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ABSTRACT: Non-Newtonian fluid flow is significant in engineering and biomedical applications such as
thermal exchangers, electrical cooling mechanisms, nuclear reactor cooling, drug delivery, blood flow
analysis, and tissue engineering. The Caputo operator has emerged as a prevalent tool in fractional
calculus, garnering widespread recognition. This research aims to introduce a novel derivative by merging
the proportional and Caputo operators, resulting in the fractional operator known as the constant
proportional Caputo. In order to demonstrate this newly defined operator’s dynamic qualities, it was
employed in the analysis of the unsteady Casson flow model. In addition, the current work shows an
analytical analysis to determine the Soret effect on the fractionalized MHD Casson fluid over an
oscillating vertical plate. Fractional partial differential equations (PDEs) are used to formulate the
problem along with IBCs. The introduction of appropriate nondimensional variables converts the PDEs
into dimensionless form. The precise solutions to the fractional governing PDEs are then determined by
the Laplace transform method. Velocity, concentration, and temperature profiles; the impacts of the
Prandtl number; fractional parameter β and γ; and Soret and Schmidt numbers are graphically depicted.
The profiles of temperature, concentration, and velocity rise with rising time and fractional parameters. Interestingly, as the Casson
flow parameter is higher, fluid velocity decreases closest to the plate but increases away from the plate. Tables showing the findings
for the skin-friction coefficient, Sherwood, and Nusselt numbers for a range of flow-controlling parameter values are provided.
Furthermore, an investigation is undertaken to compare fractionalized and ordinary velocity fields. The results suggest that the
fractional model employing a constant proportional derivative exhibits a quicker decay than the model incorporating conventional
Caputo and Caputo-Fabrizio operators.

1. INTRODUCTION
Heat and mass transfer processes hold immense significance
from an industrial perspective, captivating the attention of
numerous researchers and scientists. In the realm of modern
technologies and diverse industrial applications, the theory of
non-Newtonian fluids exerts a profound influence due to the
limitations of Newtonian fluid models in capturing a wide
range of flow characteristics. Non-Newtonian fluids exhibit
complex relationships involving shear strain rate and stress,
transcending the simplistic assumptions of Newtonian fluid
models. The theory of non-Newtonian fluids finds significant
application in contemporary engineering, namely, within the
petroleum sector, where it plays a crucial role in extracting
crude oil from various petroleum reservoirs. In contrast to
Newtonian fluids, whose properties often prove inadequate,
non-Newtonian fluids demand the development of more
sophisticated models to accurately represent their intricate
behavior. The significance of non-Newtonian fluids has grown
exponentially in recent decades, particularly within the research
community. These fluids boast a vast array of ever-expanding
applications in various industrial sectors, including large-scale
heating and cooling systems, plastic extrusion, polymer

processing, oil pipeline friction reduction, well drilling, fluid
friction minimization, biological materials, flow tracing, plastic
foam processing, biomedical flow analysis, food processing
industries, lubrication processes, emulsions, chemical process-
ing, slurries, and mud handling.

Numerous scientists have dedicated their efforts to studying
non-Newtonian fluids, considering a variety of fluid geo-
metries. For this reason, advancement and improved quality of
life are greatly aided by the modeling and simulation of non-
Newtonian fluid flow processes. Researchers have investigated
a diverse range of non-Newtonian fluid models, each with its
own unique computational properties. For instance, while the
power-law model effectively captures viscosity characteristics, it
fails to account for the effects of elasticity. This motivates
researchers and mathematicians to delve deeper into the study
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of these complex fluids. For theoretical research as well as real-
world applications in contemporary engineering, a methodical
examination of these fluid flow models is crucial.1−4

There have been several rheological models proposed in
order to comprehend the characteristics of flow and heat
transmission. Casson flow model5 is one of them. This model
does not satisfy Newton’s law of viscosity which was created by
Casson (1995). Since Casson fluid’s characteristics relate to
the shear stress relation, it is classified as a non-Newtonian
fluid. Blood, tomato juices, soup, and juice are a few examples
of Casson fluids. Inextricably linked to this model are some
freeze flows. Yield stress may be seen in this model. Dash et al.6

investigated how yield pressure affects the motion of a Casson
flow in a comparable permeable medium confined in a tube.
Fluid with homogeneous and heterogonous reactions is
investigated in refs 7−10.

Shashikumar et al.11 was taken into consideration in order to
analyze the effects of Casson nanofluids nonlinear flow among
plates that are held side by side. Hayat et al.12 studied non-
Newtonian Casson flow with magnetohydrodynamics with the
impact of Dufour and Soret. This model, along with a variety
of flow characteristics and combinations, has been employed
by several academics13−15 to achieve a variety of objectives.
Fractional models have a few drawbacks since the single Kernel
encountered several issues throughout the modeling process.
In addition to extending fractional integrals, Caputo and
Riemann−Liouville developed the idea of singular Kernel-
based fractional derivative operators.

New fractional operators have been introduced in order to
address this issue like the fractional derivative of Prabhakar,
Caputo−Fabrizio, Atangana−Baleanu, and some others.16,17

Baleanu et al.18 worked with the fractional operator constant
proportional Caputo (CPC); the Riemann−Liouville integral
and Caputo fractional derivative are combined to produce this.
Yavuz et al.19 offered the precise solution and investigation of
an operator for a Caputo fractional specified a second grade
fractionalized fluid. Caputo and Fabrizio20 discovered novel
fractional derivatives enhanced by various scientists to solve
practical issues. There are some important references for
fractional calculus.21−24

Numerous other scientific disciplines, including mathe-
matics, physics, geophysics, biology, etc., have also adopted
the usage of fractional order derivatives. These areas are
examined in refs 25−28. Tamoor et al.29 studied the stretching
cylinder to look at how the MHD affects the flow of the
Casson fluid. Using the stationary motion of a Newtonian flow,
Nadeem et al.30 examined the influence of an MHD on a
curvilinear surface. A time-dependent micropolar fluid and a
curved sheet were used in the investigation. Saleh et al.31

investigated the impact of injection or suction. Today’s food
companies criticize the Casson flow model. Casson’s flowing
model was used by the cocoa and chocolate manufacturing
sectors to show how chocolate behaves rheologically. Addi-
tionally, in modern times, the rheological model for human
blood is distributed using the Casson model. Casson fluid
flows over various geometries in a variety of conditions are
mentioned in refs 32−34.

Researchers Damseh et al.35 investigated coupled mass and
heat transfer via free convection of a micropolar, viscous, heat-
generating or -absorbing fluid flow near a continuously moving
vertical porous infinitely long surface in the presence of a first-
order chemical reaction. For unsteady coupled mass and heat
transfer via mixed convection flow over a vertical cone rotating

in an ambient liquid with a time-dependent angular velocity,
Chamkha and Rashad36 investigated the Soret and Dufour
effects in the presence of a MHD and chemical reaction.
Takhar et al.37 discuss the MHD flow across a moving plate in
a fluid that rotates with free stream velocity, Hall effects, and a
magnetic field.

Chamkha and Khaled38 studied the issue of simultaneous
mass and heat transfer by free convection from a semi-infinite
inclined plate when an external magnetic field is present and
internal heat production or absorption effects are described.
The influence of thermophoresis and heat generation or
absorption was explored in the Chamkha and Issa39 study of
heat and mass transport across a semi-infinite, permeable flat
surface in the setting of continuous, two-dimensional, laminar,
hydromagnetic flow. Chamkha and Khaled40 showed hydro-
magnetic coupled mass and heat transfer aided by free
convective from a porous surface housed in a fluid-saturated
porous medium. Kumar et al.41 explored an electrically
conducting, incompressible, and viscous liquid for mixed
convective boundary layer flow on a vertical plate amid thermal
radiation and an induced magnetic field. In Chamkha,42

coupled heat and mass transport in the presence of
electromagnetic radiation and a magnetic field are emphasized
together with free convective boundary layer flow across a
permeable isothermal truncated cone. Some useful discoveries
may be found in refs 43−48.

In the current study, an exact approach is applied to analyze
the constant wall concentration and temperature for an
unsteady Casson fluid boundary layer flow across a vertically
accelerating plate. The set of partial differential equations
(PDEs) is analytically solved utilizing the Laplace method. The
influence of several dimensionless quantities on concentration,
velocity, and heat is thoroughly investigated. Subsequently,
Stehfest’s and Tzou’s algorithms are used to invert the
transformed results. The solutions obtained for the problem
are graphically presented, and the influence of relevant
parameters is elucidated using graphs. The influence of the
Soret effect is investigated by varying parameters in the
governing equations. The concentration, temperature, and
velocity profiles obtained using the fractional derivative exhibit
a more pronounced decay compared to those obtained with
the ordinary derivative. This study is innovative in that it
applies the new fractional hybrid operator, the CPC fractional
derivative,18 and expands on the work49 for the Casson flow.
As far as we are aware, no such conclusion has been achieved
for the Casson fluid generated by the Soret effect with CPC
fractional derivatives. According to this, the fractional
derivative is a more suitable choice for achieving controlled
velocity, mass, and heat profiles. The present work holds
significant potential for various applications, including the
design of geothermal systems, electronic materials, and solar
energy systems.

2. MATHEMATICAL FORMULATION
The flow of a Casson flow that is incompressible over an
infinitely accelerated vertical plate is examined here. Flow is
contained inside the region of y > 0, where y is a
perpendicularly measured coordinate to the plate. At initial
rest, both the liquid and plate have a constant temperature of
T∞ at t = 0. A speed At, where A denotes the oscillation plate,
causes the plate to begin accelerating in its plane at time t > 0.
The plate’s temperature rises simultaneously to Tw and is then
kept constant. Temperature and velocity are dependent on
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time and space variables y and t, as shown in Figure 1.
Following are the forms of the momentum and heat equations
when considering unidirectional flow and Boussinesq’s
approximation49,50

Momentum equation
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where the fluid’s velocity is u, fluid temperature is T, C is the
fluid concentration, the density of fluid is ρ, the dynamic
viscosity is μ, the coefficient of thermal expansion βT, and the
mass expansion coefficient βC, electrical conductivity is σ, the
constant pressure specific heat at a fixed pressure is Cp, and the

identical strength of magnetic field B0, k is the heat
conductivity, while chemical molecular diffusivity is D.

The modified typical Ohm’s law for the greater magnitude
magnetic field is expressed as follows51−54
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Equation 9 is constituent parts are
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+ =J J B u(1 ) y xi e e 0 (11)

On solving eqs 10 and 11, we get

= +J B u( )x 0 2 1 (12)

= +J B u( )y 0 2 1 (13)

the ion slip and Hall effects are neglected in the governing
equation because according to our flow supposition, this effect
is very minute so it cannot be considered.

By inserting the dimensionless variables given below
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into eqs 1−8, we have
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where Sr is Soret effect, Gm is mass Grashof number, Gr is
Grashof number, Sc is the Schmidt number, M is the magnetic
parameter, and Pr is the Prandtl number. The nondimensional
IBCs is

= = =
=

t u t t

t

At 0, ( , ) 0, ( , ) 0,

( , ) 0 (20)

Figure 1. Geometry of flow and coordinate system.
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3. FRACTIONAL MODEL WITH CPC FRACTIONAL
DIFFERENTIAL OPERATOR

We will create a fractional modeling of the physical issue in this
part. The definition and examples of the novel fractional
derivative are found in ref 18
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CPC’s Laplace transform is presented in ref 18
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We obtain the fractional PDEs
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Substituting eq 26 in eq 25 and eq 28 in eq 27, we get
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The fractional PDEs presented in eqs 29 and 30 are
effectively solved using the Laplace technique, a robust
technique employed to obtain analytical solutions for initial
value problems.
3.1. Solution of Temperature Equation. With the use of

the Laplace transform technique, we will solve energy eq 29
with boundary constraints (20)2−(21)2 in this section.
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Assuming the following IBCs
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Result of eq 31 subject to eq 32, we have
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Equation 33 has an exponential expression, and the square
root term is complex, hence it is impossible to obtain its direct
inverse Laplace transform. To analytically obtain the required
result, we thus write it in an alternative form as
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invert Laplace transform to eq 34 gives
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which is the final solution for the temperature field.
3.2. Solution of Concentration Equation. Apply

Laplace method on eq 30, we get
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Rearrange the above equation
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The concentration field solution to eq 37 satisfies conditions
(38), we have
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In summation notation, eq 39 is represented as
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Inverse Laplace transformation of above eq 40 results in

= + +
[ ] +

! ![ ] +

+
[ ] +

! ![ ] +

= =

+

+

= =

+

+

i
k
jjj y

{
zzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

i
k
jjj y

{
zzz

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

( )
( ) ( )

( )
( ) ( )Pr

k t n

m n k n

Pr

Pr k t l

k l k l

( , ) 1
ScPrSr

Sc
1

(Sc) ( ) ( 1) ( )

( ) 1 (1 )

ScPrSr
Sc

1
( ) ( ) ( 1) ( )

( ) 1 (1 )

m n

m m n n m n m

m n m m

k l

k k l l k l k

k l k k

1 0

/2
1

(1 ) /2
2

0
/2

2 2

1 0

/2
1

(1 ) /2
2

0
/2

2 2 (41)

3.3. Solution of Velocity Equation. Using CPC frac-

tional derivative and utilizing the Laplace method to eq 15

with constraints (20)1 and (21)1, we obtain
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Putting values of (ξ,s) and θ̃(ξ,s) in eq 42, we get
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Rearrange the above equation
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satisfy

= =u u s
s

( , 0) 0, (0, )
1
2 (45)

We obtain the velocity profile’s using eq 45 in eq 44
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Using Zakian’s procedure

=
=

lmo
no

i
k
jjj y

{
zzz

|}o
~o

f t
t

S F
t

( )
2

Re
l

n

l
l

1 (47)

for the inverse Laplace transform form of eq 46. Final
calculation for the velocity field is then obtained. Inverse
Laplace transform by Zakian’s method is described in refs 55
and 56.

4. RESULTS AND DISCUSSION
The Soret effect in the magnetohydrodynamics flow of Casson
fractional flow over an accelerated infinite vertical plate in the
current study, considering generalized mass and heat transfer
through a permeable media. The study presents semianalytical
findings for the velocity fields and exact findings for the mass
and heat. Additionally, the physical impact of the relevant
parameters is illustrated through graphical representations of
the heat, mass, and velocity fields.

Figure 2 illustrates the impacts of the Grashof number Gr.
As we raise the value of Gr, velocity fluid rises. Gr measures the
relationship between the heat buoyant force to the viscous
force. When Gr = 0, no convection flow exists. If Gr is more
than zero, the plate is chilled outside; if Gr is less than zero, the
plate is heated externally. Grashof number controls the flow
regime in natural convection. Gm effects on the velocity profile
is depicted in Figure 3. Velocity is understood to be quicker
with higher Gm levels. The speed of the velocity increases
because Gm is connected to buoyancy forces, which increase
natural convection. In Figure 4, a drop in fluid velocity is
evident along with an increase in the Pr (Prandtl number). The
temperature gradient would be reduced by increasing the
fluid’s heat diffusivity by rising the Pr value. Therefore, the loss

of thermal kinetic energy causes a drop in velocity fluid. When
the Schmidt number, Sc, varies, Figure 5 depicts the fluid’s
behavior. This figure shows that there is a correlation between
a rise in the Schmidt number and a fall in fluid velocity. The
Schmidt number is the ratio between kinematic viscosity and
molecular diffusion. Molecular diffusion tends to decrease as
the Schmidt number increases, which slows down fluid
movement.

Figure 6 shows how ω affects the velocity field. Increasing ω
causes the drag forces to become firmer, which tends to
diminish the velocity field, which causes the value of the
velocity fluid to decay. Figures 7 and 8 show the influence of
velocity fractional parameter profiles for small and large time
durations. As we increase the fractional parameter values for a
short time period, as shown in Figure 7, the fluid velocity
decreases. The velocity rises for large time durations, as seen in
Figure 8. This may be explained physically since increasing the
β and γ increases the thermal and momentum boundary layers,
which in turn rises the velocity distribution for a significant
amount of time. The thermo-diffusion or Soret effect (Sr) over

Figure 2. For different Gr values, velocity profiles.

Figure 3. For different Gm values, velocity profiles.
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the velocity field is discussed in Figure 9. Because of the rising
fluctuations in the Sr, an augmenting flow pattern is seen. In
the flow domain, the concentration gradient is influenced by
the temperature gradient, adding to the mass flux. As a result,
when the Sr value increases, there is a corresponding increase
in the mass flux, which causes the flow current to rise and the
flow speed to increase accordingly.

The Pr is used to calculate the thickness of the thermal
boundary layer. The drop in heat diffusion rate is brought on
by the increase in Pr which dominates momentum diffusivity
over fluid movement. As a consequence, Pr increases, thermal
boundary layer thickness diminishes, and heat profile becomes
lower, as seen in Figure 10. Figures 11 and 12 show, for both
short and long times, the impact of β on temperature profiles.
When time is short, the fluid temperature drops as the γ values
are increased (see Figure 11). The temperature rises as the
amount of time increases (see Figure 12).

In Figure 13, it is intended to investigate how the Schmidt
number has an impact on concentration. By keeping the
Schmidt number’s value constant while varying the other

factors, it has been discovered that for larger Schmidt number
values, accordingly, the field variable concentration cannot be
increased. Since this is the situation, increasing the Sc values
increases the viscous force that affects fluid flow, hence
lowering the concentration flow. Figures 14 and 15 show the
impact of γ on mass profiles when time has both small and
large values. When time is short, we increase γ values, and the
fluid concentration decreases (see Figure 14). When time is
big, the concentration rises (see Figure 15). The graphical
behavior of Sr on temperature is shown in Figure 16. This
figure shows that temperature rises by raising the values of Sr.

The comparison of the velocity and temperature distribution
between the current study and Khalid et al.49 is shown in
Figures 17 and 18, respectively. If we take fractional
parameters, α = 1, k1 = 0, ko = 1, Gm = 0, K = 0, M = 0,
and Sr = 0 in Khalid et al.,33 the fact that the velocity profiles
are identical demonstrates the validity of the current work.
Additionally, Figure 19 compares the results of the current
study with other fractional operators, Caputo and Caputo−
Fabrizio, utilized in Nehad et al.50 in the absence of β = ∞, Gm

Figure 4. For different Pr values, velocity profiles.

Figure 5. For different Sc values, velocity profiles.

Figure 6. For different ω values, velocity profiles.

Figure 7. Effect of distinct fractional values for large time.
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= 0, K = 0, M = 0, and Sr = 0. The fluid profiles are the same as
seen in Figure 20 if α is set to 1. A Casson fluid with a CPC
fractional derivative is the best option, according to the figures,
to improve fluid motion.

By raising the fractional parameter values, as shown in
Tables 1−3, skin friction, heat, and mass transfer rates can all
be improved.

5. SKIN FRICTION
The non-dimensional skin friction is given in eq 48

=S
u t(0, )

k (48)

6. NUSSELT NUMBER
According to the Nusselt number, the rate of heat transport is
provided by eq 49

=Nu
t(0, )

(49)

7. SHERWOOD NUMBER
Equation 50 provides the mass transfer rate expressed in terms
of the Sherwood number.

=Sh
t(0, )

(50)

Gr, Gm, Pr, Sc, and M are among the variable parameters
whose numerical values are used in the study.

The Gr is a nondimensional quantity that is utilized to
describe spontaneous or free convection flow. The particular
application determines the typical values for Gr. It can vary
between 104 and 1012 for flows of vertical plates. It can be
anywhere between 108 and 1012 for horizontal plate flows. It
may differ considerably more for enclosures and other
geometries. The Gm is a nondimensional quantity that

Figure 8. Effect of distinct fractional values for small time.

Figure 9. For different Soret values, velocity profiles.

Figure 10. Effect of distinct fractional values for small time.

Figure 11. Temperature profiles for large time.
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describes natural convection induced by buoyancy forces
arising from density variations induced by mass gradients. The
Gm value range is comparable to that of the Gr for free
convection. In typical applications, Gm can span from 10,000
to 1012. A dimensionless quantity known as the Prandtl
number (Pr) indicates the ratio of heat diffusivity to the
diffusivity of momentum. The Pr typical values vary depending
on the fluid under consideration. It is around 0.7 for air, about
7 for water, and anything from 10 to 100 for oils. A
dimensionless quantity called the Schmidt number (Sc) is used
to quantify how momentum and mass diffusivity interact in a
fluid. The fluid under consideration affects the typical values
for Sc as well. This equals 600 for water and about 0.7 for air.
The magnetic number (M), a dimensionless quantity, is used
to describe how a magnetic field affects a fluid’s flow. The
magnetic field’s strength and the fluid’s properties determine
the typical values for M. It is possible for it to be between 10−6

and 10−3 for light magnetic fields and between 1 and 10 for
strong magnetic fields.

Table 4 below lists the ranges of the various parameters that
were employed in this investigation.57−59

8. CONCLUSIONS
This work employs precise results for an unsteady Casson fluid
boundary layer flows over a vertical plate that is oscillating and
has constant wall heat and mass. The Laplace transform is used
to solve the nondimensional governing equations. Measured
values of temperature, concentration, and velocity are shown
graphically. The following parameter includes the Casson
parameter, Prandtl number, Grashof number, Schmidt number,
Soret number, mass Grashof number, and fractional parameter
as well as their impacts on velocity, concentration, and
temperature.

• The results of this study can be used to design more
efficient heat exchangers and chemical reactors.

• When Gr, Gm, β, and γ are increased, velocity rises;
however, when Pr, Sc, and ω are increased, velocity falls.

Figure 12. Temperature profiles for small time.

Figure 13. Concentration profiles for distinct Sc values.

Figure 14. Concentration profiles for large time.

Figure 15. Concentration profiles for small time.
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• Temperature rises when time and fractional parameters
are increased but decreases as Pr is raised.

• Concentration rises when time and fractional parameters
are increased but decreases as Sc is raised.

• In biomedical engineering, the Soret effect in Casson
fluids can be relevant for drug delivery systems. By
exploiting the concentration gradients established by the
Soret effect, controlled release of drugs or therapeutic
agents can be achieved in targeted regions. The non-
Newtonian behavior of the Casson fluid can further
influence the flow behavior and enhance the efficiency of
drug delivery.

• In the oil and gas industry, the Soret effect in Casson
fluids can be significant in enhanced oil recovery (EOR)
techniques. EOR methods aim to improve the extraction
of oil from reservoirs, and the Soret effect in Casson
fluids can help enhance the displacement of oil by
injecting fluids with specific temperature profiles. This

can lead to improved oil recovery rates and increased
production efficiency.

• The Soret effect in Casson fluids can also impact heat
transfer systems. By manipulating the temperature
gradient, concentration gradients can be established,
which can modify the rate at which heat is transferred
through the fluid. This effect can be utilized in
applications such as cooling systems, heat exchangers,
and thermal management devices to improve thermal
transfer efficiency.

• In the food sector, the Soret effect in Casson fluids can
find uses in processes such as thermal sterilization and
pasteurization. By leveraging the concentration gradients
established by the Soret effect, heat can be distributed
more effectively within the fluid, leading to improved
heat treatment processes and preservation of food
products.

Figure 16. Concentration profiles for distinct Sr values.

Figure 17. Velocity distribution for comparison of our work with
Khalid et al.49 as α = 1, k1 = 0, k0 = 1, Gm = 0, K = 0, M = 0, and Sr =
0.

Figure 18. Temperature distribution for comparison of our work with
Khalid et al.49 as α = 1, k1 = 0, k0 = 1, Gm = 0, and Sr = 0.

Figure 19. Comparisons between different fractional derivatives α =
0.5.
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Table 1. Skin Friction

β, γ t = 1 t = 2 t = 3 t = 4

0.1 0.071 0.097 0.116 0.132
0.2 0.076 0.103 0.124 0.141
0.3 0.078 0.106 0.128 0.146
0.4 0.080 0.109 0.132 0.151
0.5 0.083 0.113 0.136 0.166
0.6 0.085 0.117 0.141 0.161
0.7 0.088 0.120 0.145 0.166
0.8 0.091 0.124 0.150 0.172
0.9 0.094 0.128 0.155 0.177
1.0 0.097 0.132 0.160 0.182

Table 2. Nusselt Number

β t = 1 t = 2 t = 3 t = 4

0.1 1.151 1.177 1.196 1.212
0.2 1.156 1.183 1.204 1.221
0.3 1.158 1.186 1.208 1.226
0.4 1.160 1.189 1.212 1.231
0.5 1.163 1.193 1.216 1.236
0.6 1.165 1.197 1.221 1.241
0.7 1.168 1.200 1.225 1.246
0.8 1.171 1.204 1.230 1.252
0.9 1.174 1.208 1.235 1.257
1.0 1.177 1.212 1.240 1.262

Table 3. Sherwood Number

γ t = 1 t = 2 t = 3 t = 4

0.1 0.067 0.095 0.114 0.131
0.2 0.073 0.102 0.123 0.142
0.3 0.076 0.106 0.128 0.147
0.4 0.079 0.110 0.133 0.152
0.5 0.082 0.115 0.138 0.158
0.6 0.085 0.119 0.143 0.164
0.7 0.089 0.124 0.149 0.170
0.8 0.092 0.128 0.154 0.177
0.9 0.096 0.133 0.160 0.183
1.0 0.100 0.138 0.166 0.189

Table 4. Ranges of the Various Parameters Employed in
This Investigation

name of parameters ranges

Gm 3.50−7.20
Gr 2.50−5.60
M 1.50−3.50
Pr 2.20−4.20
Sc 2.10−4.30
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