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Abstract

This paper proposes a novel framework to reconstruct the dynamic magnetic resonance images 

(DMRI) with motion compensation (MC). Specifically, by combining the intensity-based optical 

flow (OF) constraint with the traditional CS scheme, we are able to jointly reconstruct the 

DMRI sequences and estimate the inter frame motion vectors. Then, the DMRI reconstruction 

can be refined through MC with the estimated motion field. By employing the coarse-to-fine 

multi-scale resolution strategy, we are able to update the motion field in different spatial scales. 

The estimated motion vectors need to be interpolated to the finest resolution scale to compensate 

the DMRI reconstruction. Moreover, the proposed framework is capable of handling a wide 

class of prior information (regularizations) for DMRI reconstruction, such as sparsity, low rank 

and total variation. The formulated optimization problem is solved by a primal-dual algorithm 

with linesearch due to its efficiency when dealing with non-differentiable problems. Experiments 

on various DMRI datasets validate the reconstruction quality improvement using the proposed 

scheme in comparison to several state-of-the-art algorithms.
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I. Introduction

DYNAMIC magnetic resonance imaging (DMRI) plays an important role in different 

clinical exams, e.g., cardiovascular, pulmonary, abdominal, perfusion and functional 

imaging. The reconstruction of DMRI aims at obtaining spatiotemporal MRI sequences 

in x − t space, from their measurements acquired in the k − t space. The trade-off between 

spatial and temporal resolution in DMRI reconstruction is challenging due to the physical 

constraints. Classical techniques to deal with this issue include echo planar imaging [1], fast 

low-angle shot imaging [2] and parallel imaging [3].

In recent years, compressed sensing (CS) techniques have demonstrated great success 

in reducing the acquisition time without degrading image quality, see e.g.,[4], [5]. CS 

theory guarantees an acceptable recovery of specific signals or images from fewer 

measurements than the number predicted by the Nyquist limit. Image reconstruction 

from undersampled observations is an ill-posed problem that consequently requires prior 

information (regularization) to stabilize the solution. The regularizations widely used for 

DMRI reconstruction include sparsity in transformed domains [6], total variation (TV) 

penalties [7], low-rank property [8], [9], [10] or a combination of several priors [11], [12]. 

Under the CS-based framework, DMRI reconstruction methods can be broadly divided into 

two categories: offline and online [13]. Similar to most of CS-based DMRI reconstruction 

methods, we focus in this paper on the offline approach.

Due to the presence of motion patterns in DMRI acquisition, combining the motion 

estimation/motion compenstaion (ME/MC) with the DMRI reconstruction has been explored 

in the literature, see e.g., [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24]. 

For instance, low rank plus sparse (L+S) matrix decomposition employed in DMRI 

reconstruction decomposes the DMRI sequences into two parts, where L models the 

temporally correlated background and S models the dynamic information [16], [17]. Lingala 

et. al. [18] coupled the DMRI reconstruction and the inter-frame motion estimation using 

a variable splitting algorithm. MaSTER algorithm [14] was proposed to reconstruct DMRI 

followed by MC using motion vectors estimated with different strategies. In [24], DMRI and 

motion estimation were conducted under multi-scale resolution framework.

In this paper, we propose a novel DMRI reconstruction framework with MC, which includes 

two stages. One is variable updates, where the DMRI sequences and the interframe motion 

vectors are estimated jointly by combining an intensity-based optical flow (OF) constraint 

with the traditional CS scheme. In the second stage, the DMRI reconstruction is refined 

with the estimated motion vectors previously. By employing the coarse-to-fine multi-scale 

resolution strategy, we are able to estimate the motion vectors in different spatial resolution 

scales. The estimated motion vectors in a coarse scale are then interpolated to the finest 

scale in order to refine the image reconstruction. By varying the resolution scale, the two 

sub-problems are conducted alternately. Note that only the motion vectors are estimated in 

different resolution scales in the proposed algorithm, whereas both the image sequences and 

motion vectors were updated in different resolution scales in [24]. The formulated problems 

in the two stages are addressed using the primal-dual algorithm with linesearch [25], known 

to efficiently handle non-differentiable optimization problems.
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The contributions of this work are threefold: i) The primal dual algorithm with linesearch is 

explored to address the two sub-problems; ii) A wide class of DMRI priors can be handled 

in the general framework for jointly DMRI reconstruction and ME in the first stage; iii) In 

order to model local tissue deformations, an affine model is employed for the ME [26]. The 

proposed algorithm is an extension of our previous work [27], where a reference frame is 

considered for ME. Experiments on three DMRI datasets demonstrate the superiority of the 

proposed framework over several state-of-the-art algorithms.

The remainder of this paper is organized as follows. In Section II, we describe the 

background related with the proposed framework. The variational problem is formulated 

in Section III. Section IV details the proposed algorithm. Section V gives the experimental 

results. Conclusions and perspectives are reported in Section VI.

II. Background

In this section, the DMRI formation model is expressed. Moreover, the OF equation and its 

variants, the proximal operator and the primal-dual algorithm are illustrated hereinafter to 

facilitate the explanation of the proposed algorithm.

A. DMRI measurements

The DMRI measurements acquired in the k − t space are denoted as bt k , which can be 

modelled by

bt k =
x

ft x exp −jkTx dx + nt k

(1)

where ft x  of size Nx × Ny is the tth frame of the DMRI sequences, nt k  represents the 

additive white Gaussian noise, x = x, y T  and t are the spatial and temporal coordinates, k
is the 2D frequency variable, t ∈ 1, ⋯, Nt  with Nt as the total number of temporal frames. 

Note that although the image formation model is valid for any number of spatial dimensions, 

to simplify the description, we only consider the 2D + t case in this paper [28]. Given the 

matrix f = f1, ⋯, fNt  of size NxNy × Nt whose column f t of size NxNy × 1 represents the 

vectorized version of the tth temporal frame ft x , we rewrite the above expression in a 

matrix-vector form as below

b = A f + n

(2)

where the measurement operator A represents the partial/masked Fourier transform on 

specific sampling locations, the observation b and additive noise n are vectors of size Nb × 1
where Nb ≪ NxNy × Nt .
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B. Optical flow

Denoting ft x  as a fixed image acquired at time t, the brightness/intensity constancy in 

DMRI is formulated as

ft x = ft0 x − d x, t

(3)

where d x, t = u x, t , v x, t T  is the motion field between the fixed image and the moving 

frame ft0 x , u x, t  and v x, t  are the horizontal and vertical components of the motion field. 

Under the hypothesis of small displacements, the first-order Taylor approximation can be 

used to replace the nonlinear intensity profile, i.e.,

ft0 x − d x, t ≈ ft0 − ∂xft0u x, t − ∂yft0v x, t

(4)

where the frame ft0 ≜ ft0 x , ∂xft0 and ∂yft0 are the partial derivatives of ft0 with respect to 

(w.r.t.) x and y. Combining (3) and (4), the traditional OF equation is given by

ft x − ft0 + ∂xft0u x, t + ∂yft0v x, t = 0 .

(5)

To estimate the motion vectors d x, t , a dedicated cost function can be formulated globally 

(on the entire image) or locally (by patches) using weighted OF [29], [30], [26], [31].

a) Weighted OF and multiscale approach: The weighted OF equation can be 

expressed as below

x
w x − x0 ft x − ft0 + ∂xft0u x, t + ∂yft0v x, t dx

(6)

where w is a window function centered at x0. Given the weighted OF equation, the motion 

vectors are assumed constant within a spatial neighbourhood. Moreover, B-spline based 

windows, i.e., w x = βn x βn y , where βn ⋅  is a symmetrical B-spline function of degree 

n ∈ ℕ, have been shown to be adapted to medical images [26], [31]. The size of w is 

determined by the B-spline degree.

Varying the resolution scale where the motion is estimated can be achieved by using a 

window function at different spatial scales. Specifically, the window function at spatial scale 

j is expressed as below

w j x − x0 = w x − 2jx0

2j
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(7)

Since the window function at scale j is dilated by a factor 2j, the calculation of (6) at 

scale j corresponds to subsampling of the inner product (6) by a factor 2j. The coarse-to-

fine multiscale resolution approach has been demonstrated effective for myocardial motion 

estimation [26], [31]

b) Affine model: It is important to note that the motion patterns in medical images can 

be very complex due to tissue deformations such as rotation, expansion, contraction and 

shear. In order to accurately describe these motion patterns, the affine model instead of the 

pure translation model has been extensively used in the related literature, see e.g., [30], [26], 

[31]. Based on the affine model, the motion vectors at position x, y  for the tth frame are 

expressed by

u x, t   = u0 x, t + u1 x, t x + u2 x, t y
v x, t   = v0 x, t + v1 x, t x + v2 x, t y

(8)

where u0, u1, u2 and v0, v1, v2 are the affine parameters defining the motion of pixel at position 

x, y  in frame t w.r.t. the reference frame f0 [26].

C. Proximal operator

The proximal operator of a lower semicontinuous (l.s.c.) function g is defined as

proxsg p = argmin
x

g x + 1
2s ∥ x − p ∥2

(9)

Note that the proximal operator calculation (9) always has a unique solution. One important 

property of the proximal operator is the Moreau’s decomposition formula given by

proxsg* p = p − sproxs−1g
p
s . 

where g* is the convex conjugate of function g. Moreau’s decomposition builds the 

relationship between the proximal operator of a l.s.c. function g and the proximal operator of 

its conjugate [32], [33].

D. Primal-dual algorithm

Primal-dual algorithms (PDAs) have been widely explored for non-smooth convex 

optimization problems, see e.g., [34], [35], [33], [36]. Given an optimization problem as 

below
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min
y

g Cy + ℎ y

(11)

where g and ℎ are proper, convex and l.s.c. functions, C is a continuous linear operator, the 

corresponding primaldual/saddle-point problem is expressed by

min
y

max
z

Cy, z + ℎ y − g* z

(12)

where ⋅ , ⋅  is the inner product, g* is the conjugate of function g and z is the dual variable. 

PDA seeks a solution ŷ, ẑ  of the problem (12) by alternating proximal gradient steps w.r.t. 

the primal and dual variables. Different variants of PDA have been proposed more recently 

to tune the stepsize parameters adaptively and/or speed up the existing algorithms, see e.g., 

[35], [25]. Algorithm 1 summarizes the PDA with linesearch (PDAL), which accelerates the 

traditional PDA. C* represents the adjoint of matrix C.

III. Problem formulation

The problem can be divided into two stages, which are detailed in this section.

A. Joint DMRI reconstruction and motion estimation

Given the matrix f− = fNt, f1, ⋯, fNt − 1 , i.e., f− is f with forward temporal shift by 1, the 

problem to joint reconstruct the DMRI and estimate the motion field at resolution scale j is 

formulated by the following variational framework

min
f, d

∥ A f − b ∥2 + ηϕ Tf + τ∥ ℳw j f, f−, d ∥1 + γψ d ,

(13)
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where ϕ Tf  is the regularization term incorporating prior information about the DMRI, 

T represents a given transform, ℳw j f, f−, d  is the weighted OF constraint between image 

sequences f and f− expressed in (14), d = u, v  is the displacement field between f and f, ψ d
is a regularization term to smooth the displacement fields and η, τ and γ are hyperparameters 

weighting the importance of each term.

ℳw j f, f−, d
=   f − f− w j + ∂x f− w j u + ∂y f− w j v
=   f − f− w j + ∂x f− w j u0 + x∂x f− w j u1 + y∂x f− w j u2

  + ∂y f− w j v0 + x∂y f− w j v1 + y∂y f− w j v2

(14)

where r w j  is the weighted average of variable r ∈ f − f−, ∂x f−, x∂x f−, y∂x f−, ∂y f−, x∂y f−, y∂y f−

at scale j, which is given by

r
w j =

x
w j x − x0 r x dx .

(15)

In order to smooth the displacement fields, the TV prior is used to regularize the motion 

vectors. Considering anisotropic TV, we have

ψ d =
i = 0

2
∥ ∇ui ∥1 +

i = 0

2
∥ ∇vi ∥1

(16)

where

∥ ∇ ⋅ ∥1 =
i, j

∇x ⋅ i, j + ∇y ⋅ i, j

(17)

With

∇x ⋅ i, j =
⋅ i + 1, j − ⋅ i, j  if i < Nx

0  if i = Nx

(18)

∇y ⋅ i, j =
⋅ i, j + 1 − ⋅ i, j  if j < Ny

0  if i = Ny

(19)
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Note that ℓ2-norm prior can also implemented to smooth the motion field since the proposed 

algorithm can easily handle a wide range of priors for the variables to be estimated.

B. Refining DMRI reconstruction by MC

The inter-frame motion vectors estimated at spatial resolution j are interpolated to the finest 

scale (the same as the image resolution scale). We then refine the reconstructed DMRI 

sequences by solving the following optimization problem.

min
f t

∥ At ft − bt ∥2 + λ∥ Mt − 1ft − 1 − ft ∥1,

(20)

where f t is the tth temporal frame of DMRI and Mt − 1 is the motion operator that uses the 

motion vectors to interpolate the pixels in MRI frame f t − 1 to displaced locations in f t [14].

IV. Proposed algorithm

Note that both the formulated sub-problems can be solved using primal-dual algorithm. 

Hereinafter, we summarize the proposed algorithm.

A. Joint DMRI reconstruction and motion estimation

Since the formulated problem (13) is non-differentiable, we propose in this work a PDA-

based algorithm to solve it. We first rewrite (13) as a sum of several l.s.c. functions as below

min
y

g Cy =
l = 1

9
gl Cly ≜

l = 1

9
gl Ωl

(21)

C =

C1

C2

C3

C4

C5

C6

C7

C8

C9

=

A 0 0 0 0 0 0
T 0 0 0 0 0 0

⋅ w(j) ∂xf w(j) x∂xf w(j) y∂xf w(j) ∂yf w(j) x∂yf w(j) y∂yf w(j)

0 ∇ 0 0 0 0 0
0 0 ∇ 0 0 0 0
0 0 0 ∇ 0 0 0
0 0 0 0 ∇ 0 0
0 0 0 0 0 ∇ 0
0 0 0 0 0 0 ∇

,

(22)

Zhao et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2024 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



g1 Ω1 = 1
2∥ Ω1 − b ∥2,

g2 Ω2 = ηϕ Ω2 ,
g3 Ω3 = τ∥ Ω3 − f− w j ∥1,
gl Ωd = γ∥ Ωl ∥1,  for l = 4, …, 9 .

(23)

By introducing the dual variables z = z1, …, z9
T , the PDA iteration for problem (21) can be 

summarized as follows

For   k = 0, …,

yk = yk − 1 − σ ∑
l = 1

9
Cl

*zl
k − 1 ,

zl
k = proxsgl* zl

k − 1 ,

= proxsgl* zl
k − 1 + sCl 2yk − yk − 1 ,

(24)

where Cl
* is the adjoint of the matrix Cl. The derivation of proxsg2* ⋅  is related to the 

expression of DMRI regularization functions. The calculation of the rest proximal operator 

of gl
* l ≠ 2  is given as below

proxsg1* z1 = z1 − sb
1 + s ,

proxsg3* z3 = projτP z3 − s I−0 w j ,
proxsgl* zd = projγP zl,  for   l = 4, …, 9,

(25)

where ProjτP is a projector onto the convex set (Euclidean ℓ2-ball) τP = ∥ p ∥∞ ≤ τ , where 

∥ p ∥∞ = maxi, j pi, j . In practice, this projector can be computed using the straightforward 

formula

projτP p = p
max τ, p .

(26)

In order to speed up (24), a variant of PDA with linesearch [25] is employed. The resulting 

algorithm for jointly reconstructing DMRI and estimating the motion vectors at spatial scale 

j, denoted as (JPDAL), is summarized in Algorithm 2. The stopping criterion employed is 

given by

L yk + 1 − L yk

L yk < ϵ
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(27)

where L y  is the cost function. The stopping tolerance ϵ = 10−4 in this paper. where 

Ωl = Cly, y = f, u0, u1, u2, v0, v1, v2
T  is the variable to be estimated, the matrix C is expressed in 

(22) and the expression of functions gl ⋅ l = 1⋯9  are expressed in (23).

B. Proposed algorithm

The proposed motion compensated DMRI reconstruction framework is summarized in 

Algorithm 3, denoted as MCJPDAL. The proposed method alternates between two steps. 

In the first step, the MRI images and the inter-frame motion vectors (at specific resolution 

scale) are estimated jointly. Since the image sequences are estimated at the finest resolution 

scale, the estimated vectors are interpolated into the finest scale for the MC, i.e., the 

refinement of MRI reconstruction. In this paper, the range of the resolution scales where the 

motion vectors are estimated is fixed at Jc:Jf  with Jc = 5 and Jf = 3. The parameters of the 

proposed algorithm are divided into two groups. One group includes the parameters related 

to the PDAL, such as the step-size. They were fixed to σ0 = 1,  α = 0.5, ϵ = 0.99 [25]. The 

second category composes the regularization parameters. In this paper, the regularization 

parameters η and τ are tuned one-by-one in terms of quality of the reconstructed MRI 

by cross validation. In addition, the regularization terms for different dataset are chosen 

according to the reconstruction quality in this paper.
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V. Experimental results

In order to evaluate the performance of the proposed algorithm, three MRI datasets were 

employed in this section: i) coronal lung image, ii) short-axis cardiac cine 1 and iii) 

two-chamber cardiac cine 2 All three datasets were collected as fully-sampled data and 

retrospectively undersampled from single or multiple receiver coils according to a desired 

sampling pattern.

A comparison between the proposed MC-JPDAL and different state-of-the-art algorithms, 

including ktSLR [11], L+S [16] and MaSTER [14] was conducted in terms of the image 

reconstruction quality. The quantitative performance of different algorithms was evaluated 

using the root mean square error (RMSE) and the image structure similarity index (SSIM) 

[37]. The two metrics are expressed as below

RMSE = E ∥ f̂ − f ∥2
2

(28)

SSIM = 2μf̂μf + c1 2σf̂f + c2

μf̂
2 + μf

2 + c1 σf̂
2 + σf

2 + c2

(29)

where f, f̂ are the ground truth and the estimated MRI sequences respectively, E ⋅  is the 

arithmetic mean, μa and σa
2 are the average and variance of variable a a ∈ f̂, f ,  σff̂ is the 

covariance between f̂ and f, c1 and c2 are two constants to stabilize the division with small 

denominator.

In order to evaluate how much each stage in MC-JPDAL contributes to the final 

reconstruction quality, we also compared the DMRI reconstruction performance using 

JPDAL and MC-JPDAL. The initial guess of all the algorithms implemented in this paper 

was chosen by f0 = AT b . Experiments in this section were performed using MATLAB 

2017b on a 64 bit Linux platform with Intel(R) Core(TM) i7–6700K CPU @4.00GHz and 

48 GB RAM.

A. Coronal lung data

The coronal lung data was acquired with a 1.5T Siemens Sonata Vision using spin echo (SE) 

sequences. The coronal lung data is of size 192 × 192 × 40 with pixel-size 2.08 × 2.08 mm per 

frame and 40 temporal frames. The slice thickness is 7 mm. In this experiment, a golden 

angle radial sampling pattern [38] was implemented.

1The data was downloaded using the link https://github.com/js3611/Deep-MRI-Reconstruction/tree/master/data
2The data was downloaded using the link http://www.ece.ucr.edu/~sasif/dynamicMRI/index.html
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Fig. 1 displays the reconstruction comparison with different reduction factors for the coronal 

lung data using algorithms ktSLR, L+S, MaSTER and the proposed MC-JPDAL. We 

observed that the proposed algorithm is superior to the others at different reduction scales in 

terms of RMSE.

Fig. 2 shows the reconstruction comparison of the proposed JPDAL using different priors 

w.r.t. RMSE and SSIM. The reconstruction with prior “l+s” (low rank and sparsity in 

temporal domain) outperforms the others according to Fig. 2 Thus, the regularization term 

for the coronal lung dataset is chosen as “l+s” in the proposed algorithms for further 

comparison.

Fig. 3 includes three example frames and the temporal profiles of the reconstructed DMRI 

using different algorithms at reduction factor 9. The first row shows the fully sampled 

coronal lung data at temporal frames 1, 10 and 19 and the temporal profile in y − t space 

(from left to right). The location where the temporal profile extracted is indicated using a 

blue vertical line. The region of interest (ROI) are contoured using a red dashed rectangle. 

The zoomed ROIs and their corresponding difference images (i.e., f − f̂) of the reconstructed 

MRI frames using algorithms ktSLR, L+S, MaSTER, and MC-JPDAL are displayed from 

2nd to 5th rows. According to Fig. 3 the magnitudes of the difference images obtained with 

the proposed algorithm MC-JPDAL is darker than the others.

The quantitative measurements calculated over the whole MRI frames are displayed in Fig. 

4. The proposed algorithm is superior to other algorithms in terms of the two RMSE and 

SSIM, which is consistent with the visual inspection. We also observe that MC-JPDAL 

improves the DMRI reconstruction quality slightly comparing with JPDAL in Fig. 4.

B. Short-axis cardiac cine data

The cardiac cine data was used in [39], which is of size 256 × 256 per frame and contains 

30 temporal frames. In this simulation, a golden angle radial down-sampling pattern with 

24 rays per frame was performed. The corresponding downsampling factor is 12. After 

comparing different priors for the reconstruction of the cardiac cine MRI sequences, the 

prior for this dataset is the combination of sparsity and TV prior (denoted as “ ℓ1 + tv ”) in 

the proposed algorithms for further comparison.

The reconstruction results are displayed in Fig. 5. The 1st row shows the fully sampled 

cardiac cine data at temporal frames 3, 16 and 27 and the temporal profile in y −  t space 

(from left to right). The ROIs are contoured by a red dashed rectangle. The location where 

the temporal profile extracted is indicated using a blue vertical line. From 2nd to 5th rows, 

the enlarged ROIs and their corresponding difference images f − f̂  of the reconstructed 

MRI frames using algorithms ktSLR, L+S, MaSTER and MC-PDAL are displayed. Visually, 

the proposed MC-JPDAL outperforms the others since the reconstructed frames with the 

proposed algorithm are darker in terms of the magnitude of the difference images.

Fig. 6 shows the quantitative measurements RMSE (left) and SSIM (right) calculated over 

the whole MRI frames. The proposed algorithm MC-JPDAL outperforms the algorithms 

ktSLR, L+S and MaSTER in terms of the SSIM, which is consistent with the visual 
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inspection. The algorithms MC-JPDAL and MaSTER have comparable performance in 

terms of RMSE, which are superior the algorithms L+S and ktSLR. The proposed MC-

JPDAL also improves the image reconstruction quality compared with JPDAL in terms of 

RMSE and SSIM.

C. Two-chamber cardiac cine data

The two-chamber cine MRI sequences were acquired using a Philips Intera 1.5T scanner 

with a 5-element cardiac synergy coil and a balanced fast field echo study-state free 

precession sequence. More details on the scan parameters can be found in [14]. The 

sensitivity maps were estimated in advance. In this experiment, a 2D Cartesian down-

sampling pattern with a fully sampled low-frequency region and a randomly sampled high-

frequency region. The down-sampling/reduction factor was 10. After comparing different 

priors for the reconstruction of the cardiac cine MRI sequences, the prior for this dataset is 

the combination of sparsity and TV prior (denoted as “ ℓ1 + tv ”) in the proposed algorithms 

for further comparison.

Fig. 7 illustrates the comparison of the reconstruction results using algorithms ktSLR, L+S, 

MaSTER and the proposed MC-JPDAL. The top row shows the frames 3, 10 and 14 out 

of 16 frames, constructed from fully sampled k-space data and the temporal profile in y −  t
space (from left to right). The ROIs are contoured by a red dashed rectangle. The location 

where the temporal profile extracted is indicated using a blue vertical line. From 2nd to 5th 

rows, the enlarged ROIs and their corresponding difference images f − f̂) extracted from the 

reconstructed MRI sequences using ktSLR, L+S, MaSTER and the proposed MC-JPDAL 

are displayed. In terms of the magnitude of the difference images, the proposed MC-JPDAL 

outperforms the others.

Fig. 8 shows the quantitative comparison in terms of RMSE and SSIM calculated over the 

entire MRI sequences using the algorithms ktSLR, L+S, MaSTER, JPAL and MC-JPDAL. 

The proposed algorithms JPDAL and MC-JPDAL outperforms the others in terms of RMSE 

and SSIM. We also observe that MC-JPDAL improves the reconstruction quality compared 

with JPDAL in terms of RMSE and SSIM.

Table I summarizes the computational time for the three datasets in this section, where L+S 

outperforms the others in terms of computational time for the first and second datasets. 

We also note that the proposed algorithm MC-JPDAL is able to improve the image 

reconstruction quality of JPDAL without further computational burden.

Compared with other DMRI reconstruction algorithms, the proposed algorithm estimate the 

motion vectors and the image sequence jointly, which is one of the main contributions of 

this work. It is also interesting to note that both forward and backward motion patterns 

were considered for MC in MASTeR. Although we only considered forward motion for 

the MC of DMRI reconstruction refinement, we have achieved state-of-the-art DMRI image 

reconstruction performance. Moreover, according to the comparison between JPDAL and 

MC-JPDAL, we notice that the joint variable estimation stage in the proposed algorithm 

plays a dominant role in the performance improvement of DMRI reconstruction.
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VI. Conclusions

This paper proposed a novel framework to reconstruct DMRI using motion compensation, 

which alternates between two stages. One is to jointly estimate the DMRI frames and the 

motion vectors by combining the intensity based optical flow constraint with the compressed 

sensing framework, which is one of the main contribution of the proposed MC-JPDAL. 

Then, the estimated motion vectors are employed to refine the reconstructed DMRI sequence 

through motion compensation. By employing the coarse-to-fine multiscale strategy, the 

motion vectors can be estimated at different resolution scales. The formulated problem is 

addressed using a primal dual algorithm with linesearch. In addition, the proposed scheme 

is able to deal with a wide class of image priors for DMRI reconstruction. We demonstrated 

that the proposed algorithm can obtain state-of-the-art DMRI reconstruction performance 

without necessarily to be the global minimum.
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Fig. 1. 
RMSE comparison using different reduction factors for the coronal lung data with 

algorithms ktSLR, L+S, MaSTER and MC-JPDAL.
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Fig. 2. 
RMSE comparison for the coronal lung MRI dataset using the proposed JPDAL with 

different priors: “ ℓ1 + tv “ (sparsity plus TV), “l+tv” (low rank plus TV), “tv” (TV), “ ℓ1

“ (sparsity), “l+s” (low rank plus sparsity).
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Fig. 3. 
Reconstruction of the coronal lung MRI scan using different algorithms: frame 1, 10 and 

19 and the temporal profile (left to right). Top row: fully sampled MRI sequence with ROI 

contoured using red dashed rectangle and the location of the extracted temporal profile 

indicated using blue vertical line. Bottom rows: zoomed spatial ROI of the reconstructed 

MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.
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Fig. 4. 
Quantitative comparison of the lung coronal MRI sequences using the algorithms: ktSLR, 

L+S, MaSTER, the proposed JPDAL and MC-JPDAL. Left: RMSEs over the whole image; 

Right: SSIMs over the whole image.
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Fig. 5. 
Reconstruction of cardiac cine MRI scan using different algorithms: frame 3, 16 and 27 

and the temporal profile (left to right). Top row: fully sampled MRI sequence with ROI 

contoured using red dashed rectangle and the location of the extracted temporal profile 

indicated using blue vertical line. Bottom rows: zoomed spatial ROI of the reconstructed 

MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.
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Fig. 6. 
Quantitative comparison of cardiac cine MRI sequences using the algorithms: ktSLR, L+S, 

MaSTER, the proposed JPDAL and MC-JPDAL. Left: RMSEs over the whole image; Right: 

SSIMs over the whole image.
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Fig. 7. 
Reconstruction of the two-chamber MRI scan using different algorithms: frames 3, 10, 14 

and the temporal profile (left to right). Top row: fully sampled MRI sequence with ROI 

contoured using red dashed rectangle and the location of the extracted temporal profile 

indicated using blue vertical line. Bottom rows: zoomed spatial ROI of the reconstructed 

MRI scans using ktSLR, L+S, MaSTER and the proposed MC-JPDAL.
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Fig. 8. 
Quantitative comparison of the two-chamber MRI sequences using the algorithms: ktSLR, 

L+S, MaSTER, the proposed JPDAL and MC-JPDAL. Left: RMSEs over the whole image; 

Right: SSIMs over the whole image.
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TABLE I

Computational time (min) acquired with different methods for the three datasets

Dataset╲Method ktSLR L+S MaSTER JPDAL MC-JDPAL

Coronal Lung 9.14 0.13 17.99 18.44 17.61

Short-axis cardiac 15.93 0.35 58.85 57.94 39.05

Two-chamber cardiac 34.80 32.68 26.70 49.37 36.40
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