information	about	
the	classification	process	to	increase	the	precision	of	the	model.	The	
information	from	the	ML	does	not	depend	on	the	misclassified	sam-
ple	sizes	but	on	the	quality	of	the	images	(Koch	et	al.,	2022),	making	
them	 advantageous	 to	 use	 in	 accounting	 for	 heterogeneity	 in	 the	
classification	process	when	misclassified	sample	sizes	are	small	(like	
we	have	in	our	gull	data).

This	 study	 leaves	 room	 for	 further	work	 to	be	done.	We	used	
1000	 locations	 in	 our	 simulation	 study	 and	 2737	 locations	 in	 the	
case	study.	In	some	real-	world	applications,	such	as	those	that	use	
acoustic	survey	data,	collecting	data	at	a	few	sites	is	feasible	due	to	
how	expensive	 it	 is	 to	 collect	 the	data	 (Darras	et	 al.,	 2018; Doser 
et	al.,	2021;	Efford	et	al.,	2009).	Further	studies	can	explore	the	im-
pact	of	 the	number	of	study	sites	on	the	performance	of	 the	pro-
posed	 framework.	Moreover,	 this	 study	 used	 two	 true	 states	 and	
three	reported	states,	and	the	case	study	used	four	true	states	and	
five	 reported	 states.	 Increasing	 the	number	of	 true	 states	and	 re-
ported	states	may	affect	the	performance	of	our	proposed	model,	
which	we	have	left	for	further	studies.
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The	proposed	model	framework	in	this	study	is	flexible	and	can	
be	generalised	into	any	species	distribution	model	and	integrated	
distribution	model.	The	framework	proposed	fits	into	the	frame-
works	 provided	 by	 Spiers	 et	 al.	 (2022)	 and	Wright	 et	 al.	 (2020)	
and	 any	 framework	 their	 study	 generalises.	Our	 proposed	 clas-
sification	process	model,	MMGLM,	 improved	the	predictive	per-
formance	 of	 mSDMs,	 but	 it	 heavily	 relies	 on	 the	 misclassified	
sample	 size.	 Furthermore,	 the	 confusion	 matrix	 defined	 in	 the	
model	 framework	allows	 for	 the	 classification	of	different	 taxo-
nomic	 groups,	 as	 opposed	 to	 just	 the	 species-	by-	species	 confu-
sion	matrix	in	Wright	et	al.	(2020)	and	including	morphospecies	in	
the	classification	categories	(Spiers	et	al.,	2022).	This	will	make	it	
possible	for	citizen	science	data	analysts	to	account	for	the	mis-
classification	of	data	at	 any	 level	 in	 the	data	 collection	process.	
We	 recommend	 that	 variable	 or	 model	 selection	 is	 performed	
during	the	analysis	to	check	for	overfitting.	Moreover,	ecologists	
should	explore	using	ML	prediction	scores	(where	the	prediction	
scores	are	available)	as	weights	in	mSDMs	that	aim	at	predicting	
true	state	distributions,	especially	when	the	data	has	a	small	mis-
classified	sample	size.
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