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Abstract

Cancers with acquired resistance to targeted therapy can become simultaneously dependent 

upon the presence of that drug for survival, suggesting that intermittent therapy may slow 

resistance. However, relatively little is known about which tumors are likely to become dependent 

and how to schedule intermittent therapy optimally. Here, we characterized drug dependence 

across a panel of over 75 MAPK inhibitor (MAPKi) resistant BRAFV600E mutant melanoma 

models at the population and single clone levels. Melanocytic differentiated models exhibited 

a much greater tendency to give rise to drug dependent progeny than their dedifferentiated 

counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor 

(MITF) in differentiated melanoma models drives ERK-JunB-p21 signaling to enforce drug 

dependence. We identified the optimal scheduling of “drug holidays" using simple mathematical 

models which we validated across short and long timescales. Without detailed knowledge of 

tumor characteristics, we found that a simple adaptive therapy protocol can produce near-optimal 

outcomes using only measurements of total population size. Finally, a spatial agent-based model 

(ABM) demonstrated that optimal schedules derived from exponentially growing cells in culture 

remain nearly optimal in the context of tumor cell turnover and limited environmental carrying 

capacity. These findings may guide the implementation of improved evolution-inspired treatment 

strategies for drug dependent cancers.
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Introduction

In unresectable or metastatic BRAFV600E melanoma, patients are commonly treated in 

the first line with a combination of CTLA-4 and PD-1 immunotherapy, yielding 5-year 

survival rates over 50%1. Patients who fail to respond, develop resistance to immunotherapy, 

or cannot remain on therapy because of toxicity commonly switch to MAPK inhibitor 

(MAPKi) therapy targeting BRAF plus MEK, further improving clinical outcomes2,3. 

Unfortunately, the eventual emergence of resistance to MAPKi is a common outcome in 

these patients4. Interestingly, numerous reports have revealed that upon resistance to targeted 

BRAF plus MEK inhibitors, BRAFV600E mutant melanomas may become dependent on 

these inhibitors for survival5-9. Mechanistically, it was found that withdrawing MAPKi 

treatment in resistant tumors hyperactivates ERK1/2 through derepressed BRAF activity 

combined with the intrinsic and adaptive resistance mechanisms employed to survive 

treatment8. Overstimulation of ERK2 induces the AP-1 transcription factors JunB and 

FRA1, which were discovered to drive p21-dependent cell cycle arrest following MAPKi 

withdrawal in drug dependent models7,9. These pioneering preclinical studies suggest 

that incorporating "drug holidays" might effectively slow disease progression in MAPKi-

resistant patients. A large-scale phase 2 clinical trial compared continuous vs. intermittent 

BRAF plus MEK inhibition for patients with BRAFV600E melanoma to further test this idea. 

Disappointingly, in this trial intermittent dosing did not improve the primary endpoint of 

progression-free survival in patients compared to continuous therapy10.

One potential explanation for the discrepancy between preclinical and clinical outcomes 

for intermittent therapy is our incomplete understanding of the factors contributing to 

the drug dependence phenotype. As a result, it is currently impossible to select patients 

whose tumors are most likely to develop drug dependence and are most likely to respond 

to intermittent therapy. BRAFV600E mutant melanomas exhibit substantial phenotypic 

heterogeneity11. These tumors are transcriptionally classified across a continuous spectrum 

of differentiation states, which include melanocytic, transitory, neural crest-like, and 

undifferentiated12. A unique transcriptional signature defines each differentiation state but 

can be identified via relative levels of governing transcription factors (MITF, SOX10, and 

SOX9) and receptor tyrosine kinases (AXL, NGFR, and EGFR). Differentiated melanoma 

is considered more proliferative and is defined by MITFhigh, SOX10high, AXLlow, and 

EGFRlow. Undifferentiated melanoma has a transcriptional signature resembling epithelial-

to-mesenchymal transition (EMT), is thought to be more invasive, and is defined by being 

MITFlow, SOX10low, AXLhigh, and EGFRhigh. Although melanoma differentiation states are 

known to alter phenotypic responses to both immunotherapy13-15 and targeted therapy16-18, 

it is poorly understood if they contribute to drug dependence.

A second potential explanation for the clinical failure of intermittent therapy in patients 

with BRAFV600E mutant melanoma is the possibility that the intermittent dosing schedule 

employed in the trial was suboptimal. This intermittent dosing schedule was adapted from 

studies performed in a preclinical immunodeficient mouse model with single-agent BRAF 

inhibition rather than the combination of BRAF plus MEK inhibition used in the trial5,10. 

It is possible that an alternative scheduling approach may have worked better, though it is 

uncertain how such an approach would be designed.
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Recently, there has been a movement toward evolution-informed therapies19-21. These 

therapies aim to treat cancers (and other diseases) as heterogeneous, ecologically diverse, 

evolving populations22. For example, recent laboratory work in cancer and bacteria aims to 

take advantage of drug sensitivities that evolve due to the initial treatment, a phenomenon 

known as "collateral sensitivity"23-26. More ecologically inspired therapies take advantage 

of the competition for resources between distinct clonal populations, hypothesizing that 

more treatable clones may win out in a competition for shared resources27,28. Evolutionary 

game theory has also been leveraged to quantify and exploit distinct interactions between 

clonal populations29-31. Still, much of the existing literature on evolution-based therapies is 

theoretical. It is unclear how an evolution-inspired therapy might optimally treat a cancer 

cell population that includes drug dependent cells.

In this work, we take an essential step toward understanding the frequency of drug 

dependence in BRAFV600E mutant melanoma, the factors that determine a tumor's 

propensity to acquire drug dependence, and how intermittent therapeutic strategies may 

be optimally administered to mixed cancer cell populations to minimize population growth 

over time.

Results

Melanoma differentiation state correlates with drug dependence

We began investigating drug dependence by deriving resistance to single agent or 

combination BRAF (PLX4720) and MEK (AZD6244) inhibition across BRAFV600E 

mutant melanoma cell lines (Supplemental Fig. 1a). We chose A375, HS294T, WM793, 

SKMEL5, and SKMEL28 BRAFV600E mutant models as they are well characterized in 

the literature32,33 and the Cancer Dependency Map Project (DepMap)34. We maintained 

a pooled population of each resistant model to preserve phenotypic diversity. Once the 

resistant populations began proliferating through high-dose MAPKi, we assessed their 

dependence on the treatment (Fig. 1a-1c). We defined drug dependence as the ability of 

MAPKi resistant cells to proliferate at least twice as rapidly in the presence of MAPKi than 

without it. We found mixed evidence of drug dependence across MAPKi resistant cell lines 

at the population level. Whereas SKMEL5 and SKMEL28 cell lines exhibited a strong drug 

dependence phenotype (Fig. 1a-1c), A375, HS294T, and WM793 cell lines did not (Fig. 

1a-1c).

Next, we sought to understand why specific BRAFV600E mutant models gave rise to 

drug dependence. Initial experiments were performed with 12 pooled populations of 

resistant clones, and we hypothesized that drug dependent cell lines were selected for a 

unique drug resistance mechanism that dominated the pooled population and gave rise 

to drug dependence. To investigate this question, we quantified drug dependence across 

over 65 individual MAPKi resistant clones in A375, UACC62, COLO679, SKMEL5, 

and SKMEL28 BRAFV600E mutant cell lines (Fig. 1d). We found no emergence of drug 

dependent clones in either A375 or UACC62 cell lines despite the fact that A375 cells 

are known to give rise to a multitude of resistance mechanisms35 (Fig. 1d). Interestingly, 

we found almost all resistant clones from COLO679, SKMEL5, and SKMEL28 cell lines 

became MAPKi dependent upon resistance (Fig. 1d). These data suggest that no specific 
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resistance mechanism is associated with drug dependence, a point observed by others9, and 

that rather, a difference in the baseline characteristics of the cell lines may contribute to the 

emergence of MAPKi dependence.

Next, we compared the drug-naive gene expression profiles of cell lines that give rise to 

resistant-dependent progeny (COLO679, SKMEL5, and SKMEL28) to those of cell lines 

that give rise to resistant-non-dependent progeny (A375, HS294T, and WM793) in DepMap. 

Strikingly, the top 100 differentially expressed genes (DEGs) between the former and latter 

groups were enriched in processes related to melanoma differentiation (Fig. 1e). Using 

melanoma differentiation gene sets previously identified12, we found cell lines that give 

rise to drug resistant-dependent progeny are significantly enriched in the melanocytic gene 

expression signature (Fig. 1f). We confirmed that these cell lines were more differentiated 

at baseline, as defined by their increased expression of MITF, SOX10, MLANA, and 

PMEL and their decreased expression of EGFR, NGFR, AXL, and SOX9 (Fig. 1g-1h). 

Reciprocally, we found that cell lines that give rise to resistant-MAPKi non-dependent 

progeny exhibited neural crest-like and undifferentiated characteristics, as defined by their 

inverse expression of these markers (Fig 1g-1h). Together these data suggest that the drug-

naive differentiation state of melanoma is tightly correlated with the ability to become 

MAPKi dependent upon resistance.

Dedifferentiated melanoma is resistant to ERK-induced cell cycle arrest

Drug dependence in BRAFV600E melanoma is driven by the ERK2-JunB/FRA1-p21 

signaling axis6,7,9. Specifically, removing MAPKi from drug dependent cell lines 

hyperactivates ERK2, inhibiting cell cycle progression through JunB/FRA1-dependent 

accumulation of p21. We therefore hypothesized that melanoma cell differentiation state 

modulates ERK2-JunB/FRA1-p21 signaling. To investigate this, we first validated that the 

drug dependent, melanocytic, MAPKi resistant SKMEL5 and SKMEL28 models induce 

JunB-p21 in an ERK-dependent manner following the withdrawal of the drug (Fig. 2a). We 

found p21 accumulation in the drug dependent models to be associated with a significant 

accumulation of cells in G1 phase (Supplemental Fig. 1b) and an increase in β-galactosidase 

(β-gal) staining (Supplemental Fig. 1c). p21-dependent cell cycle arrest was reversed by 

low-dose ERK inhibitor (SCH772984) treatment, which rescued cell proliferation to levels 

equal to that observed in the context of BRAFi treatment (Fig. 2a-2b). Additionally, 

we confirmed that knockout of JunB with CRISPR/Cas9 rescued cell proliferation upon 

drug removal (Fig. 2c). Interestingly, we did not observe clear evidence of increased 

phosphorylation of FRA1 following drug removal in drug dependent models relative to drug 

non-dependent models (Supplemental Fig. 1d). Together these data confirm previous reports 

demonstrating that the ERK-JunB-p21 pathway drives cell cycle arrest in drug dependent 

models7,9.

The non-dependent and dedifferentiated A375, HS294T, and WM793 resistant models 

did not induce JunB-p21 signaling (Fig. 2d), G1 arrest (Supplemental Fig. 1b), or β-gal 

staining (Supplemental Fig. 1c) following MAPKi withdrawal. Furthermore, A375, HS294T, 

and WM793 MAPKi resistant models demonstrated phospho-ERK rebound upon drug 

withdrawal and remained sensitive to SCH772984, suggesting that resistance in these 
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models is indeed driven by ERK reactivation (Supplemental Fig. 1e-1f) rather than an 

ERK-independent mechanism36. We next tested if dedifferentiated melanoma models were 

resistant to direct activation of ERK-JunB-p21 signaling. To activate ERK, wild-type 

epidermal growth factor receptor (EGFR) was ectopically expressed in A375, HS294T, 

WM793, SKMEL5, and SKMEL28 parental cell lines, and growth kinetics were measured. 

Compared to matched controls, melanocytic melanoma cell growth (SKMEL5 and 

SKMEL28) was significantly inhibited following EGFR expression (Fig. 2e). Interestingly, 

EGFR expression did not affect proliferation in dedifferentiated melanoma models (A375, 

HS294T, and WM793s) (Fig. 2e). The sensitivity to EGFR expression and activation of 

JunB-p21 in the melanocytic cell lines was rescued by low-dose SCH772984 treatment, 

confirming ERK hyperactivation-dependent growth inhibition (Fig. 2f and Supplemental 

Fig. 2a). Furthermore, hyperactivation of ERK via EGFR expression induced JunB-p21 in 

melanocytic but not dedifferentiated cells (Fig. 2g). Collectively, these data indicate that 

dedifferentiated melanoma models are resistant to JunB-p21 dependent cell cycle arrest 

following ERK hyperactivation.

To further understand the impact of differentiation state on sensitivity to ERK-JunB-p21 

hyperactivation, we performed single sample Gene Set Enrichment Analysis (ssGSEA) 

on every BRAF- and NRAS-mutant melanoma cell line annotated in DepMap. Based on 

their transcriptomic profile, we classified lines as 'melanocytic' or 'dedifferentiated'. We 

included neural crest-like and undifferentiated differentiation states into the 'dedifferentiated' 

grouping. Interestingly, dedifferentiated melanoma was significantly more resistant to loss 

of dual specificity phosphatase 4 (DUSP4) and protein phosphatase 6 catalytic subunit 

(PPP6C) when compared to melanocytic melanoma (Fig. 2h). DUSP4 and PPP6C are 

phosphatases that negatively regulate ERK signaling in MAPK mutant melanoma. Genetic 

silencing of either gene leads to hyperactivation of ERK37-39, which suggests that across 

a broad panel of models, melanocytic differentiated melanomas are sensitive to ERK 

hyperactivation while dedifferentiated melanomas are relatively resistant.

Manipulation of differentiation state modulates MAPKi dependence

Next, we sought to investigate the mechanistic basis for the observed correlation between 

melanoma differentiation state and drug dependence. Melanocytic melanoma is defined 

by its expression of MITF and SOX10. Interestingly, it is known that acquired resistance 

to MAPKi can occur through dedifferentiation via the loss of MITF16,40. Consistent with 

this concept, SKMEL28 cells dedifferentiated into a MITFlow, SOX10low, EGFRhigh, and 

AXLhigh state upon MAPKi resistance (Fig. 3a), which has been previously characterized 

in this model16. We measured cell surface EGFR levels in the parental and BRAFi-resistant 

SKMEL28 cells and found no evidence of EGFRhigh clones in the parental population 

(Supplemental Fig. 2b), suggesting that the evolution of resistance in this case may not 

involve selection for an intrinsically resistant, EGFRhigh clone, but rather an adaptive 

dedifferentiation process, consistent with previous work41-43.

As MAPKi forces dedifferentiation in the SKMEL28 model, it was surprising that these 

cells were drug dependent and sensitive to ERK-JunB-p21 signaling. We hypothesized the 

MAPKi resistant SKMEL28 cells retained molecular features of the melanocytic parental 
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state which would explain their continued sensitivity to ERK hyperactivation. We first 

assessed JunB and FRA1 protein levels across all DepMap melanoma cell lines and 

observed a significant increase in levels of JunB, but not FRA1, protein in dedifferentiated 

melanoma compared to melanocytic melanoma cell lines (Fig. 3b and Supplemental Fig. 

2c-2d). To understand if this increase in protein expression was correlated with JunB 

transcriptional activity, we created a JunB transcriptional signature by taking the top 100 

upregulated genes from a recent JunB overexpression experiment in A375 melanoma 

cells44. We performed ssGSEA with the JunB target gene signature on ~1400 available 

cell lines in DepMap to give each cell line a JunB target score and found a significant 

positive correlation between JunB mRNA with the JunB target gene score across all 

cell lines (Supplemental Fig. 2e), which suggests the target gene signature appropriately 

represents JunB transcriptional activity. We then identified that dedifferentiated melanoma 

has a transcriptional profile significantly enriched for JunB target genes compared to 

melanocytic melanoma (Fig. 3b). Interestingly, the MAPKi resistant SKMEL28 model 

maintained JunB protein levels equal to their drug-naive melanocytic parents (Fig. 3c). 

To test if melanocytic melanoma are specifically vulnerable to switching from a JunBlow 

to a JunBhigh transcriptional state, we ectopically expressed JunB in the melanocytic 

SKMEL28 cell lines and found it robustly induced p21-acculmulation when compared 

to dedifferentiated WM793 cells overexpressing JunB (Fig. 3d). Accordingly, we found 

switching melanocytic melanoma from a JunBlow to a JunBhigh transcriptional state inhibited 

cellular proliferation (Fig. 3e). This finding suggests that molecular characteristics of the 

drug-naïve differentiation state, including vulnerability to JunB induction, are retained 

following MAPKi resistance and contribute to drug dependence.

To determine whether something about the adaptive dedifferentiation process drives 

SKMEL28’s dependence on MAPKi, we ectopically expressed MITF and SOX10 in 

SKMEL28 models with acquired resistance to BRAF inhibitor monotherapy, MEK inhibitor 

monotherapy, or the combination. MITF activity was functionally confirmed by observing 

its inhibition of EGFR expression (Fig. 3f)40. Following the withdrawal of MAPKi, 

MITF expression, but not SOX10 expression, entirely blocked the induction of the JunB-

p21 signaling axis (Fig. 3f and Supplemental Fig. 2f). MITF expression also rescued 

the inhibited cell growth following the withdrawal of MAPKi in resistant SKMEL28 

models (Fig. 3g). Together, these mechanistic data demonstrate that the loss of MITF 

in melanocytic differentiated melanomas facilitates not only dedifferentiation and drug 

resistance, but also JunB-p21 dependent growth inhibition following drug removal-induced 

ERK hyperactivation.

Drug holidays can minimize growth in drug dependent models

The poor growth of drug dependent-resistant cells in drug-free environments suggests that 

population growth may be minimized by incorporating drug-free "holidays“ into treatment 

schedules7,45. However, heuristics guiding the proper design of optimal drug holiday 

regimens need to be clarified, as these may depend on the population's initial properties 

(e.g., the ratio of sensitive to resistant cells) and the growth characteristics of different 

subpopulations. To investigate this question, we seeded a growth experiment with a panel 

of BRAFi-resistant (BR), MEKi-resistant (MR) or BRAFi- and MEKi-resistant (BMR) 
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BRAFV600E melanoma cell lines. The resistant cells were mixed at a 9:1 ratio with their 

matched parental cells, loosely mimicking a progressing tumor that has become dominated 

by resistant cells. We then measured population size in each population after 9 days of 

exposure to one of 3 different treatment schedules: 1) 100% DMSO (“Drug Off”), 2) 100% 

MAPKi (“Drug On”), or 3) a random intermittent therapy in which MAPKi was applied 

30% of the time. We found the periodic dosing schedules outperformed either the drug-free 

or the drug-only treatments, but not both. Specifically, total population size was minimized 

by schedule 3 in the populations containing drug dependent (SK28-MR and SK28-BMR) 

resistant subpopulations and by schedule 2 in the populations with non-dependent resistant 

subpopulations (A375-MR and WM793-BR) (Fig. 4a). To investigate whether a more 

judiciously chosen treatment schedule may further reduce growth, we considered a simple 

mathematical model of exponentially growing subpopulations (sensitive and resistant cells) 

whose growth rates depend on the environment (with or without drugs; see SI). On long 

timescales, we expect static treatments to eventually select the subpopulation with the 

highest growth rate in that environment. However, in the presence of time-dependent 

treatments that switch between drug and no-drug epochs, it may be possible to maintain 

a heterogeneous population of both cell types–each one suboptimal in one environment, 

optimal in the other–that leads to reduced growth of the total population. Indeed, in the 

limiting case where cells do not interact, a treatment strategy will maintain co-existing 

populations of both cell types when the drug treatments comprise a fraction (fON) of the total 

treatment time T ,

fON = 1
1 + γ

(1)

where γ ≡ k1, ON − k2, ON
k2, OFF − k1, 0FF

 is a dimensionless parameter that depends only on the growth 

characteristics (ki, ON and ki, OFF) of the different subpopulations; ki, ON (ki, OFF) is the per capita 

growth rate of population i in the presence (absence) of drug. The value of ki, ON depends 

on the concentration of drug, which we assume is fixed throughout the experiment (during 

all ON epochs). More generally, the parameter values (ki, ON and ki, OFF) will depend on drug 

concentration, cell line, and culture conditions, but they are straightforward to measure in 

a given experiment. In our experiments, we choose a particular drug concentration up front 

and directly measure the growth parameters (ki, ON and ki, OFF) for those conditions. We then 

assume these parameters remain fixed throughout the experiment (that is, ki, ON and ki, OFF are 

independent of time, but we relax these assumptions below). This simple model suggests 

that we can maintain population heterogeneity by incorporating drug-free epochs when 

γ > 0; that is, when sensitive cells grow faster than resistant cells without the drug, while 

resistant cells grow faster than sensitive cells with the drug. In the long-term limit (T ∞), 

this treatment strategy yields a constant ratio of the different cell types, independent of the 

initial composition of the population. In addition, the growth of this heterogenous population 

is optimal; that is, it is smaller than growth in either static with-drug or static drug-free 

environments if
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k2, ON − k2, OFF > 0
k1, OFF − k1, ON > 0

(2)

Equation (2) says that one cell type (i=2) must grow faster with drug than without, while 

the other cell type (i=1) must grow faster without a drug than with; these are the precise 

conditions that define drug dependent resistance. In summary, in this simple model, one 

can maintain heterogeneity as long as sensitive cells are favored during drug-free epochs. 

Furthermore, that heterogeneity leads to minimal growth only when the resistant cells grow 

faster with the drug than without (i.e. when they are drug dependent). Importantly, the model 

predicts an optimal treatment that is highly dependent on (experimentally accessible) growth 

rates, which depend on the cell line, drug concentration, and environment.

Equation (1), along with experimentally measured growth rates of parental and resistant 

lines with and without drug, predicts an optimal schedule with fON = 0.29 (holiday 71 

percent of the time) for the SKMEL28 (drug dependent) population and fON = 1 (drug-only) 

for the A375 (non-dependent) population. Based on these predictions, we experimentally 

compared five different treatment schedules: A) 100% Drug Off (fON = 0); B) 100% Drug 

On (fON = 1); C) a random schedule; D) an optimal schedule with fON ≈ 0.29 where drug 

was given for 2.6 days on followed by 6.4 days off; and E) an optimal schedule with 

fON ≈ 0.29 where drug was given for 1.1 days on, 5.5 days off, 1.5 days on, and 0.9 days 

off. Consistent with predictions of the model, the optimal schedules (D and E) outperformed 

other treatments in the populations with drug dependent resistance (SK28-BR) but were 

outperformed (by schedule B) in the populations with non-dependent resistance (A375-BR) 

(Fig. 4c). We found no significant difference between schedules D-E, consistent with the 

fact that schedules should depend only on fON (not the specific timing of the holidays) when 

subpopulations are acting approximately independently.

To further understand the effectiveness of optimal therapy scheduling at forestalling 

resistance, we created a mixed population of resistant-dependent (~43%) and parental 

(~57%) SKMEL28 cells. Long-term population dynamics were tracked by cell surface 

expression of EGFR, with EGFRhigh status indicating the dependent-resistant population 

(Fig. 4d, left). Following 20 days of continuous PLX4720 treatment, the population was 

~95% resistant-dependent cells (Fig. 4d, left), and at this point, we split this population into 

treatment groups that used 40% drug (optimal schedule, fON = 0 . 4) or 100% drug (fON = 1). 

The optimal schedule group significantly slowed population growth (Fig. 4d, right).

The optimal schedule is dependent on the treatment length

On sufficiently long time horizons, we expect that the optimal treatment will be independent 

of the initial composition of the tumor. However, many real-world applications will likely 

involve finite-time treatments where these asymptotic results are invalid. Under these 

conditions (see SI), the growth of the population will be minimized when
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fON = 1
1 + γ + 1

T log n1(k1, OFF − k1, ON)
n2(k2, ON − k2, OFF)

(3)

Equation (3) reduces to equation (1) when T ∞. However, on shorter time horizons, 

the optimal treatment will depend on the total treatment duration T  (Fig. 4e). To test 

this prediction experimentally, we plated a mixed population of 105 cells comprised of 

25 percent resistant-dependent SKMEL28 cells. The cells were treated with one of five 

schedules with drug holidays ranging from 0 (static with-drug treatment) to 100 percent 

(static drug-free treatment). The treatment schedules were broken into 5-day blocks so that 

the cells could be counted every 5 days for an indeterminate length of time and remain on 

schedule. Based on the results of the model (Fig. 4f), we hypothesized that the treatment 

performing optimally would vary over time, with static drug treatments minimizing growth 

at early times while treatments with increasing drug holidays (asymptotically approaching 

the long-time optimal of approximately 45 percent drug holiday, fON = 0 . 55) minimizing 

growth on longer timescales.

Indeed, experiments confirmed that growth was initially (e.g., days 5 and 10) minimized 

in the static drug (PLX4720) treatment (Fig. 4g). However, by day 15, the treatment with 

25 percent holiday (fON = 0 . 75) was optimal, while the treatment with 50 percent drug 

holiday–which most closely corresponds to the predicted long-time optimum–led to minimal 

growth by day 30. These results underscore the notion that the optimal strategy for drug 

holidays will initially vary over time–a phenomenon tied to the transient behavior of the 

population as it approaches a steady state composition–but for sufficiently long treatment 

periods approaches an optimum that is independent of the initial population composition.

Presence of non-dependent resistant cells does not alter optimality

Because parental melanoma tumors potentially give rise to both drug dependent and 

non-dependent resistant lineages, we asked how the presence of both resistance types 

would impact the optimal treatment schedule. To answer this question, we treated two 

different mixed populations containing drug sensitive, drug resistant-dependent, and drug 

resistant-non-dependent derivatives of UACC62 with one of three treatments: 1) static drug-

free treatment, 2) static treatment with PLX4720, or 3) a model-inspired (approximately) 

optimal treatment with fON = 0.45 (55 percent of the time in drug holiday). The two mixed 

populations comprised approximately constant ratios of drug sensitive to drug dependent 

resistant cells. However, one population initially contained 0.2 percent non-dependent 

resistant cells and the other 10 percent non-dependent resistant cells. In both populations, 

the model-inspired therapy– which contains drug holidays calculated without knowledge 

of the non-dependent populations – significantly outperformed the static therapies (Fig. 

5a), as one might intuitively expect. However, the population sizes become much larger in 

populations that started with more non-dependent resistant cells, consistent with predictions 

of the model (Fig. 5b). This result highlights a more general principle: in cases where 

non-dependent resistant cells grow at similar rates in the presence and absence of drug, these 

cells are not expected to alter the choice of optimal therapy. However, their presence can 
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significantly limit the utility of intermittent therapy in cases where these cells grow faster 

than the average growth rate of the drug holiday-optimized population of sensitive and drug 

dependent cells.

Adaptive therapy based on population size approximates optimal schedule

In a clinical setting, detailed measurements of growth parameters for different cell types 

is not typically possible. Therefore, we attempted to develop an adaptive therapy method 

that approximates the optimal holiday schedule without detailed growth rate information 

about the individual subpopulations (Fig. 5c, Methods). Briefly, we began by administering 

the drug for one treatment window, followed by the removal of the drug for one treatment 

window. The growth rates of each treatment window were recorded, and the treatment that 

led to a lower growth rate was then continued. This treatment protocol was continued until 

the growth rate of the population surpassed that of the opposite treatment type, as recorded 

by the most recent treatment window of that type. At that time, the treatment is switched. 

This process continued until the treatment ended.

We tested the performance of this approach computationally using empirically measured 

growth rates from the previous experiments (Fig. 5d). Simulations revealed that the 

performance of the blind adaptive therapy approaches that of true optimal therapy, provided 

that one can make sufficiently frequent measurements of total population size. To test this 

approach experimentally, we established a mixed population comprised of sensitive and 

resistant dependent SKMEL28 cells and exposed replicate populations to one of four drug 

schedules: 1) static no-drug schedule (fON = 0), 2) static PLX4720 (constant drug) schedule 

(fON = 1), 3) the optimal schedule (fON = 0.6, 40 percent drug holiday) based on measured 

growth rates of the different cell populations, and 4) the adaptive schedule described above. 

Treatments were applied in 4-day blocks for a total of 48 days. As predicted by the 

model, the optimal therapy (treatment 3) performed considerably better than the two static 

therapies. In addition, the adaptive therapy and the calculated optimal schedule performed 

almost identically over 48 days (Fig. 5e-5f). To determine if we had achieved the goal of 

maintaining population heterogeneity, we took the final cell population from each schedule 

and measured the GI50 of each population to PLX4720 (Fig. 5g). As a benchmark, we 

compared these GI50 values to those of freshly made mixtures containing 100% sensitive, 

50% sensitive/50% resistant, and 100% resistant populations. We found that the populations 

treated with 0% PLX4720 (100% PLX4720) exhibited GI50 values similar to those of 

fully sensitive (resistant) populations, consistent with the prediction that static therapies 

eventually lead to homogeneous populations (Fig. 5g, blue and red bars). By contrast, 

populations treated with the optimal schedule exhibited GI50 values similar to, but slightly 

smaller than, those of an equally mixed population of 50% sensitive/50% resistant cells (Fig. 

5g, gray bars). These results suggest that reaching near-optimal treatment outcomes with 

incomplete population dynamics information may be possible.

Well-mixed model approximates an agent-based model

The “well-mixed” model above neglects complicating features—for example, stochasticity, 

cell death/turnover, and spatial competition—that may be necessary to predict scheduling in 

a more realistic in vivo environment. To explore how these features impact our predictions, 
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we implemented a 2-D, on-lattice, agent-based model (ABM, Methods). We began with 

a sparsely seeded, mixed population of sensitive and drug dependent resistant cells. 

Each population divides with an effective proliferation rate informed by their birth rate 

(determined by in vitro experiments) and a constant death rate to simulate in vivo cell 

turnover. We then simulated a variety of drug holiday schedules (Fig. 6a-6b). Simulations 

that employed a drug holiday similar to the predicted optimal led to smaller tumor 

population at the end of a 9-day simulated treatment (Fig. 6b), consistent with predictions of 

the simpler model. The success of the simple model is not altogether unexpected, because 

it predicts that the optimal fON depends only on a ratio of growth rate differences, not the 

absolute values. As a result, environmental factors that impact all cell types approximately 

equally—for example, by scaling all growth rates by a constant factor—will not change the 

predicted optimal.

We next investigated simulations over longer treatment periods, where cell crowding may 

introduce non-intuitive effects. We repeated the previous experiment but administered 

treatment for three, five and ten 9-day cycles. We found that the optimal treatment schedule 

remains optimal across all treatment lengths, but the final tumor burdens predicted by 

the well-mixed model become increasingly inaccurate (Fig. 6c). Deviations between the 

ABM and well-mixed model appear well before the tumor reaches carrying capacity 

(Supplemental Fig. 3a), suggesting the effect is due to local cell crowding, similar to what 

occurs in other tumor models46.

During each nine-day optimal cycle, the population experiences one epoch in drug and one 

without. As a result, each nine-day cycle allows us to extract effective growth rates (ki, ON and 

ki, OFF) for the previous period; with these measurements, we can therefore calculate a (now 

time-dependent) optimal drug dose fON(t) for each nine-day period (Fig. 6d, black line). As 

expected, the time-dependent optimal initially agrees with the well-mixed optimal (Fig. 6d, 

blue line), but over time the optimal requires less drug than predicted by the simple model 

(Supplemental Fig. 3b). We confirmed that the optimal, fON(t), calculated in this way indeed 

out-performs the static, well-mixed optimal (Fig. 6e-g). To compare performance between 

optimal treatments prescribed by the well-mixed and spatial models, we compared total 

population sizes across treatment arms after twelve cycles (108 days, the last cycle before 

carrying capacity is reached in the largest population; Fig. 6e, blue vertical line). In addition, 

we measured how long each treatment arm contained the population below a given threshold 

(“escape size”) for the first time (Fig. 6e, grey horizontal line). Across both tests, we found 

that the spatial optimal out-performed the well-mixed optimal by approximately 8% (Fig. 

6f-g).

Discussion

Our work complements a broad set of recent studies ranging from purely theoretical 

evolutionary therapy to clinical trials which have attempted to harness intermittent drug 

treatment schedules. Importantly, it demonstrates that while drug holidays can improve 

tumor growth control, they must be designed and implemented using strategies like the 

adaptive treatment regimen described here, which account for the evolutionary dynamics of 

cells within the tumor—which harbor potentially different drug response and dependency 
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characteristics—as well as the variation in these properties across individual patients. 

Additionally, this work suggests that the heterogeneity of differentiation states found in 

melanoma tumors is a predictive and mechanistic factor associated with drug dependence in 

MAPK mutant melanoma. The lack of incorporation of these elements may be at least 

partially responsible for the failure of recent trials regarding intermittent therapy10,47. 

Together these findings support melanocytic tumors as prime candidates for optimized, 

intermittent MAPKi therapy to slow disease progression when other options are unavailable.

Interestingly, MITF loss has previously been described in the literature as a contributing 

factor to MAPKi addiction in melanoma models9. In that report, it was discovered that 

withdrawal of MAPKi from drug dependent models activated ERK2-JunB, which led to 

subsequent loss of MITF protein and cell cycle arrest. In this scenario, drug resistance 

emerging in melanocytic differentiated models that have remained in this differentiation 

state during the acquisition of resistance is associated with drug removal-induced MITF 

loss. Indeed, we observed this proposed mechanism in BRAFi resistant SKMEL5 cells 

upon withdrawal of MAPKi (Supplemental Fig. 2g). In the current study, we describe a 

distinct scenario where melanocytic differentiated melanoma cells undergo MITF loss and 

associated dedifferentiation during the acquisition of drug resistance, and we show that such 

cells retain sensitivity to ERK hyperactivation-induced JunB-p21 activation (Supplemental 

Fig. 4). Both cases underscore the notion that MITF is a key regulator of the drug 

dependence phenotype, supporting our discovery that melanocytic melanoma tumors are 

primed for MAPKi-addiction.

In order to capture more potential features of in vitro evolution such as stochasticity, cell 

death/turnover, spatial competition, and carrying capacity, we translated our system into a 

2-D, on-lattice ABM. We found, somewhat surprisingly, that predictions from the simple 

model were largely robust against these additional complexities. Specifically, we observed 

that cell death/turnover did not affect the optimal schedule, as long as the intrinsic turnover 

rate was approximately equal for each cell type. In addition, the well-mixed model perfectly 

recapitulated the results from the spatial simulations at low densities, but at large densities, 

we observed an asymmetric impact on growth rates that led to modest changes in the 

optimal treatment schedule—a schedule we could infer by updating the estimates of cell 

growth rates over time. This time-dependent ABM optimal schedule led to an approximately 

8% decrease in tumor size as well as 8% increase in population escape time over the 

well-mixed optimal. Taken together, these results suggest that while spatial effects can play 

an important role in fine-tuning the optimal schedule, the well-mixed model remains a 

surprisingly accurate approximation for our experimental system.

It is also important to address several potential limitations in our approach. For example, 

our models ignored the potential impacts on drug resistance from the host environment, 

specific resistance mutations, and ecological interactions within the tumor. In addition, we 

ignore the role of de novo mutations in evolutionary adaptation, which would likely play 

a role in informing the optimal treatment, at least in small populations (see Supplemental 

Information for a brief discussion on mutation rates). However, even in this well-controlled 

laboratory setting, calculating an optimal schedule is challenging. As a result, it is notable 

that such a simple mathematical model captures the main qualitative features necessary to 
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define optimal therapy schedules. Further, it is significant that empirical adaptive scheduling 

can produce near-optimal results when frequent tumor growth surveillance is performed, 

a concept that is becoming increasingly feasible with the broad adoption of minimally 

invasive, blood-based monitoring of circulating tumor DNA levels. To be clear, the model 

in its current form is not meant to be directly applicable in the clinic. But its surprising 

success in in vitro an in silico experiments—which already include numerous biological 

complexities neglected in the model—give hope that similarly simple “minimal” models 

may aid in understanding which melanoma tumors are primed for drug dependence and 

how one might optimally treat such tumors in realistic clinical scenarios. Finally, although 

holiday-based schedules cannot entirely prevent disease progression, they are a promising 

therapeutic approach to slow progression that may eventually lead to improved treatment 

outcomes for a subset of patients with drug dependent metastatic disease.

Methods

Cell lines

A375, COLO679, UACC-62, WM793, HS294T, SKMEL5, and SKMEL28 cells were grown 

in RPMI 1640 (Life Technologies Corporation, Carlsbad, CA) supplemented with 10% fetal 

bovine serum (Sigma-Aldrich Corporation, St. Louis, MO) and 1% penicillin/streptomycin 

(Life Technologies Corporation). SKMEL28 cell lines were obtained from L. Garraway 

(Harvard University, Dana-Farber Cancer Institute). All other cell lines were purchased from 

the American Type Culture Collection. All lines were submitted to STR profiling by the 

Duke University DNA Analysis Facility to confirm their authenticity. The cells routinely 

tested negative for mycoplasm with the MycoAlert™ Mycoplasma Detection Kit (Lonza # 

LT07-318).

Chemicals

All inhibitors were purchased from Selleck Chemicals (Houston, TX) and prepared at 100 

mM stock solutions in DMSO.

GI50 assay

Wherever GI50 values of specific inhibitors are indicated, they were determined as follows. 

Cells were seeded at 5,000 cells/well in 96-well plates in normal tissue culture conditions. 

After a 24-hour incubation, diluent (typically DMSO) or concentrated 10-fold dilutions 

of the indicated inhibitors (at 1:1000) were added to the cells to yield the highest 

concentration of 200 μM (all other inhibitors). After a three-day incubation with the 

treatment, cell viability was assessed with the CellTiter-Glo luminescent viability assay 

(Promega Corporation, Durham, NC) according to the manufacturer's instructions. Growth 

inhibition was calculated as a percentage of diluent-treated cells, and GI50 values were 

determined to correspond to the inhibitor concentration that resulted in half-maximal growth 

inhibition.

Immunoblotting

Western blot procedure was followed as previously described48. Primary antibodies were all 

purchased from Cell Signaling Technology and diluted at 1:1000. The catalog numbers are 
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as follows: phospho-ERK (#9101), ERK (#4695), EGFR (#4267), PARP (#9542), vinculin 

(#4650), Beta-actin (#4970), AXL (#8661), p75NTR (#4201), MITF (#12590), SOX10 

(#89356), SOX9 (#82630), JunB (#3753), p21 (#2947), HSP90 (#4874), FRA1 (#5281), and 

p-FRA1 (#3880).

Cell Surface Flow Cytometry

Pelleted cells were resuspended in 100 μL of Flow Cytometry Staining Buffer 

(eBioscience™, #00-4222-26) at a concentration of 100,000 cells/ml. APC anti-human 

EGFR Antibody (Biolegend, #352906) or APC Mouse IgG1, κ Isotype Ctrl (FC) Antibody 

(Biolegend, #400122) was added at 2000x to the suspended cells, and the reaction was left 

to incubate at room temperature for 30 minutes. Cells were washed thrice with 1 ml of Flow 

Cytometry Staining Buffer. Data were acquired with a FACSCanto II (BD Biosciences) flow 

cytometer, and the results were analyzed in Flowjo (TreeStar).

Lentivirus preparation and DNA constructs

All expression plasmids were prepared in lentiviral form as previously described49. In brief, 

expression constructs, psPAX2 (addgene, #12260), and pMD2.g (addgene, #12259) were 

transfected into AAVpro® 293Ts (Takara, #632273) using Lipofectamine 2000 (Thermo 

Fisher Scientific, #11668500) according to the manufacturers protocol. Following a four 

hour incubation, the transfection media was removed and replaced with harvest media 

containing 30% FBS. The virus-containing media was collected after 48 or 72 hours, 

filtered with a 0.45 μm filter, and stored at −80°C until use with 8 μg/mL polybrene (Sigma-

Aldrich). pHAGE-EGFR was a gift from Gordon Mills & Kenneth Scott (Addgene plasmid 

#116731 ; http://n2t.net/addgene:116731 ; RRID:Addgene_116731). pHAGE_puro was a 

gift from Christopher Vakoc (Addgene plasmid #118692 ; http://n2t.net/addgene:118692 ; 

RRID:Addgene_118692). FUW-Sox10 was a gift from Bob Weinberg (Addgene plasmid 

#36978; http://n2t.net/addgene:36978; RRID: Addgene_36978). TFORF2346 was a gift 

from Feng Zhang (Addgene plasmid #142043; http://n2t.net/addgene:142043; RRID: 

Addgene_142043).

Generation of CRISPR/Cas9 knockouts

lentiCRISPR v2 (LCV2) was a gift from Feng Zhang (Addgene plasmid # 52961 ; 

http://n2t.net/addgene:52961 ; RRID:Addgene_52961). sgRNAs were chosen from the 

TKOv3 genome-wide library50 (JunB-1: GTGTAGAGAGAGGCCACCAG and JunB-2: 

ACTCCTGAAACCGAGCCTGG) and were cloned into LCV2 using the protocol provided 

by the maker. Lentivirus containing the plasmid were generated as described above. Cells 

were spinfected with a mixture of virus, 8 μg/mL polybrene, and media at 2250 rpm for 

1 hour, followed by incubation at 37 degrees overnight in the transduction mixture. The 

following day the transduction mixture was removed and 2 μg/ml of puromycin was added 

to the cells. 48 hours later the surviving cells were seeded into the described experiments.

In vitro, adaptation of inhibitor-resistant cells

PLX4720-, AZD6244- or PLX4720 and AZD6244-resistant cell lines were produced by one 

of two methods as previously described49. Briefly, parental cells were either exposed to 
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escalating inhibitor doses or exposed to a high dose (3 μM) of inhibitor until logarithmic 

growth resumed. The resultant resistant clones were expanded and cultured. Parental cell 

lines were cultured concurrently with DMSO. Resistant cell lines were maintained in routine 

culture with 3 μM MAPKi drug. All resistant and DMSO parental control lines were 

submitted to STR profiling by the Duke University DNA Analysis Facility to confirm their 

authenticity upon the acquisition of resistance.

Clonogenic growth assay

To measure the ability of cell lines to form colonies from a single cell, clonogenic growth 

assays were performed as previously described49. Briefly, 1000-5000 cells were seeded 

per well in 6 or 12-well tissue culture plates in standard growth media. After 24 hours, 

the indicated treatments were added, and the assay was incubated for 14-21 days with 

fresh media and inhibitors every 72-96 hrs. Cells were fixed and stained with 0.5% (w/v) 

crystal violet in 6.0% (v/v) glutaraldehyde (Thermo Fisher Scientific, Waltham, MA). 

Quantifications of the surface area covered were used to estimate cell viability and were 

performed in ImageJ software with the ColonyArea plugin51.

Cell cycle analysis

To analyze the progression of cells through the cell cycle, cells were plated in triplicate at 

20,000 cells per well in six-well plates. The following day, the growth media was removed 

and replaced with fresh media containing the indicated dose of drug or diluent (typically 

DMSO). After a 72-hour incubation in the drug, cells were counted. The cells were washed 

twice in PBS and stained with a solution of 50 μg/μL RNase A, 20 μg/μL propidium 

iodine, 0.05% TritonX-100 in PBS (Sigma-Aldrich). 1x106 cells were washed twice with 

PBS and then fixed in 70% ethanol. DNA content of the cell population was determined 

and quantified by flow cytometry. Gating was defined using untreated/unstained cells, and 

treatments were evaluated at 20,000 counts using BD FACSVantage SE.

Senescence-associated β-galactosidase assay

To determine the effect of treatment on the induction of senescence, cells were plated in 

triplicate in 6-well plates at a density that would achieve 80-90% confluency at 10 days 

of growth, typically between 1,000 and 50,000 cells. After 24 hours of culture, the growth 

media was removed and replaced with fresh media containing the indicated drug or diluent. 

After 10 days of treatment, media was removed, and the cells were stained with the kit, 

Senescence b-Galactosidase Staining Kit (Cell Signaling Technology), according to the 

manufacturer's instructions. Bright-field images were taken at 100x magnification at five 

random locations in each well. Representative images are shown.

DepMap Analyses

Addictive vs. non-addictive RNAseq comparison: Using the custom analysis feature 

on DepMap.org, we performed a two-class comparison of Expression Public 22Q4 data with 

our addictive cell lines (COLO679, SKMEL5, and SKMEL28) as our “in” group and our 

non-addictive cell lines (A375, HS294T, and WM793) as our “out” group. The resulting data 

is found in the supplementary materials. We performed GSEA analysis52 on this data using 
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melanocytic, neural crest-like, and undifferentiated gene signatures that were previously 

defined12 and can also be found in the supplemental material.

Melanocytic or Dedifferentiated Melanoma Classification: We performed ssGSEA 

on all 63 BRAF- and NRAS-mutant melanoma cell lines annotated in the DepMap 

Expression Public 22Q4 database with the melanocytic gene signature using the GenePattern 

platform52-54. MAPK-mutant melanoma with an enrichment score >2500 was classified as 

melanocytic. All MAPK-mutant cell lines with an enrichment score <2500 were classified as 

dedifferentiated. The enrichment scores for each cell line are in the supplementary material. 

We used these classifications to compare DUSP4 and PPP6C dependency scores and JunB 

protein levels via the DepMap custom analyses feature.

Definition of JunB Transcriptional Signature: We selected the top 100 upregulated 

genes from a JunB overexpression experiment in melanoma44, found in the supplemental 

materials. Using this signature, we assigned every available cell line in DepMap an 

enrichment score using ssGSEA. We correlated this score with the JunB expression 

to validate the signature. Following validation, we compared the enrichment score of 

melanocytic and dedifferentiation melanoma. Both analyses were performed in the DepMap 

custom analyses feature.

Growth rate calculation

To calculate growth rates, cell populations were used at low passage numbers with measured 

drug resistance. Cells were plated in triplicate in 10 cm plates at 3,000 cells per plate in 

standard growth media. The following day, cells were treated with drug or DMSO. Six 

days later, the cells were lifted with 0.25% trypsin (Life Technologies) and counted using a 

Z2 Coulter Particle Count and Size Analyzer (Beckman Coulter, Pasadena, CA). Effective 

growth rates (μ) were calculated from the number of cells plated (N0) and the number 

counted (N) according to the equation:

ln N = ln N0 + μτ

where τ is the elapsed time (168 hours).

Drug scheduling assay

After measuring growth rates, we plated cells in 15 cm plates with growth media and no 

drug. The following day, we added drug (or not) based on the indicated drug schedule. Cells 

were counted at the end of each completed schedule and replated as indicated. All drug 

schedules were established based on the interval between counts; for example, if cells were 

treated with 75% drug and counted every four days, they would be treated with the drug for 

three days and diluent for one day, counted, and replated for the duration of the experiment. 

If a portion of cells was discarded before replating, growth rates (μ) were calculated over the 

period from the number of cells plated at the beginning of the period (N0) and the number 

counted at the end of the period (N) according to the equation above. These growth rates 

were then used to predict the total cell number as if no cells had been discarded. After the 
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initial plating, which was always diluent only, cells were replated into treatment determined 

by their schedule.

Statistics

All results are shown as means ± SD. To compare groups, unless noted otherwise, P-values 

were determined using unpaired, two-tailed Student's t-tests.

“Blind” adaptive therapy algorithm

We started by administering drug for some time ΔT and estimating the growth rate during 

that period. This period is followed by removing the drug for the same ΔT, and the drug-free 

(or 'holiday') growth rate is estimated. We then administered the condition (drug or no 

drug) corresponding to the lower growth rate and recorded the growth rate for each ΔT that 

passes. If the growth rate for the most recent ΔT surpasses that of the opposite condition, we 

switched the treatment condition for the next time window. We repeated this process for the 

remainder of the treatment time, recording new values for the population growth in drug and 

during treatment holidays and switching between treatments as they become optimal.

Spatial agent-based model

We employ a 2-D, on-lattice, ABM using the Hybrid Automata Library (HAL)55. The 

cells can be divided into sensitive and resistant populations and do not allow for mutation 

between cell types. All simulations are performed with a 200x200 lattice size with no 

flux boundary conditions. Cells are assumed to be randomly distributed to start. Sensitive 

and resistant cells attempt to divide at a constant rate determined by their environment 

(drug on or off). If at least one site in the cell’s neighborhood is empty, then the cell 

will divide and a daughter will now occupy the empty site. The neighborhood size is 

assumed to be von Neumann (cells not impacted by the boundary have four neighbors). 

Cells die a constant rate, which we assume (for simplicity) is equal for sensitive and resistant 

cells. Cell movement/migration is not allowed, and the drug environment is assumed to be 

homogenous. Dead cells are immediately removed from the lattice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code availability

All code used in this study will be available on GitHub.
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Fig 1: Melanocytic melanoma is primed for addiction to MAPK inhibition upon resistance
a, Parental and PLX4720-resistant melanoma cell lines were seeded at a 1000 cells/mL 

concentration and treated every 72 hrs with DMSO or 3 μM PLX4720 (BRAFi). b, Parental 

and AZD6244-resistant melanoma cell lines were seeded at a 1000 cells/mL concentration 

and treated every 72 hrs DMSO or 3 μM AZD6244 (MEKi). c, Parental and PLX4720 

+ AZD6244-resistant melanoma cell lines were seeded at a 1000 cells/mL concentration 

and treated every 72 hrs DMSO or 3 μM PLX4270 + 3 μM AZD6244. a-c, Crystal violet 

staining was performed when the DMSO-treated parental group reached confluency. Drug 

dependent conditions are highlighted with red color. d, Individual PLX4720-resistant clones 

from the specified cell lines were subjected to identical experimental conditions as in a. 

Drug dependent clones are highlighted in red. Data are representative of the following 
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number of biologically independent samples: A375 n = 9, UACC62 n = 19, COLO679 n 
= 8, SKMEL5 n = 12, and SKMEL28 n = 19. e, Two-class comparison of the DepMap 

Expression (Public 22Q4) dataset between ‘in-group’ addictive (COLO679, SKMEL5, and 

SKMEL28), and ‘out-group’ non-addictive (WM793, A375, and HS294T) cell lines. The 

top 100 differentially expressed genes involved in melanoma differentiation states are 

highlighted with the indicated color. Refer to methods for detailed statistical information 

f, GSEA results from the ranked gene list from e. Enrichment plot of the melanocytic 

differentiation gene set and associated statistics (top panel). Normalized enrichment scores 

of melanoma differentiation gene sets (bottom panel). g, DepMap Expression (Public 22Q4) 

comparison between addictive (COLO679, SKMEL5, and SKMEL28 (n = 3)) and non-

addictive (WM793, A375, and HS294T (n = 3)) cell lines of the specified genes. h, Western 

blot of the indicated proteins in the parental melanoma cell lines. a-c, h, The data are 

representative of three biologically independent experiments (n = 3). a, g Data are presented 

as mean ± SEM.
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Fig 2: Dedifferentiated melanoma is resistant to ERK-induced cell cycle arrest
a, Western blot of indicated proteins in SKMEL5-BRAFi Resistant (SK5-BR), SKMEL28- 

BRAFi Resistant (SK28-BR), -MEKi Resistant (SK28-MR), and -BRAFi + MEKi resistant 

(SK28-BMR) cell lines treated with the specified doses of DMSO, 3 μM PLX4720 (BRAFi), 

3 μM AZD6244 (MEKi), or 50 nM SCH772984 (ERKi) for 96hrs. b, SK28-BR and 

SK5-BR cells were treated every 72hrs with the indicated drug. Crystal violet staining 

was performed when each cell line reached confluency. c, (Left) SK5-BR cells with two 

sgRNAs targeting JunB and one non-targeting control were treated with DMSO or 3 μM 

PLX4720 every 72hrs. Crystal violet staining was performed on day 14 following seeding. 

(Right) Western blot validation of JunB knockout. d, Western blot analysis of indicated 

proteins in BRAFi-resistant A375 (A375-BR), HS294T (HS-BR), WM793 (WM-BR), SK5-
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BR, and SK28-BR cell lines following BRAFi withdrawal for the specified time. Drug 

dependent models are highlighted in red. e, Melanoma cell lines with empty vector (EV) 

or EGFR-ORF construct were seeded in media that contained 2.5 ng/ml of EGF. Crystal 

violet staining was performed when each cell line's EV condition reached confluency. f, 
SKMEL5 and SKMEL28 EV and EGFR-ORF transduced cell lines treated with DMSO or 

50 nM SCH772984 (ERKi), refreshed every 72hrs. Cells were seeded in media containing 

2.5 ng/ml of EGF. g, Western blot analysis of melanoma cell lines transduced with EV or 

EGFR-ORF following 96 hrs of treatment with 5 ng/ml EGF. h, (Left) Analysis of PPP6C 
DepMap CRISPR gene score across melanocytic (n = 26) and dedifferentiated (n = 21) 

MAPK-mutant melanoma. (Right) Analysis of DUSP4 and gene effect across melanocytic 

(n = 23) and dedifferentiated (n = 12) MAPK-mutant melanoma using the DepMap RNAi 

(Achilles + DRIVE + Marcotte, DEMETER2) dataset. Two-tailed unpaired t-test, p-values; 

* <.05 and ** <.01 a-g, The data represent three independent experiments (n =3).
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Fig 3: Adaptive loss of MITF is a driver of drug dependence in MAPKi resistant melanoma
a, Western blot analysis of the indicated proteins in parental (P), BRAFi-resistant (BR), 

MEKi-resistant (MR), or BRAFi- and MEKi-resistant (BMR) derivatives of SKMEL28 

cells. b, (Left) JunB protein level analysis of melanocytic (n = 17) and dedifferentiated 

(n = 9) MAPK-mutant melanoma cell lines using the DepMap Proteomics dataset. (Right) 

JunB target gene expression score across melanocytic (n = 36) and dedifferentiated (n = 26) 

MAPK-mutant melanoma cell lines using the DepMap Expression (Public 22Q4) dataset. 

Two-tailed unpaired t-test, p-values; ** <.01. c, Western blot analysis of the indicated 

protein across the specified parental (P) and BRAFi-resistant (BR) cell lines. d, Western blot 

of SKMEL28 and WM793 parental cells transduced with an empty vector (EV) or JunB 

expression construction (MOI = 1). e, Clonogenic assay of SKMEL28 cells from experiment 
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d. f, SKMEL28 BRAFi-resistant (SK28-BR), MEKi-resistant (SK28-MR), and BRAFi- and 

MEKi-resistant (SK28-BMR) cell lines were transduced with an empty (EV) or a full-length 

MITF (MITF) expression vector and treated with DMSO or the indicated MAPKi for 96 

hrs before western blot analysis. g, SK28-BR, SK28-MR, and SK28-BMR were transduced 

with an empty (EV) or a full-length MITF (MITF-ORF) expression vector. After selection, 

the cell lines were seeded at 10,000 cells/ml and treated with DMSO or the specific MAPKi 

therapy to which they evolved resistance. The drug was refreshed every 72hrs. After 10 

days, the cells were counted, and the MAPKi counts were normalized to the DMSO counts. 

Two-tailed unpaired t-test, p-values included in figure. Data are presented as mean ± SEM. 

a, c-g, These data represent three independent experiments (n =3).
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Fig 4: Scheduling drug exposure can optimize growth inhibition in dependent cell lines
a, A375 MEKi-resistant (A375-MR), WM793 BRAFi-resistant (WM-BR), SKMEL28 

MEKi-resistant (SK28-MR), and SKMEL28 BRAFi- and MEKi-resistant (SK28-BMR) cell 

lines were mixed with their parental counterparts at a ratio of 18000 resistant: 2000 parental 

cells and were treated with 1 μM of drug as described for 9 days before counting. Two-tailed 

unpaired t-test, p-values included in figure. Drug dependent cell lines are indicated by red 

font. b, Schematic of five different drug schedules: A) 100% Drug Off (DMSO), B) 100% 

Drug On (1 μM PLX4720), C) random periodic schedule, D) Optimal schedule up front, and 

E) Optimal schedule split into two epochs. c, (Left) 2,000 parental and 18,000 SKMEL28 

BRAFi-resistant cells and (Right) 2,000 parental and 18,000 A375 BRAFi-resistant cells 

treated according to the schematic in b. On the ninth day, cells were counted. One-way 
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ANOVA with Tukey’s multiple-comparison test. p-values; ns, not significant, * <.05, *** 

<.01, and **** <0.0001. d, The data represent nine independent experiments (n =9) d, 
SKMEL28 parental (EGFRnull) and BRAFi-resistant (EGFRhigh) populations were mixed 

and treated with continuous DMSO (100% Drug Off) or continuous 1 μM PLX4720 (100% 

Drug On) for 20 days before splitting into the specified drug treatment schedule. (Left) Cell 

surface expression of EGFRhigh populations on every split day of the experiment. (Right) 

Estimated cell counts on every split day of the experiment. e, Empirically constrained 

simulations show the optimal fraction of time exposed to the drug as the ratio of sensitive 

to drug dependent cells and total treatment time is varied. f, Algorithm predicted optimal 

percent drug holiday as total treatment time increases. The optimal asymptote is represented 

with a dashed line. g, A mixture of 2,500 parental and 7,500 SKMEL28 BRAFi-resistant 

cells were treated with the indicated schedule of 1 μM PLX4720 24 hours later. The 

algorithm-predicted optimal ('winning') schedule is indicated along the x-axis, and time 

points that conform to predicted values are indicated with an asterisk. a, d, g These data 

represent three independent experiments (n =3). a, c-d, g Data are presented as mean ± 

SEM.
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Fig 5: Optimal scheduling can be approximated with a mixed cell population of unknown growth 
rates
a, A mixture of the specified ratios of UACC62 cells were treated with 1 μM PLX4720 

at the indicated schedules 24 hours later. Cells were counted on day 9. One-way ANOVA 

with Tukey’s multiple-comparison test. p-values; **** <0.0001. The data represent six 

independent experiments (n =6) b, Using empirically constrained simulations, we plot the 

total population count as the fraction of non-dependent resistant cells varying from 0% 

to 100% of the resistant population. c, A cartoon schematic of the blind adaptive therapy 

algorithm. d, (Top) Using empirically measured growth rates, we simulate the fraction 

of time spent exposed to a drug following the blind adaptive therapy (solid red line) 

and compare it to the true optimal (dotted black line) as a function of how frequently 
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population-level growth rates can be measured. (Bottom) The same simulations as above 

but now showing the final cell count of the population (solid red line) is compared to 

what is projected from the optimal schedule (black dotted line). e, Results of the blind 

adaptive therapy experiment. Cell counts over time were recorded, and the shaded red 

region highlights the time the drug was applied. f, Growth rates for each schedule at the 

indicated time points. The growth rate of parental SKMEL28 cells in DMSO (solid blue 

line) and BRAFi (blue dashed line) is indicated. Arrows indicate time points when the 

treatment condition was changed due to the measurement. The growth rate of PLX-resistant 

pooled SKMEL28 cells in 1 μM PLX4720 (solid red line), and DMSO (red dashed line) 

is indicated. The red region highlights the period the drug was applied. g, The PLX4720 

GI50 values of the ending cell populations in e compared to the PLX4720 GI50 values of 

the indicated known mixtures of parental and resistant SKMEL28 cells. e, g, These data 

represent three independent experiments (n =3). a, e-g, Data are presented as mean ± SEM.
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Fig 6: Optimal schedules derived from a well-mixed model approximate those derived from an 
agent-based model incorporating cell turnover, spatial competition, and carrying capacity
a, Representative ABM simulations depicting 0% drug treatment, 40% drug treatment, and 

100% drug treatment schedules for one drug cycle, or 9 days. Blue cells (lines) represent 

sensitive cells while yellow cells (lines) represent resistant and dependent cells. Cell death/

turnover is equal for all cell types and drug concentrations and is equal to half the sensitive 

populations drug-free growth rate. b, Similar to a but with 25 replicates and additional 

treatment schedules (0, 20, 40, 60, 80, 100 percent time in drug). ABM simulations (black 

dots, box and whisker plots) show broad agreement with the well-mixed model experimental 

model prediction (blue line). The predicted well-mixed optimal (red vertical line) captures 

the simulations well. Data is presented as such; mean is center solid line and the 95% 
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confidence interval is the shaded band above and below the mean c, Simulations similar to 

a and b, but the simulations continue for 3, 5, and 10 cycles of treatment (each cycle is one 

9-day schedule). d, Using the data from c we calculate the optimal treatment after each 9 

day treatment schedule and how it varies as the populations compete for space. This result is 

deemed the “spatial optimal.” e, Simulations comparing the total population size over time 

using the well-mixed optimal, spatial optimal, 100% drug, and 0% drug. f, Comparison of 

total cells after 12 cycles (blue dotted line in e, the last cycle before the worst condition 

reaches carrying capacity) reveals an ~8% decrease in cell count of the spatial optimal 

in comparison to the well-mixed optimal. g, Comparison of the time to reach treatment 

escape (grey horizontal line in e) reveals the spatial optimal extends treatment success for 

an additional ~8%. b, c, Box plot elements are defined as follows: centre line, median; box 

limits, upper and lower quartiles; whiskers, 1.5 × interquartile range.
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