Abstract
When intact Kalanchoë plants are illuminated NADP-linked malic dehydrogenase and three enzymes of the reductive pentose phosphate pathway, ribulose-5-phosphate kinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and sedoheptulose-1,7-diphosphate phosphatase, are activated. In crude extracts these enzymes are activated by dithiothreitol treatment. Light or dithiothreitol treatment does not inactivate the oxidative pentose phosphate pathway enzyme glucose-6-phosphate dehydrogenase. Likewise, neither light, in vivo, nor dithiothreitol, in vitro, affects fructose-1,6-diphosphate phosphatase. Apparently the potential for modulation of enzyme activity by the reductively activated light effect mediator system exists in Crassulacean acid metabolism plants, but some enzymes which are light-dark-modulated in the pea plant are not in Kalanchoë.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson L. E. Activation of pea leaf chloroplast sedoheptulose 1,7-diphosphate phosphatase by light and dithiothreitol. Biochem Biophys Res Commun. 1974 Aug 5;59(3):907–913. doi: 10.1016/s0006-291x(74)80065-3. [DOI] [PubMed] [Google Scholar]
- Anderson L. E., Advani V. R. Chloroplast and cytoplasmic enzymes: three distinct isoenzymes associated with the reductive pentose phosphate cycle. Plant Physiol. 1970 May;45(5):583–585. doi: 10.1104/pp.45.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. E., Avron M. Light Modulation of Enzyme Activity in Chloroplasts: Generation of Membrane-bound Vicinal-Dithiol Groups by Photosynthetic Electron Transport. Plant Physiol. 1976 Feb;57(2):209–213. doi: 10.1104/pp.57.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson L. E., Duggan J. X. Light modulation of glucose-6-phosphate dehydrogenase: partial characterization of the light inactivation system and its effects on the properties of the chloroplastic and cytoplasmic forms of the enzyme. Plant Physiol. 1976 Aug;58(2):135–139. doi: 10.1104/pp.58.2.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan B. B., Schürmann P., Kalberer P. P. Ferredoxin-activated fructose diphosphatase of spinach chloroplasts. Resolution of the system, properties of the alkaline fructose diphosphatase component, and physiological significance of the ferredoxin-linked activation. J Biol Chem. 1971 Oct 10;246(19):5952–5959. [PubMed] [Google Scholar]
- Johnson H. S. NADP-malate dehydrogenase: photoactivation in leaves of plants with Calvin cycle photosynthesis. Biochem Biophys Res Commun. 1971 May 21;43(4):703–709. doi: 10.1016/0006-291x(71)90672-3. [DOI] [PubMed] [Google Scholar]
- Kelly G. J., Zimmermann G., Latzko E. Light induced activation of fructose-1, 6-bisphosphatase in isolated intact chloroplasts. Biochem Biophys Res Commun. 1976 May 3;70(1):193–199. doi: 10.1016/0006-291x(76)91127-x. [DOI] [PubMed] [Google Scholar]
- Levi C., Gibbs M. Carbon dioxide fixation in isolated kalanchoe chloroplasts. Plant Physiol. 1975 Jul;56(1):164–166. doi: 10.1104/pp.56.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Viswanathan P. N., Srivastava L. M., Krishnan P. S. Diurnal Variations in Some Enzymes of Carbohydrate Metabolism in Tapioca Leaves. Plant Physiol. 1962 May;37(3):283–287. doi: 10.1104/pp.37.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]