Skip to main content
. 2024 Mar 7;11:10. doi: 10.1186/s40662-024-00376-3

Table 3.

A summary table of artificial intelligence (AI) applications in segmentation of corneal endothelium and nerves, in reverse chronological order

Year Authors Imaging modality Sample size (eyes) Study population Outcome measures AI algorithms Diagnostic performance Validation model
Corneal endothelium
 2023 Karmakar et al. [75] Konan CellCheck XL 612 Healthy and diseased eyes Segmentation of endothelial cells Mobile-CellNet CNN Mean absolute error: 4.06% Hold-out validation
 2022 Qu et al. [136] IVCM 97 Healthy, FECD and corneal endotheliitis eyes Segmentation of endothelial cells CNN PCC: 0.818–0.932 Hold-out validation
 2020 Canavesi et al. [77] GDOCM 10 Eye bank Segmentation of endothelial cells CNN Correlation: 0.91–0.94 Cross validation
 2019 Bennett et al. [80] JDS Uniphase, TOMEY TMS-5 10 Healthy eyes Evaluation of corneal thickness CNN

RMSE: 0.045–0.048

Acc: 84.82%–89.26%

Hold-out validation
 2019 Vigueras-Guillén et al. [137] Topcon SP-1P 738 Patients with Baerveldt glaucoma device and DSAEK Segmentation of endothelial cells CNN Mean absolute error: 4.32%–11.74% Hold-out validation
 2019 Daniel et al. [70] Topcon SP-3000 385 Database of healthy, endothelial disease and corneal graft eyes Segmentation of endothelial cells U-Net CNN

PCC: 0.96, Sens: 0.34%

Precis: 0.84%

Hold-out validation
 2018 Fabijańska et al. [73] Specular microscopy 30 Dataset of endothelial cell images Evaluation of corneal thickness U-Net CNN

AUC: 0.92, Dice: 0.86

Mean absolute error: 4.5%

Hold-out validation
 2018 Vigueras-Guillén et al. [76] Topcon SP-1P 103 Dataset of endothelial cell images Evaluation of corneal thickness SVM

Precis: P < 0.001

Acc: P < 0.001

Cross validation
Corneal nerves
 2023 Li et al. [93] HRT-3 confocal microscopy 30 Eyes with slight xerophthalmia Reconstruction of CSNP in images NerveStitcher CNN No validation or qualitative evaluation N.A
 2022 Setu et al. [88] IVCM 197 Healthy and DED eyes Segmentation of CNF and DC U-Net, Mask R CNNs

Sens: 86.1%–94.4%, Spec: 90.1%

Precis: 89.4%, ICC: 0.85–0.95

Cross validation
 2022 Mou et al. [89] HRT-3 confocal microscopy 300 CORN1500 dataset images Grading of corneal nerve tortuosity ImageNet, AuxNet Acc: 85.64% Cross validation
 2021 Zéboulon et al. [95] AS-OCT 607 Healthy and edematous corneas Measurement of edema fraction CNN

Threshold for diagnosis: 6.8%,

AUC: 0.994, Acc: 98.7%

Sens: 96.4%, Spec: 100%

Hold-out validation
 2021 Deshmukh et al. [96] ASP 504 Genetically confirmed GCD2 patients Segmentation of cornea lesions U-Net, CNN

IoU: 0.81

Acc: 99%

Cross validation
 2021 Salahouddin et al. [138] CCM 534 Healthy and type I diabetic eyes DPN detection U-net CNN

κ: 0.86, AUC: 0.86–0.95

Sens: 84%–92%, Spec: 71%–80%

Hold-out validation
 2021 McCarron et al. [86] HRT-3 confocal microscopy 73 Healthy and SIV-infected macaque eyes Characterize difference in CSNP in acute SIV infection deepNerve CNN SIV infection reduced CNFL and fractal dimension (P = 0.01, P = 0.008) N.A
 2021 Yıldız et al. [139] HRT-3 confocal microscopy 85 Healthy and chronic ocular surface pathology eyes Segmentation of CSNP GAN, U-Net CNN

PCC: 0.847–0.883

AUC: 0.8934–0.9439

N.A
 2020 Scarpa et al. [85] CCM 100 Healthy and DPN eyes Classification of DPN and healthy eyes CNN Acc: 96% Cross validation
 2020 Williams et al. [84] CCM 2137 Healthy and DPN eyes Quantification of CSNP, detection of DPN CNN

ICC: 0.656–0.933, AUC: 0.83

Spec: 87%, Sens: 68%

Hold-out validation
 2020 Wei et al. [140] HRT-3 confocal microscopy 139 Healthy eyes Segmentation of CSNP CNS-Net CNN

AUC: 0.96, Precis: 94%

Sens: 96%, Spec: 75%

Hold-out validation

Acc = accuracy; ANFIS = adaptive neurofuzzy inference system; AS-OCT = anterior-segment optical coherence tomography; ASP = anterior-segment photography; AUC = area under curve; CCM = corneal confocal microscopy; CNF = corneal nerve fibers; CNFL = corneal nerve fiber length; CNN = convoluted neural networks; CSNP = corneal sub-basal nerve plexus; DC = dendritic cells; DED = dry eye disease; DPN = diabetic peripheral neuropathy; DSAEK = Descemet stripping automated endothelial keratoplasty; FECD = Fuchs endothelial corneal dystrophy; GDOCM = Gabor-domain optical coherence microscopy; GRBF = Gaussian radial basis function; HIS = hyperspectral imaging; ICC = interclass correlation coefficient; IoU = intersection over union; IVCM = in vivo confocal microscopy; κ = kappa index; N.A. = not available; PCC = Pearson’s correlation coefficient; PEE = punctate epithelial erosions; Precis = precision; RMSE = root mean square error; Sens = sensitivity; Spec = specificity; SVM = support vector machine