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Abstract

The efficacy of antidepressant treatment in late-life is modest, a problem magnified by an 

aging population and increased prevalence of depression. Understanding the neurobiological 

mechanisms of treatment response in late-life depression (LLD) is imperative. Despite established 

sex differences in depression and neural circuits, sex differences associated with fMRI markers 

of antidepressant treatment response are underexplored. In this analysis, we assess the role of 

sex on the relationship of acute functional connectivity changes with treatment response in LLD. 

Resting state fMRI scans were collected at baseline and day one of SSRI/SNRI treatment for 

80 LLD participants. One-day changes in functional connectivity (differential connectivity) were 

related to remission status after 12 weeks. Sex differences in differential connectivity profiles that 

distinguished remitters from non-remitters were assessed. A random forest classifier was used 

to predict the remission status with models containing various combinations of demographic, 

clinical, symptomatological, and connectivity measures. Model performance was assessed with 

area under the curve, and variable importance was assessed with permutation importance. The 

differential connectivity profile associated with remission status differed significantly by sex. 

We observed evidence for a difference in one-day connectivity changes between remitters and 

non-remitters in males but not females. Additionally, prediction of remission was significantly 

improved in male-only and female-only models over pooled models. Predictions of treatment 

outcome based on early changes in functional connectivity show marked differences between 

sexes and should be considered in future MR-based treatment decision-making algorithms.
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1. INTRODUCTION

Major depressive disorder (MDD) is among the most common psychiatric disorders 

affecting almost 300 million people globally [1]. Individuals suffering from MDD have 

a reduced quality of life [2] and significantly increased risk of suicide [3], resulting 

in the third highest disability-adjusted life years of any cause and the highest among 

psychiatric disorders [4]. This impact is felt by people close to the afflicted individuals 

and across society, with an estimated economic burden of $210 billion [5]. In late-life 

depression (LLD), the risks are further amplified, particularly for suicide [6], comorbid 

cardiovascular disease [7], and cognitive impairment [8]. Additionally, treatment for LLD is 

only moderately effective, with multiple trials often required to find the right antidepressant 

medication and less than half of individuals responding to first-line treatment options [9].

Predictors or biomarkers of antidepressant treatment response have the potential to 

significantly reduce the burden of depression [10]. One tool that has been widely employed 

to investigate the neurobiological correlates of treatment response is resting state functional 

magnetic resonance imaging (fMRI) [11]. Measures of resting state functional connectivity 

(FC) are particularly fruitful for examining some of the large-scale networks [12, 13] that 

have been implicated in the pathophysiology of depression [14]: the default mode network 

(DMN), executive control network (ECN), and salience network (SN). Further, the task-free 

nature of resting state fMRI renders it an appealing choice for clinical application due to 

simplicity of acquisition and potential for generalizability [15].

Previous investigations of resting state predictors of treatment response in LLD have 

provided little in the way of consensus, with baseline and post-treatment FC seeded on 

various prefrontal and cingulate regions associated with remission [16]. Complicating the 

issue are apparent sex differences. It is well established that depression is nearly twice as 

prevalent in females than males [17], and that symptomatic profiles show marked difference 

between males and females [18, 19]. However, sex differences in treatment response are 

less conclusive, with most reporting no sex differences or better response in women [20]. 

Furthermore, several large studies have reported significant sex differences in resting state 

FC unrelated to depression [21–23]. Resting state data from the Human Connectome Project 

(HCP) [24] has been shown to reliably classify participants’ sex with the cingulate cortex, 

medial and lateral frontal cortex, temporoparietal regions, insula, and precuneus (all regions 

important to depression and the triple network model) showing the highest discriminatory 

value in one study [22], and the DMN, ECN, and somatomotor networks providing the 

highest discriminatory value in another [23]. While the origin of these discrepancies is 

an open question, there is emerging evidence for various mechanisms [25–28], including 

genetic and endocrine pathways. Despite the apparent evidence for sex differences in 

neurobiology, a recent review of structural and functional MRI-based predictors of treatment 

outcome for depression noted only one study that reported sex differences, focused on 

hippocampal volume [29].

With strong evidence emerging that there are significant sex differences in the brain in 

general and depression specifically, there is a pressing need to investigate how sex influences 

the performance of MRI-derived measures of depression treatment response. While most 
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studies include sex as a predictor or covariate, it is unclear whether such a limited approach 

is sufficient to capture underlying differences. Using data from one new and one previously-

analyzed study investigating neural changes predictive of remission, this analysis is believed 

to be the first explicit investigation of sex differences in prediction of depression treatment 

response with resting state fMRI. With evidence that sex differences in resting state FC 

become more prominent with age [21, 30], this may be particularly important for LLD.

2. METHODS

2.1. Participants

Data was collected at the University of Pittsburgh under two renewals of NIH grant R01 

MH076079, Pharmacologic MRI Predictors of Treatment Response in Late-Life Depression 

(Circuits2, MH076079-07 through -10), and Neural Mechanisms of Monoaminergic 

Engagement in Late-life Depression Treatment Response (NEMO, MH076079-12 through 

-15). This study was approved by the University of Pittsburgh Institutional Review Board. 

All participants provided written informed consent prior to participating in the study.

We recruited 58 and 48 participants for Circuits2 and NEMO, respectively. Inclusion criteria 

were age 55 years or older (Circuits2) and 60 years or older (NEMO), diagnosis of MDD 

with a current major depressive episode as assessed by the Structured Clinical Interview 

for DSM-IV (SCID) for Circuits2 and DSM-V for NEMO (which also allowed for a 

diagnosis of Unspecified Depressive Disorder), Montgomery-Asberg Depression Rating 

Scale [31] (MADRS) greater than 15 for Circuits2 and greater than 12 for NEMO, and 

Mini-Mental State Exam (MMSE) score greater than 21. Exclusion criteria were history 

of mania or psychosis, substance abuse (current or past 3 months), dementia of any 

etiology, medical conditions with known significant effects on mood (e.g., stroke, current 

hypothyroid state), hearing/vision impairment precluding neuropsychological testing, and 

clinical contraindication or history of treatment resistance to venlafaxine (Circuits2) or to 

escitalopram and levomilnacipran (NEMO).

Circuits2 participants were treated for 12 weeks with open-label venlafaxine following 

a placebo lead-in, while NEMO participants were fully randomized to escitalopram or 

levomilnacipran for a treatment phase of 12 weeks. For both studies, the baseline visit 

included consent, SCID, clinical assessments and one hour of MRI. After the MRI, 

participants received the first dose of the medication. The second fMRI was obtained 24 

hours after the first MRI, near the peak central nervous system concentration of the new 

medication (12-18 hours after the first oral dose of each drug). The initial doses were 

standardized: participants received 37.5 mg of venlafaxine, 5 mg of escitalopram, or 20 

mg of levomilnacipram (initial low doses were chosen to limit potential side effects in 

a geriatric population). For Circuits2, venlafaxine was titrated upward weekly by 37.5 or 

75 mg to reach a target dose of 150 mg/day. For NEMO, escitalopram was titrated to 

10 mg escitalopram and levomilnacipram to 40 mg. Further titrations were decided by 

the PIs (Aizenstein/Andreescu) based on clinical response and tolerability. Seven Circuits2 

participants and thirteen NEMO participants did not complete the study and were excluded 

from this analysis. We also excluded participants who were assigned to placebo (n = 3) 

as the NEMO study originally started with a placebo arm that was dropped due to low 
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recruitment that is common in LLD. We also excluded participants who did not complete 

both a baseline and day 1 scan (n = 2) and had excessive in-scanner motion (defined as 

>1/3 of volumes with 0.5mm or greater head jerks, n = 1). This left 51 participants in the 

Circuits2 cohorts and 29 participants in the NEMO cohort (see Figure 1). In both studies, 

participants weekly MADRS data were visually reviewed as well as a review of clinical 

notes to determine remission criteria.

2.2. Clinical Assessments

Basic demographic information was collected for each participant: age, sex, race, and 

education. Depression was assessed with the MADRS [31]. Overall anxiety was assessed 

with the Hamilton Anxiety Rating Scale (HARS) [32]. Additionally, disease burden was 

evaluated with the Cumulative Illness Rating Scale for Geriatrics (CIRS-G) [33].

2.3. Neuroimaging Acquisition

Scans for Circuits2 data were obtained on a 3T Siemens Trio TIM scanner with a 

standard 32 channel birdcage coil. High resolution structural images were collected with 

a T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) sequence with the 

following parameters: repetition time (TR) = 2300 ms, echo time (TE = 3.4 ms), inversion 

time (TI) = 900 ms, flip angle = 9°, in-plane resolution of 224 x 256, 176 axial slices, 

and 1 mm3 isotropic resolution. Resting state data were collected for 5 minutes with a 

T2*-weighted BOLD gradient-echo echoplanar sequence with the following parameters: TR 

= 2000 ms, TE = 34 ms, flip angle = 90°, in-plane resolution of 128 x 128, 28 axial slices, 

and 2 x 2 x 4 mm resolution. Scans for NEMO data were obtained on a 3T Siemens Prisma 

FIT scanner with a standard 64 channel birdcage coil for 15 participants and a 7T Siemens 

Magnetom scanner using a customized 16/32-channel transmit/receive (respectively) head 

coil [34] for 24 participants. High resolution structural images were collected on both 

scanners with a T1-weighted MPRAGE sequence. The parameters for the 3T scan were: TR 

= 3000 ms, TE = 2.3 ms, TI = 1000 ms, flip angle = 8°, in-plane resolution of 300 x 320, 

280 sagittal slices, 0.8 mm3 isotropic resolution, and Generalized Autocalibrating Partial 

Parallel Acquisition (GRAPPA) acceleration factor of 2. The parameters for the 7T scan 

were: TR = 3000 ms, TE = 2.3 ms, TI = 1200 ms, flip angle = 8°, in-plane resolution of 230 

x 320, 256 axial slices, 0.75 mm3 isotropic resolution, and GRAPPA acceleration factor of 

2. Resting state data were collected for 6 minutes with a T2*-weighted BOLD echoplanar 

imaging sequence. The parameters for the 3T scan were: TR = 1000 ms, TE = 30 ms, flip 

angle = 45°, in-plane resolution of 96 x 96, 60 axial slices, 2.3 mm3 isotropic resolution, and 

multiband acceleration factor of 5. The parameters for the 7T scan were: TR = 1000 ms, TE 

= 20 ms, flip angle = 65°, in-plane resolution of 110 x 110, 60 axial slices, 2 mm3 isotropic 

resolution, and multiband acceleration factor of 3. All scans were conducted at the Magnetic 

Resonance Research Center at the University of Pittsburgh.

2.4. Image Preprocessing

All MRI preprocessing was performed using the Statistical Parametric Mapping (SPM12) 

toolbox [35] in Matlab unless otherwise noted. Structural images were segmented into 

six tissue types based on spatial priors, which generated deformation fields to standard 

Montreal Neurological Institute (MNI) space for each subject. Two Gaussians were used 

Wilson et al. Page 4

Mol Psychiatry. Author manuscript; available in PMC 2024 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to identify white matter, which provides better grey/white matter differentiation in older 

adults where white matter hyperintensity burden can be high [36]. For the functional images, 

slice-time correction and motion correction were applied before skull-stripping with the 

brain extraction tool [37] from the FMRIB Software Library. The skull-stripped images were 

then co-registered to the structural image using normalized mutual information, normalized 

to MNI space, and smoothed using a Gaussian kernel with full-width half-maximum of 8 

mm. The BrainWavelet toolbox [38] was used to remove motion-induced spike artifacts. The 

six rigid-body motion parameters (translation and rotation in each direction), the first five 

principal components of the white matter and cerebral spinal fluid signal, and frequencies 

outside the resting state band of 0.008 to 0.15 Hz were simultaneously regressed out of the 

signal to avoid reintroducing artifacts [39].

2.5 Functional Connectivity Calculation

Mean residual time series were then calculated for each region in the Shen 50 atlas 

[40]. This functionally-derived parcellation provides an optimal balance between specificity 

and parsimony for this application. Functional connectivity was calculated using pairwise 

Pearson correlation between region time series for each participant. We removed regions 

labelled 1, 3, 13, 38, 43, 53, 54, 61, 84, 88, and 89 from the atlas due to poor coverage in the 

cerebellum, resulting in 3,321 unique pairwise connections among the 82 remaining regions.

Functional connectivity matrices from all 80 participants in the analysis were harmonized to 

account for batch effects from scanner (3T Siemens Prisma FIT or 7T Siemens Magnetom) 

and study (Circuits2 or NEMO) while preserving the variability explained by sex and 

age using the ComBat empirical Bayes’ method [41] adjusted for functional connectivity 

harmonization [42]. Implementation of ComBat was performed using the neuroCombat 

package in R using publicly available code.

Differential connectivity was calculated as the difference in harmonized functional 

connectivity on day 1 (approximately 1 day after first antidepressant dose) and functional 

connectivity at baseline for each of the 3,321 pairwise connections.

2.6. Statistical Analyses

Two sample t-tests and chi-squared tests were used to compare means and proportions, 

respectively, for demographic and other participant characteristics. An illustrative flow 

chart describing all other statistical analyses performed in this study is provided in Figure 

2; details of the analyses are provided below. The power analysis for the NEMO study 

estimated data from 80 participants was required to achieve a power of 0.8 at the 0.05 

significance level. We therefore elected to augment the ongoing NEMO data with Circuits2 

data to obtain adequate power for this midterm analysis. For all analyses, we verified that the 

appropriate statistical assumptions were met for the methods employed.

2.5.1. Remitter Differences—The average differential connectivity for each pair of 

regions was calculated for the remitter and non-remitter groups according to sex, and 

differences were evaluated using two-sample t-tests. Given the large number of region-pairs 

and lack of an established multiple comparisons correction method that can account for 
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the high level of correlation among the tests, we did not perform multiple comparisons 

correction and avoid inference on individual edges, instead focusing on broad region-wise 

summaries of connectivity differences between the sexes. To calculate region-wise values, 

we set all t values for pairwise connections with uncorrected p < .05 to zero and then 

average across all the t values for all 81 pairwise connections to each region. Additionally, 

we used Higher Criticism [43, 44] to perform an omnibus test for a global differential 

connectivity difference between remitters and non-remitters in males and females separately. 

The Higher Criticism statistic compares the distribution of p-values from a large family of 

tests to the null (uniform) distribution to test for a global difference. This method is optimal 

in the rare and weak regime, though it can only detect a deviation in the body of tests, 

not which tests differ significantly. Given the large number of tests (3,321 in this case), the 

resulting statistic asymptotically approaches a one-sided z statistic.

2.5.2. Prediction of Remission with Functional Connectivity—Next, we 

implemented a machine learning approach to predict the remission status of each participant, 

where remission is a binary outcome indicating whether a participant had a final MADRS 

score of 10 or less for at least 2 weeks, subject to clinical judgment by the study psychiatrist 

who was blinded to the analysis. Random forest models were used to predict remission 

based on features describing (1) demographic confounders including age, sex, race, and 

education level, (2) clinical data including scanner (3T or 7T) and the CIRS-G, (3) baseline 

depression severity measured by MADRS and anxiety severity measured by the HARS, 

(4) baseline functional connectivity, and (5) differential connectivity. Random forest models 

were fit using the RandomForest function in R [45] and run with default parameter settings 

with m = 500 trees and p = 2/3 of the independent variables provided in the model. Splits 

in each decision tree were decided using the Gini index criterion [46]. Seven different 

random forest models were fit with a unique set of predictor variables, labeled A-G as 

provided in Table 1. Model performance was assessed by predictive area under the curve 

(AUC) calculated over 30 repetitions with random 90%/10% training/test splits. Data splits 

were consistent across all models, ensuring that each model was trained and tested on the 

same data. Within the training sample, Monte Carlo cross validation was employed using 

randomly selected samples with random training size sampled uniformly between 50% and 

80%. AUC values were compared across male-only, female-only, and pooled models using 

two-sample t-tests over the out-of-sample results of the 30 repetitions.

2.5.3. Variable Importance—For the random forest model containing all clinical, 

demographic and depression symptomatology, and differential connectivity measures (model 

F), the permutation importance (mean decrease in out-of-sample classification error over 

all splits) of each variable was calculated using the VarImpPlot function in R. Region-wise 

averages of variable importance are provided in Figure 3. Brain image plots were created 

using BrainNet Viewer software [47] in Matlab v. R2020b. All R software was implemented 

using R version 1.4.1717.

3. RESULTS

Table 2 and Supplementary Tables 1 and 2 summarize the combined and separate clinical 

and demographic information for the participants in the NEMO and Circuits2 cohorts that 
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were analyzed in this study. Among demographic and clinical variables, only the number 

of participants differed significantly by sex, which is consistent with greater prevalence 

of depression among females. The characteristics of the two studies were similar and no 

significant differences were noted aside from medications, which differed by study design, 

and the ratio of males to females enrolled in the Circuits2 study.

3.1. Differential Connectivity Differences between Remitters and Non-Remitters Depend 
on Sex

We first compared the one-day differential connectivity between remitters and non-remitters 

to evaluate the extent to which connections differ between the two groups. The resulting 

positive and negative t-statistics were averaged separately across all connections for each 

region; regional summaries are shown in Figure 3.

For males, the remitter group was associated with increased connectivity from baseline to 

day 1 for the right caudate, left middle temporal pole, and left postcentral gyrus and by 

decreased connectivity from baseline to day 1 for the left caudate, left putamen, and right 

middle temporal gyrus. The Higher Criticism statistic for the edge-wise group of t-tests was 

z = 4.33, (p < 0.001), indicating statistically significant evidence for a global differential 

connectivity signature distinguishing male remitters from non-remitters.

For females, the remitter status group was associated with increased connectivity from 

baseline to day 1 for the left thalamus, dorsal anterior cingulate, and precentral gyrus and by 

decreased connectivity from baseline to day 1 for the left dorsomedial prefrontal cortex and 

right angular gyrus. The Higher Criticism statistic for the edge-wise group of t-tests was z 
= -3.11, (p = 0.999), indicating no evidence for a global differential connectivity signature 

distinguishing female remitters from non-remitters.

3.2. The Predictive Relationship between Functional Connectivity and Remission is 
Moderated by Sex

The mean and standard deviation of the AUCs obtained from each of the seven models 

described in Table 1 are shown in Figure 4 and Supplementary Table 3. In all but one of 

the seven considered models, at last one of the models fitted separately for males or females 

significantly outperforms the average performance of the predictive models containing both 

males and females. For four models each, the predictive AUCs of the male-only and female-

only models are significantly greater than the AUC of the pooled model. Notably, the only 

model in which the male-only or female-only models did not outperform the pooled model 

is model E, which does not use differential connectivity as a predictor. Taken together, 

pooled models obtained an average AUC of 0.69 whereas female-only models achieved an 

average AUC of 0.74 and male-only models achieved an average AUC of 0.76, providing 

an improvement in predictive AUCs of 7% and 10%, respectively. We repeated this same 

analysis on each cohort separately and found consistent results across both cohorts. For the 

Circuits2 cohort, we found a mean improvement of 13% for female-only models (mean 

AUC = 0.794) and an improvement of 42% (mean AUC = 0.981) for male-only models 

over the pooled models (mean AUC = 0.704). In the NEMO cohort, we found a mean 
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improvement of 15% for both male- and female-only models (mean AUC = 0.987, 0.989, 

respectively) over pooled models (mean AUC = 0.857).

For model F (demographic, clinical, depression symptomatology, and differential 

connectivity predictors) the regional average of permutation importance of each edge 

is shown in Figure 5 for the male-only model, female-only model, and the normalized 

difference between the two. Of the non-imaging variables in each fitted model, only 

depression symptomatology had a non-zero variable importance, and this was only in the 

female-only model (variable importance = 0.008).

For males, the changes in connectivity for the left caudate, left middle temporal pole, and 

left orbital frontal gyrus were the most important in predicting remission (see Fig 5, Table 

3). For females, the changes in connectivity for the left caudate, left paracentral lobule, 

and left lingual (medial occipito-temporal) gyrus were the most important in predicting 

remission.

4. DISCUSSION

Our study shows that one day changes in resting state functional indicators of treatment 

response in late-life depression are sex-dependent. This result was consistent in both 

explanatory and predictive frameworks. Acute one-day changes in functional connectivity 

among remitter and non-remitter groups greatly differed between males and females. 

Further, there was strong evidence from the higher criticism test for an omnibus differential 

connectivity signature differentiating remitters from non-remitters in males, but not females. 

By separating the predictive analyses into male- and female-only cohorts, we obtained 

an average increase of 7 - 40% in predictive AUC across models containing clinical, 

demographic, depression symptomatology, baseline functional connectivity, and one-day 

change in connectivity. Additionally, male-only models provided the greatest performance 

increase. In our study of 80 participants from two separate cohorts, we found that male-only 

models were always significantly better at prediction than pooled models containing both 

male and female participants.

Additionally, male-only models typically performed better than female-only models. This 

is unsurprising given the more robust differential connectivity differences in remitters vs. 

non-remitters for males compared to females, but comparison of the regions important in 

the explanatory and predictive frameworks reveals an interesting dichotomy. The regions 

with the highest average variable importance for the male predictive models are also the 

regions showing the greatest differences between male remitters and non-remitters, as would 

be expected. However, this is not the case for females. In fact, the most important region in 

the female predictive model (the left caudate) shows a relatively minor difference between 

remitters and non-remitters. This also manifests in greater variable importances for the 

female predictive model compared to the male model. While this may seem counterintuitive, 

this may be an effect of “easier” prediction in males by keying on regions that differ 

significantly between remitters and non-remitter while the lack of such differences in 

females requires the predictive model to rely on more complex patterns.
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We also showed that males and females recruit different nodes in the early stages of 

successful treatment. In males, early disengagement of the left striatum and right temporal/

insular complex and early engagement of left postcentral and lingual gyri and right caudate 

nucleus were associated with remission, while in females there is no strong evidence for 

functional connectivity changes that distinguish remitters from non-remitters. Our results 

point toward a sex-specific dynamic profile in the engagement and disengagement of key 

regions during pharmacotherapy. We also report that the connectivity indices relevant for 

predicting remission are primarily different between the two sexes: left caudate for both 

sexes, left temporal pole, left orbitofrontal cortex, and right dorsomedial prefrontal cortex 

(PFC) for males; left paracentral lobule, left lingual gyrus, and bilateral superior parietal 

lobes for females.

LLD remission has previously been associated with lower baseline FC between the PCC and 

left striatum [48] and higher baseline FC between the right and left dlPFC, left dlPFC and 

dorsal anterior cingulate cortex (ACC), and right dlPFC and right inferior parietal lobe, but 

not with baseline FC within the DMN [49]. Longitudinal studies have reported remission to 

be associated with 12-week increases in FC between the PCC and the bilateral inferior and 

middle temporal gyri (using Circuits 2 data) [50], precentral gyrus [48] and subgenual ACC/

dorsomedial PFC [51]. All these results employed a priori seeds to analyze FC. Considering 

only differential connectivity edges that showed a significant difference between remitters 

and non-remitters (uncorrected) and a non-zero variable importance in the predictive model, 

our whole-brain analysis also identified increased connectivity between the PCC and the 

precentral gyrus for both males and females; dlPFC, dorsomedial PFC, and MTG/angular 

gyrus for females; and subgenual ACC/orbitofrontal cortex for males. However, the PCC did 

not stand out as a major differentiator of remitters, in either the traditional associative tests 

or predictive model. This adds to growing evidence that interactions between the canonical 

networks may be more important than DMN-specific connectivity [52, 53].

While no studies were found examining sex differences in resting state functional 

connectivity in LLD, there is a wealth of research in healthy populations. HCP data 

has been combined with 1,000 functional connectomes data [54] to show that sex-

differences in hierarchical modularity emerge with increasing age, particularly in the 

prefrontal cortex, temporal lobe, amygdala, hippocampus, inferior parietal lobe, posterior 

cingulate, and precuneus [30]. Resting state sex differences were also reported in the 1000 

functional connectomes data across methodologies (seed-based connectivity, independent 

component analysis (ICA), and amplitude of low frequency fluctuation) [54], though 

important regions were not explicitly reported. ICA has also been used to demonstrate 

that females generally show stronger intra-network connectivity, while males show stronger 

inter-network connectivity, especially in the somatomotor network, as well as decreasing 

network coherence and connectivity with age [55]. This finding of stronger intra-network 

connectivity for females and stronger inter-network connectivity in males has also been 

reported in a large study of adolescents across a wider array of networks including the 

DMN, ventral attention network, auditory network, and memory retrieval network [56]. 

Using the UK Biobank data, greater connectivity within the DMN of older females and 

greater connectivity within the sensorimotor cortices in older males has also been reported 

[21]. Studies investigating the hemispheric organizational patterns of resting state FC 
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identified sex differences in the developmental trajectory across the lifespan within the 

dlPFC and amygdala [57] as well as higher clustering attributes in the right hemisphere in 

males and left hemisphere in females [58]. Meanwhile, two smaller, older studies reported 

no sex differences in resting state FC [59, 60].

Recent studies, including Circuits2, have demonstrated the feasibility of acute trajectories 

of functional connectivity to predict remission in late-life depression [16, 50, 61]. Our 

study takes advantage of the serial imaging acquisition embedded in the design of these 

studies, which allowed us to test treatment prediction using one day acute dynamic 

changes in functional connectivity. With a few notable exceptions [50, 62, 63], most studies 

investigating FC signatures of remission rely on baseline FC measures or FC changes over 

the treatment course. The one-day change paradigm may offer 1) an early indication of 

treatment response that could be used to augment clinical judgment and 2) a significant 

advantage over baseline measures by capturing antidepressant-induced changes in intrinsic 

brain activity. This replicates our prior results that the pharmacologic probe (pre versus post 

medication) is predictive of remission [50, 61]. The results, while highlighting regions and 

networks frequently described in LLD [52, 53], indicate that analyses that combine the two 

sexes may not be representative for each sex.

Remission in women implicates an increase in connectivity of the ACC and thalamus and 

a disengagement of frontal regions and the insular cortex together with temporo-parietal 

regions, while remission in men implicates increased connectivity in posterior regions 

and a disengagement of the striatum and middle temporal gyrus. The anterior cingulate 

engagement and insular disengagement in females coupled with the double remission rate 

observed in women in this sample may suggest that Salience Network dynamics are key 

for remission in women. Interestingly, the male-specific profile is centered mostly on the 

striatum and temporo-parietal nodes and male-specific models are more accurate than 

female or global models in predicting remission. These results suggest that the networks 

dynamic tilts toward an Executive Control/Reward interplay as a remission marker in men. 

Given the large body of literature exploring reward circuitry and the striatum in midlife 

depression, it is surprising how few studies have done the same in LLD [64]. Based on 

our study, we posit that splitting prediction based on sex is a necessary step toward single-

subject prediction modeling.

Equally significant, the random forest algorithm adds another layer of complexity that 

indicates that the nodes that engage/disengage the most early in the treatment are not 

necessarily the stronger predictors of treatment remission. The regions important in both 

the explanatory and predictive frameworks were generally overlapping for males, but not 

females. This may indicate that both reactivity to antidepressants and consequences of those 

changes are discrepant between the sexes. Key regions relevant for treatment prediction 

are also different in men and women. However, for both sexes, the strongest predictor 

for treatment remission was the left caudate connectivity (including the left nucleus 

accumbens), a key reward network region implicated in depression [65–67]. We speculate 

that the early engagement of the ventral striatum/accumbens may trigger downstream 

cascades engaging projections to ventral pallidum-dorsal thalamus-prefrontal cortex but also 
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projections to the reticular formation and ventral tegmental area, changes which ultimately 

translate in clinical improvement.

Our study has several limitations including a moderate sample size, the use of multiple 

antidepressants, lack of placebo, imaging done at both 3T and 7T, short resting state 

acquisition for Circuits2, variable importance quantification, and lack of validation sample. 

The moderate sample size limits our ability to perform inference on individual region-pair 

changes in functional connectivity [68]. Further, small sample sizes may inflate accuracy 

estimation in predictive models. The use of multiple antidepressants introduces additional 

heterogeneity, though this may increase the generalizability of our findings. The lack 

of a placebo arm limits our ability to interpret the changes as specifically induced by 

antidepressants. While placebo arms can be considered in future studies, they may raise 

ethical challenges in studies of difficult-to-treat depression. This may also apply to the use 

of two scanner types. The short duration for the Circuits2 resting state acquisition limits the 

robustness of the connectivity measures [69]. In the last decade, there has been substantial 

discussion about the suitability of variable importance measures in machine learning models 

[70]. In our study, we chose to quantify differential connectivity variable importance using 

permutation importance because the ease of interpretability and generalizability [71, 72]. 

This broad applicability allows for direct comparisons of our present study to other possible 

statistical and machine learning methods like neural networks and logistic regression, though 

it may be subject to bias. The cross-validation utilized a nested approach without a true 

validation sample (completely unseen dataset) which likely inflates the overall accuracies 

but was necessary given the small sample size. It is unclear how much these generalize or 

other drugs or therapies in LLD as well as to depression in midlife or adolescence. However, 

given the evidence for sex differences in resting state FC, the general conclusion that the 

effect of sex cannot be accounted for simply by including it as a predictor seems likely to be 

true across the lifespan.

In conclusion, we present novel data indicating the essential role of sex differences in 

predicting treatment response in late-life depression using resting state connectivity data. 

The results of our study add a key step toward incorporating prediction models in the clinical 

decision-making process.
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Figure 1. 
CONSORT diagrams for the Circuits2 and NEMO studies.
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Figure 2. Study design and analysis flow chart.
FC – functional connectivity, DC – differential connectivity, CV – cross-validation.
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Figure 3. Regional differential connectivity summary differences between remitters and non-
remitters according to sex.
The t-statistic map of the region-wise average positive (top row) and negative (bottom row) 

differences in day 1 differential connectivity among remitters and non-remitters according 

to sex. Only edges with p < 0.05 (uncorrected) were included in the average. Figures were 

visualized using the BrainNet Viewer software in Matlab v. 2020b.
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Figure 4. Prediction performance of models to predict remitter status.
The mean and standard deviation of the Accuracy Under the Curve (AUC) of fitted 

random forest models across all individuals, females-only, and males-only participants 

in the pooled cohort. Error bars represent the standard deviation of the AUC across 30 

repetitions. Asterisks (*) indicate a statistically significant difference in mean predictive 

AUCs between models from a two-sample t-test at the 0.05 significance level (Bonferroni 

correction accounting for 3 pairwise comparisons of each model).
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Figure 5. Differential Connectivity Importance for Prediction of Remission.
Edge-wise permutation variable importance values from model F were z-scored to allow 

comparison across models and averaged across each region. These normalized region-wise 

average permutation variable importance values for the prediction of remission status are 

shown for the male-only model (left) and female-only model (right). Sex differences 

(females minus males) of the normalized region-wise average importance values are also 

shown (center). Figures were visualized using the BrainNet Viewer software in Matlab v. 

2020b.
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Table 1:

Description of variables incorporated in each of the predictive models for treatment response.

Variables
Model

A B C D E F G

Demographic (age, sex, race, education level) x x x x x x x

Clinical (CIRS-G, scanner) x x x x x x x

Depression symptomatology (MADRS, HARS) x x x x

Baseline connectivity (3486 edge variables) x x x x

Differential connectivity (3486 edge variables) x x x x
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Table 2:

Demographic and clinical summaries of the combined participants in the study broken down by sex. Bolded 

test statistics signify statistical differences between male and female groups at a 0.05 level of significance.

Characteristic Males Females Test Statistic

Total Participants, n (%) 31 (38.7) 49 (61.3) χ1
2= 7.23, p = 0.007

Age, Mean (SD) 66.06 (8.5) 66.27 (5.5) t58 = −0.12, p = 0.905

Black/African American, n (%) 4 (12.9) 11 (22.4) χ1
2
 = 0.60, p = 0.480

Education Years, Mean (SD) 15.77 (2.7) 15.04(2.5) t58 = 1.17, p = 0.248

Treatment, n (%)
Escitalopram 9 (29.0)
Levomilnacipran 4 (12.9)
Venlafaxine 18 (58.1)

Escitalopram 14 (28.6)
Levomilnacipran 2 (4.1)
Venlafaxine 33 (67.3)

χ1
2
 = 0, p = 1.000

Baseline MADRS, Mean (SD) 25.81 (7.0) 23.19 (6.3) t58 = 1.68, p = 0.099

CIRS-G, Mean (SD) 9.80 (3.6) 9.30 (4.6) t58 = 0.54, p = 0.592

Remitters, n (%) 12 (38.7) 30 (61.2) χ1
2
 = 3.01, p = 0.083
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Table 3.

The five regions with the highest average variable importance predicting remission for males and females.

Shen Region Anatomical Region Variable Importance

Females L_BA48_1 L Caudate 0.0125

L_BA7_2 L Paracentral Lobule 0.0106

L_BA19_2 L Lingual Gyrus 0.0094

R_BA7_3 R Superior/Inferior Parietal Lobe 0.0092

L_BA7_1 L Superior Parietal Lobe 0.0091

Males L_BA48_1 L Caudate 0.0069

L_BA38_1 L Inferior/Middle Temporal Pole 0.0068

L_BA47_1 L Inferior Frontal Gyrus 0.0067

R_BA9_1 R Superior Medial/Dorsolateral Prefrontal Cortex 0.0066

R_BA48_1 R Caudate 0.0066
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