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Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by
small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely
distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative
effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide
MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated rest-
ing-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD,
N= 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case–control cohort (N= 553, 37.4%
female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates
(p< 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default
mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS
(Cohen’s d=−0.318, robust p= 5.5 × 10−4) than those with persistent ADHD (age 7–19). The PNRS, however, did not mediate polygenic
risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further
evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for
improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral
disorders.
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Significance Statement

Neuroimaging studies of ADHD have been hindered by small sample sizes, small effects, and differences among study meth-
ods. We demonstrate that an ADHD polyneuro risk score (PNRS), representing brain-wide connectivity patterns, was robustly
associated with ADHD symptoms in two independent cohorts. The study used data from the Adolescent Brain Cognitive
Development Study and the Oregon-ADHD-1000 cohort and provides further evidence of widespread dysconnectivity in
ADHD. The findings highlight the promise of approaches examining cumulative, brain-wide effects, and the importance
of using large samples for improving reproducibility of neuroimaging studies.

Introduction
Attention-deficit hyperactivity disorder (ADHD) is a common
neurodevelopmental disorder, affecting approximately 5% of
school-aged children (Song et al., 2019; Cordova et al., 2022).
ADHD is characterized by age-inappropriate cognitive, beha-
vioral, and emotional problems, though there is significant het-
erogeneity in both presentation and outcome (Sonuga-Barke,
2005; Fair et al., 2012; Posner et al., 2014; Luo et al., 2019; Nigg
et al., 2020a). Substantial behavioral and quantitative genetic evi-
dence suggests that ADHD symptoms exist in the population
along a continuum and can be meaningfully studied as a dimen-
sional trait (as we do here; Thapar, 2018).

Neuroimaging studies have aimed to elucidate the brain
mechanisms and correlates of ADHD. Although these investiga-
tions have identified structural and functional brain features
associated with ADHD (Albajara Sáenz et al., 2019; Hoogman
et al., 2020; Mooney et al., 2021), replication has been disappoint-
ing. This is likely secondary to relatively small brain-behavior
effect sizes (Smith and Nichols, 2018; Feczko et al., 2021;
Pereira-Sanchez and Castellanos, 2021; Marek et al., 2022)—sug-
gesting individual brain features are insufficient to meaningfully
explain the ADHD phenotype. Indeed, considerable evidence
supports the proposal that biological and physiological correlates
of ADHD are not simply localized alterations in brain function
but rather constitute widely distributed functional brain systems
as evaluated by resting-state functional connectivity MRI
(rs-fcMRI) studies. For example, although a systematic review
of rs-fcMRI studies of ADHD through 2013 (Posner et al.,
2014) found some consistent findings, such as altered connectiv-
ity within the default mode network (Castellanos et al., 2008; Fair
et al., 2010; Qiu et al., 2011), an overall conclusion was that
rs-fcMRI studies do not support a single neurocognitive deficit
in ADHD. Rather, results suggest multiple brain networks are
likely involved, providing support for a neurobiological basis
for the heterogeneity observed in ADHD presentation (Saad et
al., 2020).

Recent meta-analyses of rs-fcMRI studies have provided fur-
ther evidence that connectivity in multiple brain networks is asso-
ciated with ADHD (Gao et al., 2019; Sutcubasi et al., 2020).
However, these studies have primarily focused on a few hypoth-
esized networks, rather than examining effects brain-wide.

A large meta-analysis of whole-brain rs-fcMRI studies failed
to find spatial convergence of ADHD-associated connectivity
patterns (Cortese et al., 2021). This may be due to method vari-
ation across studies or to heterogeneity within ADHD. However,
we hypothesize it may also be due to ADHD-associated dyscon-
nectivity being broadly distributed across the entire brain, and it
is the cumulative effect of many small connectivity alterations
that correlates best with behavior.

These reviews highlight multiple linked challenges to brain-
behavior associations with ADHD: (1) most brain-behavior

associations for individual connections and/or brain regions
show small effects (Smith and Nichols, 2018; Marek et al.,
2022), (2) most studies are underpowered to detect small effects
(Posner et al., 2014; Marek et al., 2022), (3) differences among
study samples and methods continue to hinder reproducibility
(Marek et al., 2022), (4) ADHD-related connectivity patterns
may show interindividual differences (Feczko et al., 2019;
Feczko and Fair, 2020; Nigg et al., 2020a), and (5) recent evidence
suggests the involvement of multiple brain networks in ADHD
(Gao et al., 2019; Sutcubasi et al., 2020). Collectively, these chal-
lenges point toward the importance of taking a whole-brain per-
spective, utilizing methods that can accommodate phenotypic
heterogeneity, making use of large data sets for discovery, as
well as enriched confirmation data sets to ensure relevance to
clinical settings, and emphasizing validation/replication when
studying the neural correlates of ADHD.

For instance, measures that represent the cumulative
trait-associated effects of task-based fMRI measures across the
entire brain were recently reported to explain a significantly
greater proportion of trait variance than individual voxels
(Zhao et al., 2019). In that study, a brain-wide association anal-
ysis was performed to identify voxels associated with perfor-
mance on specific cognitive tasks. Resulting association
measures were then used to construct a weighted sum of brain-
wide activity, constituting a single fMRI-based summary mea-
sure of the trait.

This approach fits within a larger area of research focusing on
multivariate modeling of behavioral traits using functional con-
nectivity measures (Sui et al., 2020; Byington et al., 2023).
These models range from relatively simple additive linear models
(like the brain-wide scores we examined here), such as
connectome-based predictive modeling (Rosenberg et al., 2016;
Shen et al., 2017), to more complex, nonlinear multivariate mod-
els (Dadi et al., 2019; Pervaiz et al., 2020). These prior studies
have demonstrated the utility of brain-wide connectivity scores,
though conclusions about the best approaches have been limited
by small sample sizes (Sui et al., 2020) and/or inadequate data
processing to account for possible confounders (particularly
regarding head motion; Ciric et al., 2017). There is some evi-
dence, however, that linear models generalize better than more
complex models in these types of applications (Traut et al.,
2022). Similar methods have also been used with structural neu-
roimaging data (Kochunov et al., 2022).

Here, we build on prior work by generating scores represent-
ing brain-wide ADHD-associated resting-state connectivity using
a large, diverse discovery data set, the Adolescent Brain Cognitive
Development (ABCD) study (Casey et al., 2018; Feczko et al.,
2021). These brain-wide scores, which we refer to as polyneuro
risk scores [PNRS; Byington et al., 2023; akin to polyvertex scores
(Zhao et al., 2019)], are somewhat analogous to polygenic scores
(Choi et al., 2020; Li and He, 2021; Ronald et al., 2021) that
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represent cumulative genetic risk across the genome, although
perhaps a more appropriate analogy is to polyepigenetic scores
(Sugden et al., 2019; Suarez et al., 2020; Watkeys et al., 2020),
given that PNRS can change over time in response to develop-
ment and/or environmental influences. Nevertheless, PNRS,
and other multivariate methods, address a number of limitations
of neuroimaging studies, similar to the way polygenic risk scores
(PRS) addressed the challenges of early genomic studies.

First, PNRS take advantage of large-scale consortium-level
data sets (Miller et al., 2016; Casey et al., 2018; Feczko et al.,
2021) to generate brain-wide effect estimates and allow testing
of cumulative effects in smaller data sets that would be under-
powered to detect small effects shown in meta-analyses
(Pereira-Sanchez and Castellanos, 2021; Marek et al., 2022).
Second, PNRS allow for heterogeneity among study subjects,
because the same cumulative effect can result from varying effects
of individual brain features. Third, cumulative brain-wide effects
should provide significantly greater predictive power than indi-
vidual brain features, if the trait of interest truly has a signal dis-
tributed across the brain. We test this hypothesis herein.

The increased predictive power (effect size) of the PNRS may
also enable the examination of mediation effects, providing
insight into the mechanisms of genetic or early environmental
risk factors. Previous work has provided evidence for both struc-
tural and functional MRI measures partially mediating the effect
of common genetic risk on ADHD diagnosis or symptoms
(Hermosillo et al., 2020; Sudre et al., 2020; Mooney et al.,
2021). A reasonable question is whether a brain-wide summary
score will mediate a greater proportion of polygenic risk than
individual brain features.

Our goals for this study were to (1) develop a PNRS associated
with ADHD symptoms; (2) validate the predictive ability of the
ADHD PNRS in a completely independent, enriched longitudi-
nal ADHD case–control cohort; and (3) test whether the
ADHD PNRS mediates common genetic risk for ADHD or
whether effects are additive.

While the methodology for constructing PNRS is not novel,
the use of two large, independent data sets with different ascer-
tainment strategies for discovery and validation, including a
case–control data set for validation to better reflect the situation
in clinical prediction, along with the use of best practices for
rs-fcMRI data processing represent important contributions to
the field. This work stands to provide further evidence for the
validity of brain-wide summary measures from neuroimaging
data for the prediction of behavioral traits and to demonstrate
how these scores can be used to provide insight into mechanistic
and causal pathways.

Materials and Methods
Participants. The ABCD Study served as our discovery cohort

(Casey et al., 2018). It is a 21-site, diverse cohort of over 11,000 children
(age 9–10 at baseline). The children have been genotyped and are fol-
lowed with extensive behavioral, cognitive, clinical, and MRI measures
annually. The data set is publicly available on the NIMH Data Archive
(NDA; http://dx.doi.org/10.15154/1504041; Feczko et al., 2021).

For internal replication, we split the ABCD cohort into two ABCD
Reproducible Matched Samples (ARMS) matched on nine demographic
factors thought to be involved with development: site, age, assigned sex at
birth, race/ethnicity, grade, highest level of parental education, handed-
ness, combined family income, and exposure to anesthesia (Feczko et al.,
2020a,b).

The Oregon-ADHD-1000 cohort (Karalunas et al., 2017; Nigg et al.,
2018, 2020b; Mooney et al., 2020, 2021) was used as an independent val-
idation data set. It is a case–control cohort of ∼1,400 children, aged 7–11

years at baseline, that is enriched for psychopathology. Of these, 553 have
clinical measures and MRI data at one or more time points.
Genome-wide genotype data were available for 487 of these children
(NDA Collection 2857).

rs-fcMRI data. Minimally processed, quality-controlled, baseline
resting-state functional MRI data for the ABCD cohort were downloaded
from the NDA, specifically the ABCD-BIDS Community Collection
(ABCC; NDA Collection 3165). Details of the data access and processing
can be found in the ABCC documentation (https://collection3165.
readthedocs.io/en/stable/). Briefly, the data were processed using the
ABCD-BIDS pipeline (Feczko et al., 2020a), which is a modified version
of the Human Connectome Project pipeline (Glasser et al., 2013; Feczko
et al., 2021). Processed ABCD data were further curated based on head
motion, such that only frames that had a framewise displacement (FD)
threshold of 0.2 mm were used. Of the surviving frames, additional
frames were removed if they were detected as outliers (using the median
absolute deviation) in the standard deviation of the bold signal across the
whole brain. Trimming was done at random to limit bias in data selec-
tion. Only resting-state scans from participants trimmed to 10 min of
usable data were kept for further analysis, resulting in a total of 5,543 par-
ticipants. The final ABCD data set for our primary analyses consisted of
N= 2,747 subjects (52.9% female) in ABCD ARMS-1 and N= 2,796 sub-
jects (50.2% female) in ABCD ARMS-2.

Whole-brain functional connectivity wasmeasured using the Gordon
parcellation, an independent annotation derived from highly sampled
individual data, which includes subcortical nuclei and the cerebellum
(Gordon et al., 2016).

The Oregon cohort rs-fcMRI data was processed using the same pipe-
line as the ABCD cohort. After quality control (poor image quality, reg-
istration, or gray matter/white matter delineation) and exclusion of
subjects with missing data in the Oregon cohort, a total of N= 553 sub-
jects (37.4% female) were kept for longitudinal analyses and N= 494 for
the baseline analysis (the smaller sample size here is due to missing
covariates at the early time points).

ADHD composite symptom scores. ADHD symptom scores were cre-
ated by averaging standardized (Z-scored) symptom measures across
available parent-reported measures in both the ABCD and
Oregon-ADHD-1000 cohorts. This parent-reported composite score
was previously validated and replicated for ABCD in a confirmatory fac-
tor model with reproducible fit (Cordova et al., 2022) and was also pre-
viously validated for the Oregon-ADHD-1000 (Nigg et al., 2018). For
ABCD, the measures used to create a composite ADHD symptom score
were the attention problem scale from the Child Behavior Checklist
(CBCL) and the inattentive and hyperactive symptom counts from the
Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS).

For the Oregon-ADHD-1000, the measures used to create a compos-
ite were the inattentive and hyperactive symptom counts from the
ADHD Rating Scale, the KSADS, the Conners (third edition), and the
Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder
Symptoms and Normal Behavior Scale (SWAN), as well as the hyperac-
tivity raw score from the Strengths and Difficulties Questionnaire (Nigg
et al., 2020b).

Reliability among the symptom measures in both cohorts was
good to excellent (ABCD ARMS-1, Cronbach’s α= 0.87; ABCD
ARMS-2, α= 0.86; Oregon-ADHD-1000, α= 0.96).

ADHD case identification in ABCD. Criteria for an ADHD diagnosis
in ABCD were based on the Tier 4 criteria described by Cordova et al.
(2022). That is, (1) cases that met the criteria on the computerized
KSADS for School-Age Children interview as well as exceeding cutoffs
of T-score > 65 on both parent and teacher normative ratings (using
the Brief ProblemMonitor) plus (2) participants who met diagnostic cri-
teria for ADHD in the past (computerized KSADS), remained on ADHD
medication despite not meeting diagnostic criteria on the interview cur-
rently, and had an elevated attention problem T-score from the teacher-
reported Brief ProblemMonitor (T-score > 65), suggesting that they were
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in fact true cases who were partially treated (partial remission), causing
them not to meet full criteria. (Cordova et al. described this in their sup-
plemental materials and noted in their discussion that adding these cases
provides a viable alternative estimate.)

Brain-wide connectivity (polyneuro) scores. Polyneuro risk scores
(PNRS), which represent brain-wide connectivity associated with
ADHD symptoms, were created following a method (Fig. 1) similar to
that described previously (Zhao et al., 2019). Effect estimates generated
from a brain-wide association study (BWAS) performed on the ABCD
discovery set (see below) were used to calculate PNRS for each subject
in the validation data sets by multiplying the effect estimate for each con-
nection, bi, by the subject’s connectivity measure, Ci, and summing
across all connections (Eq. 1). Scores were created using both unadjusted
effect estimates, as well as effect estimates adjusted using a Bayesian pro-
cedure described previously (Zhao et al., 2019). The Bayesian adjustment
accounts for both the observed correlation structure among all connec-
tions brain-wide, as well as the signal-to-noise ratio of the brain-behavior
association. In addition, scores were created using only those connec-
tions that passed a particular significance threshold (determined in the
discovery cohort): top 50%, top 10%, and top 1% most significant con-
nections:

PNRSADHD =
∑

Cibi. (1)

ADHD polygenic score. Details of the Oregon-ADHD-1000 genotyp-
ing procedure have been published previously (Nigg et al., 2018, 2020b;
Mooney et al., 2021). For the ABCD cohort, saliva samples were collected
at the baseline visit and sent to the Rutgers University Cell and DNA
Repository for DNA isolation (Uban et al., 2018). Genotyping was per-
formed using the Smokescreen array (Baurley et al., 2016). Processed
genotypes were downloaded from the NDA (dx.doi.org/10.15154/
1503209), and standard quality control checks were performed using
the GWASTools R package (Gogarten et al., 2012). One batch of samples
had a significantly lower call rate (∼85%) than all others (∼98%) and was
removed (N= 126 samples). All single-nucleotide polymorphisms
(SNPs) had an adequate call rate (>94%), and no significant batch effects
were observed after examining allele frequency differences across
batches.

For both cohorts, principal component analysis was conducted using
the PC-Air method in the GENESIS Bioconductor package (Gogarten et
al., 2019), and nongenotyped SNPs were imputed with IMPUTE2
(Howie et al., 2009) using the 1000 Genomes phase 3 reference panel.
Only those SNPs imputed with high confidence (INFO> 0.8) were

kept. Genotype probabilities were converted to best-guess genotypes,
with the genotype set to missing if the probability is <0.8.

The PRS were constructed in both ABCD and Oregon-ADHD-1000
using the 2019 PGC+ iPSYCH ADHD genome-wide association study
(GWAS) meta-analysis (Demontis et al., 2019) as the discovery data
set (20,183 ADHD cases; 35,191 controls). We used a method
(LDpred) for calculating polygenic scores that has demonstrated good
performance in a variety of data sets, as well as significantly improved
performance compared with more traditional methods (Vilhjálmsson
et al., 2015; Ni et al., 2021; Pain et al., 2021). Only SNPs with an INFO
score of >0.8 in both the PGC+ iPSYCH meta-analysis and the target
data sets were considered. SNPs were further limited to the ∼1.2 million
HapMap SNPs as suggested. Linkage disequilibrium was estimated using
all unrelated individuals in the ABCD cohort, and PRS were created with
the proportion of causal SNPs set to 0.3.

Experimental design and statistical analyses. Analyses testing the
association between brain connectivity (i.e., each parcel-to-parcel brain
correlation; we use the term “connection” throughout to refer to this
measure of functional connectivity) and the ADHD composite symp-
tom score in ABCD were carried out using the Sandwich Estimator
for Neuroimaging Data (SEND; Feczko et al., 2020c, 2021). SEND con-
structs a marginal model (Guillaume et al., 2014) for brain-wide asso-
ciations, where brain connectivity is the dependent variable, while
covariates and independent variables are modeled as fixed effects.
Standard errors are estimated with a sandwich estimator clustered for
unique combinations of race, ethnicity, study site, and sex assigned at
birth. Two covariates, subject age and highest parental education,
and the independent variable ADHD composite symptom scores
were modeled as fixed effects.

The association between the PNRS and ADHD composite symptom
score was validated in both the ABCD cohort and the completely inde-
pendent Oregon-ADHD-1000 cohort. First, ABCD ARMS-1 was used
as the discovery cohort, and effect estimates were used to calculate
PNRS in ABCD ARMS-2. The association between ADHD PNRS and
ADHD symptoms was tested using a linear regression model, with age,
sex, race/ethnicity, highest parental education, ABCD Study site, and
the single most significant connection covaried. To assess whether family
relatedness impacted the PNRS effect estimate, marginal models with
family ID as the cluster variable were also fit. Marginal models were
implemented with the gee R package (Carey, 2019). In addition, we tested
the association between PNRS and symptoms in a matched case–control
subsample of ABCD ARMS-2, consisting of 116 cases and 114 controls
matched on age, sex assigned at birth, race/ethnicity, and study site.
Given the low number of ADHD cases in the full ABCD cohort, this

Figure 1. Polyneuro risk score (PNRS) discovery and validation workflow. Note the thresholding done to select connections used in the PNRS is based on significance determined in the
discovery cohort.
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analysis allowed for a better comparison to the PNRS effect seen in the
Oregon case–control cohort.

Second, the full ABCD cohort (ARMS-1 and ARMS-2 combined) was
used as the discovery data set, and ADHD PNRS scores were calculated
for all subjects in the Oregon-ADHD-1000 cohort. The association
between ADHD PNRS and ADHD composite symptom score was vali-
dated in the Oregon cohort in three ways. (1) The earliest scan was cho-
sen for each subject, and the association between PNRS and ADHD
symptoms was tested in this baseline data using linear regression.
Again, a marginal model with clusters defined by family ID was fit to ver-
ify effect estimates while accounting for the impact of siblings. (2) All
available scans were used, and repeated measures were accounted for
with a marginal model, again using the gee R package. (3) Finally, sub-
jects were categorized as follows: persistent ADHD (ADHD at all time
points), persistent control (control at all time points), remittent
ADHD (ADHD at one or more early time points followed by
non-ADHD status), and others. Again, a marginal model was fit to assess
the association between these diagnostic categories and the ADHDPNRS
over time. All models fit in the Oregon cohort including age, assigned sex
at birth, race/ethnicity, highest parental education, puberty score, scan
type, and the most significant individual connection as covariates. The
most significant individual connection was included in the model to
test whether the PNRS indeed explains more variation in symptoms
than any single connection. Following best practices in the literature
(Dennis et al., 2009; de Zeeuw et al., 2012), IQ was not included as a
covariate in our models.

In both cohorts, we performed secondary analyses to determine if
accounting for a history of ADHD medication usage impacted the asso-
ciation between PNRS and ADHD symptoms.

Finally, to examine whether the method used to construct the brain-
wide summary score significantly impacted our results, we created an
alternative PNRS using partial least squares regression (PLSR) and com-
pared its performance to that of the PNRS constructed with a linear addi-
tive model as described above.

In all analyses examining the effect of ADHD PRS, the first three
genomic principal components were covaried to adjust for potential pop-
ulation stratification. Analyses examining whether the effect of the PRS
on ADHD symptoms is partially mediated by brain-wide connectivity
(ADHD PNRS) were conducted using the mediation R package
(Tingley et al., 2014).

Results
Overview of samples
There were no significant differences in mean age, race/ethnicity,
or ADHD prevalence between the two ABCDARMS (all p-values
> 0.1) but a slight difference in the proportion of females
(chi-square p-value = 0.0463; Table 1). The distribution of symp-
tom scores was not significantly different between ABCD
ARMS-1 and ARMS-2 (p= 0.916).

By virtue of its case–control design, the Oregon-ADHD-1000
had a higher proportion of ADHD cases and, as a result, much
greater variation in symptom scores compared with ABCD
(Fig. 2; Mooney et al., 2023). The Oregon cohort also had a lower

proportion of females and a greater proportion of Caucasians
than the ABCD cohort (p-values <0.001; Table 1).

Brain-wide association results
Brain-wide association analyses were performed in ABCD
ARMS-1 and ARMS-2 separately, as well as in the full ABCD
cohort. The correlation of effect estimates between ARMS-1
and ARMS-2 was significant, with Pearson’s correlation ranging
between 0.46 for all connections and 0.79 for the top 1% of most
significantly associated connections (Table 2).

Effect estimates for individual connections were small, with
standardized regression coefficients of <0.1. A matrix of regres-
sion coefficients for all connections brain-wide is shown in
Figure 3A. The cumulative effect of connections involving each
parcel (i.e., the sum of the absolute value of effect estimates across
each row in the matrix), along with each parcel’s network assign-
ment, is shown in Figure 3B.

The top 10% most significant associations were spread across
multiple brain networks but were particularly concentrated
among connections involving the default mode and cingulo-
opercular networks (Fig. 4).

Polyneuro scores associated with ADHD symptoms
To assess whether the cumulative effect of brain-wide, ADHD-
associated resting-state connectivity could predict ADHD symp-
toms, PNRS were constructed based on the effect estimates from
BWAS in ABCD ARMS-1 and the full ABCD cohort.

The ADHD PNRS (Bayesian-adjusted, top 10% of connec-
tions), based on effect estimates discovered in ABCD ARMS-1,
was significantly associated with ADHD symptom scores in
ABCD ARMS-2 [β= 0.078 (0.033, 0.123); p= 7.4 × 10−4, permu-
tation p= 0.001; Fig. 5A], after adjusting for the single most sign-
ificant connection. The PNRS explained a very small proportion
of symptom variation (partial R2 = 0.004), which is not unex-
pected given the restricted range of symptoms in the ABCD
cohort—the vast majority of ABCD participants have low symp-
tom scores (Fig. 2). A larger proportion of symptom variation
was explained by the PNRS when analyzing a matched case–con-
trol subsample (N= 116 cases, N= 114 controls) of ABCD
ARMS-2 [β= 0.218 (0.034, 0.402); p= 0.021; partial R2 = 0.027].
Creating this subsample effectively downsampled the number
of participants with low symptom scores, creating a symptom
distribution much more similar to that in the Oregon-ADHD-
1000 cohort.

The full ABCD sample was used as the discovery cohort for
validating the ADHD PNRS in the Oregon-ADHD-1000 cohort.
When examining baseline data only (i.e., the earliest scan for each
subject in the Oregon cohort; N = 494), the ADHD PNRS was
significantly associated with ADHD symptoms, after accounting
for relevant covariates (see Materials and Methods; Fig. 5B). All
PNRS examined, regardless of the significance threshold used to
select connections, were significantly associated with ADHD
symptoms after adjusting for the single most significantly
associated connection (all p-values < 0.001, Fig. 5C). The
Bayesian-adjusted PNRS based on the top 10% most significant
connections was the most predictive [β= 0.208 (0.113, 0.302);
p= 2.1 × 10−5, permutation p= 2 × 10−4], explaining approxi-
mately 4.1% of the variation in the ADHD composite symptom
score. The amount of variance explained by the PNRS was
roughly eight times that explained by the single most significant
connection (∼0.5%), demonstrating the benefit of the brain-wide
score (Fig. 5C). Although the Bayesian-adjusted PNRS were
slightly more predictive than the unadjusted PNRS, this

Table 1. Description of cohorts

ABCD ARMS-1 ABCD ARMS-2 Oregon-ADHD-1000

Sample size 2,747 2,796 553
Mean age (SD) 9.97 (0.63) 9.98 (0.62) 10.25 (1.56)a

% Female 52.9 50.2 37.4
% Caucasian 65.0 65.5 79.7
% ADHD Dx 3.3 4.1 57.1a

Inattention symptoms‡ 53.4 (5.7) 53.3 (5.7) 63.9 (16.8)a

aAt earliest scan.
‡Inattention symptoms (T-scores) measured by parent-reported Child Behavior Checklist in ABCD and
parent-reported Conners 3 in the Oregon-ADHD-1000.
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difference was not significant (all p-values > 0.05); nor were there
any significant differences among PNRS using different signifi-
cance thresholds (top 1%, 10%, 50%, or all) to select connections
(Fig. 5C). The effect size estimate from a marginal model, with
clusters defined by family ID, was nearly identical (β= 0.208,
robust p= 2.3 × 10−6), suggesting family structure had minimal
influence on the associations observed.

Including all scans in the analysis (N = 553 subjects, N= 1,048
scans) and using a marginal model to account for repeated mea-
sures of the same individual resulted in a much reduced, but still
significant, association between the PNRS and ADHD symptoms
[β= 0.0626 (0.016, 0.110), robust p= 0.00903]. This smaller effect
was consistent with the strength of association between the PNRS
and ADHD symptoms decreasing with age.

Examining group effects among youth in the Oregon-
ADHD-1000 with at least two scans (N= 320 subjects, N= 806
scans) showed that subjects with persistent ADHD had signifi-
cantly higher PNRS than healthy controls across time [control
group β=−0.331 (−0.518, −0.143), robust p= 5.5 × 10−4;
Cohen’s d=−0.318; Fig. 5D]. There was a suggestive interaction
between ADHD status and age at scan [interaction β= 0.0585
(−0.002, 0.119), robust p= 0.060], indicating the difference in
PNRS between ADHD cases and controls may diminish some-
what with increasing age (Fig. 5D).

The results of sensitivity analyses to ensure findings were not
significantly influenced by motion during scan acquisition, med-
ication use, or sampling bias (including age-stratified analyses
and assessment of test–retest reliability) are presented below.

ADHD polyneuro score relationship to ADHD polygenic risk
score
In the ABCD ARMS-2, there was a weak but significant correla-
tion between the PNRS and ADHDPRS (r = 0.177, p < 2 × 10−16).

However, when included in the same regression model, both the
ADHD PNRS [β= 0.071 (0.024, 0.118), p= 0.0032] and PRS [β=
0.178 (0.132, 0.225), p= 4.6 × 10−14] were significantly associated
with symptoms, and there was no significant mediation of the
genetic effect by the PNRS (bootstrapped p= 0.11).

In the Oregon cohort, similarly, both the ADHD PNRS
[β= 0.217 (0.112, 0.322); p= 6.3 × 10−5] and the ADHD PRS
[β= 0.215 (0.125, 0.306); p= 4.1 × 10−6] were significantly
associated with ADHD symptoms when included in the same
regression model. However, the two scores were not correlated
(p= 0.857), and a mediation model showed no indication of
the PNRS mediating genetic risk (bootstrapped p= 0.90).

Sensitivity analyses
Controlling for motion during scan acquisition
To ensure that findings were not significantly impacted by, or
attributed to, motion during scan acquisition, we repeated anal-
yses while accounting for motion in three ways. First, using a sub-
sample of the ABCD discovery cohort (N= 2,863), BWAS were
conducted using two FD thresholds (0.1 mm vs 0.2 mm; 8 min
of data for both), and the results from each were used to construct
PNRS in the Oregon cohort. The two resulting PNRS had nearly
identical predictive power (Fig. 6), suggesting motion in the dis-
covery cohort did not significantly impact the PNRS.

Second, an estimate of motion during each scan (mean FD)
was included in regression models when testing the association
between PNRS and ADHD symptoms in the Oregon cohort.
This estimate of motion during scan acquisition was not signifi-
cantly associated with ADHD symptoms (p= 0.690 for the base-
line analysis). Although mean FD and the PNRS were
significantly correlated (r= 0.31, p= 4.02 × 10−15), the strength
of association between symptoms and the PNRS did not change
meaningfully when including mean FD in the regression model
(β= 0.202, after adjusting for mean FD in the baseline analysis).

Third, we repeated the BWAS in the full ABCD cohort (both
ARMS combined), but this time including mean FD as a covar-
iate (note: it was not possible to calculate mean FD for all partic-
ipants; total N= 5,466 included in the FD-adjusted BWAS).
Regression coefficients from this BWAS were highly correlated
with those from the primary analysis (r > 0.99 across all func-
tional connections; Figs. 4, 7), and PNRS based on this

Figure 2. Distribution of ADHD symptom scores in (A) both ARMS of ABCD (Mann–Whitney U test p-value = 0.916) and (B) the Oregon-ADHD-1000 case–control cohort. The ADHD composite
symptom scores are the average of multiple standardized (mean = 0, SD = 1) symptom scales (see Materials and Methods).

Table 2. Correlation of brain-wide effect estimates across ABCD ARMS

T-stat quantile Pearson’s correlation p-value

All 0.460 0
Top 50% 0.571 0
Top 10% 0.717 0
Top 1% 0.792 0
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motion-adjusted BWAS performed very similarly. The
Bayesian-adjusted PNRS based on the top 10% most significant
connections was the most predictive again [β= 0.209 (0.110,
0.308); p= 4.15 × 10−5], explaining approximately 3.8% of the
variation in the ADHD composite symptom score (Fig. 8).

Polygenic risk score analyses
Because European-ancestry individuals are the largest ancestry
group in both the ABCD and Oregon cohorts, we also examined
an ADHD PRS constructed using the European-only PGC+
iPSYCH meta-analysis (Demontis et al., 2019) as the discovery
data set (19,099 ADHD cases and 34,194 controls). Other than
the discovery data used, the methods for constructing the PRS
were the same.

While we did see small differences in PRS effects between the
two discovery sets, mediation results did not change meaning-
fully. In ABCDARMS-2, the PRS effect was stronger for the score
based on the European-ancestry discovery GWAS [β= 0.231
(0.168, 0.294), p= 6.7 × 10−13], and a very small, borderline sign-
ificant mediation effect was observed (bootstrapped p= 0.052,
proportion mediated = 0.016).

In the Oregon cohort, likewise, the PRS effect was slightly
stronger when using the European-ancestry discovery data [β=
0.232 (0.135, 0.329); p= 3.7 × 10−6], but still no mediation was
seen (bootstrapped p= 0.91).

Effect of ADHD medication usage
In the Oregon-ADHD-1000 cohort, a lifetime history of ADHD
medication use was significantly associated with the PNRS
(Cohen’s d= 0.22, p= 0.022), though not after adjusting for
ADHD symptoms (p= 0.86). The PNRS remained significantly
associated with ADHD symptoms after adjusting for a history
of ADHD medication usage, although the effect was reduced
slightly [β= 0.146 (0.061, 0.230); p= 7.8 × 10−4]. The same pat-
tern held for the results in ABCD ARMS-2 [PNRS β= 0.062
(0.023, 0.102); p= 0.0018, after adjusting for ADHD medication
use].

Effect of IQ
In the Oregon-ADHD-1000, IQ (full-scale IQ from the
WISC-IV) measured at baseline was not significantly correlated
with the PNRS (r= 0.029, p= 0.488). Adjusting for IQ had no
meaningful impact on the association between the PNRS [β=
0.222 (0.121, 0.323)] and ADHD symptoms.

Figure 3. Brain-wide connectivity associated with ADHD symptoms in the ABCD Study cohort. A, The matrix of standardized regression coefficients showing the strength of association
between all connections (organized by brain network) and ADHD symptoms. B, Gordon parcellation showing the relative contribution of each brain network to the ADHD PNRS. Only the
top 10% most significant connections (representing the most predictive PNRS) are considered. The fill color represents the sum of the absolute value of β weights for all connections in which
a parcel participates; the outline color represents network assignment. Aud, auditory; CiO, cingulo-opercular; CiP, cingulo-parietal; Def, default mode; DoA, dorsal attention; FrP, frontoparietal;
Sal, salience; SMm, somatomotor medial; SMl, somatomotor lateral; Sub, subcortical; VeA, ventral attention; Vis, visual; ReT, retrosplenial temporal; NA, not assigned.

Figure 4. The matrix of standardized regression coefficients showing the strength of asso-
ciation between the top 10% most significant connections (organized by brain network) and
ADHD symptoms. The cumulative effect of these connections comprised the most predictive
PNRS, demonstrating the brain-wide, distributed nature of the ADHD PNRS. Aud, auditory;
CiO, cingulo-opercular; CiP, cingulo-parietal; Def, default mode; DoA, dorsal attention; FrP,
frontoparietal; Sal, salience; SMm, somatomotor medial; SMl, somatomotor lateral; Sub, sub-
cortical; VeA, ventral attention; Vis, visual; ReT, retrosplenial temporal; NA, not assigned.
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Figure 5. ADHD polyneuro score associated with ADHD symptoms. Polyneuro scores and residualized ADHD symptom scores, after adjusting for relevant covariates (see Materials and
Methods), for all subjects in the (A) ABCD ARMS-2 (N= 2,796) and (B) Oregon-ADHD-1000 cohort, using each subject’s earliest scan (N= 494). C, The proportion of ADHD symptom score
variance explained in the Oregon cohort, by the single most significantly associated connection (Min-p); polyneuro scores comprised of the top 1%, 10%, and 50% most significant connections;
and all connections (bootstrapped standard errors are shown). D, Subjects in the Oregon-ADHD-1000 cohort with persistent ADHD showed higher ADHD PNRS than controls (p= 0.00142), though
this difference decreases with age. PNRS_U, unadjusted polyneuro score; PNRS_B, Bayesian-adjusted polyneuro score.

Figure 6. ADHD polyneuro scores were robust to the motion threshold. The proportion of ADHD symptom score variance explained is nearly identical when analyzing the same set of subjects
(N= 2,863) using a more stringent motion threshold (FD threshold of 0.1 mm vs 0.2 mm). Bootstrapped standard errors are shown. PNRS_U, unadjusted polyneuro score; PNRS_B,
Bayesian-adjusted polyneuro score.

8 • J. Neurosci., March 6, 2024 • 44(10):e1202232023 Mooney et al. • Brain-wide ADHD-associated Connectivity



Test–retest reliability of the polyneuro risk score
To directly address the question of test–retest reliability in our
data, we examined PNRS for the same subjects measured at mul-
tiple time points in the Oregon-ADHD-1000 longitudinal
cohort. Of the 494 subjects included in our baseline analysis (ear-
liest scan chosen), 55% had multiple scans available. When we

repeated this cross-sectional analysis using the second available
scan (approximately 1.8 years later on average) for those 55%,
the strength of association between the PNRS and ADHD symp-
toms was nearly identical [β= 0.206 (0.110, 0.302)] to the base-
line analysis [β= 0.208 (0.113, 0.302)].

When specifically examining the relationship between scans
performed at different times, we found that the PNRS was sign-
ificantly correlated (r= 0.5, p= 4.5 × 10−23) when measured 1.83
years apart on average (Fig. 9). As expected, the correlation
appeared to decrease with increasing time interval between
MRI scans (r = 0.43, p= 3.8 × 10−10; for scans 3.10 years apart
on average). Indeed, the amount of change in PNRS was signifi-
cantly associated with the amount of time between the first and
second scans (absolute value of PNRS change: β= 0.477, p=
0.0289).

Discovery data set sample size
Because the explanatory power of the PNRS depends on precise
estimates of the effect of each individual brain feature (functional
connections in this case), maximizing the size of the discovery
data set is crucial. Because of this, we chose to use the full
ABCD cohort (ARMS-1 and ARMS-2 combined) as the discov-
ery set when validating the score in the Oregon-ADHD-1000.
However, because internal validation in the ABCD cohort relied
on only the ABCD ARMS-1 as the discovery cohort, we exam-
ined the impact of using this smaller discovery data set in the
Oregon cohort as well. We found that the association between
the PNRS and ADHD symptoms was slightly weaker [β= 0.179
(0.086, 0.272), p= 1.8 × 10−4, permutation p= 0.0006; partial R2

= 0.034] but comparable to the association when the full ABCD
cohort was used for discovery [β= 0.208 (0.113, 0.302)] in the
baseline analysis.

Bootstrapping to assess sampling bias
To assess whether sampling bias may have driven the observed
small effects of the PNRS, bootstrapping analyses were conducted
in both cohorts. First, the small effect seen in ABCD internal val-
idation was confirmed through bootstrapped (N= 5,000 replica-
tions) resampling of the ABCD ARMS-2 [bootstrapped β= 0.078
(0.0329, 0.1226)]. Note: the higher number of replications (5,000
for ABCD vs 1,000 for Oregon below) was needed to accurately
estimate the confidence interval due to the smaller effect size in
ABCD.

In the Oregon cohort, we performed bootstrapping with N=
1,000 replications in each of two cross-sectional samples: one
including the earliest scan available for all subjects (Cross-
sectional-1) and another including the second available scan
for the 55% of subjects with multiple scans (Cross-sectional-2).
In both samples, the bootstrapped results confirm our findings:
for the Cross-sectional-1 sample, bootstrapped β= 0.208 (0.119,
0.294), and for the Cross-sectional-2 sample, bootstrapped β=
0.206 (0.110, 0.309).

We also examined age-stratified bootstrap results in the
Oregon cohort, by analyzing scans for participants aged <12
years old (mean age = 10.1 years) separately from scans for par-
ticipants aged >12 years old (mean age = 13.3 years). For this
analysis, we used only the Cross-sectional-2 sample, given the
small number of “older” scans in Cross-sectional-1. The associa-
tion between PNRS and ADHD symptoms was significant for
scans done before age 12 [bootstrapped β= 0.231 (0.128,
0.319)], but not for those done after age 12 [bootstrapped β=
0.084 (−0.115, 0.294)], providing further evidence of decreased
predictive power of the PNRS with increasing age.

Figure 7. The matrix of standardized, motion-adjusted regression coefficients showing the
strength of association between the top 10% most significant connections (organized by brain
network) and ADHD symptoms. The regression coefficients shown here are from a BWAS that
included mean FD as a covariate. Aud, auditory; CiO, cingulo-opercular; CiP, cingulo-parietal;
Def, default mode; DoA, dorsal attention; FrP, frontoparietal; Sal, salience; SMm, somatomotor
medial; SMl, somatomotor lateral; Sub, subcortical; VeA, ventral attention; Vis, visual; ReT,
retrosplenial temporal; NA, not assigned.

Figure 8. The proportion of ADHD symptom score variance explained in the Oregon cohort,
by the single most significantly associated connection (Min-p); polyneuro scores comprised of
the top 1%, 10%, and 50% most significant connections; and all connections. The results are
shown for PNRS based on the BWAS that adjusted for mean FD. Bootstrapped standard errors
are shown.
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PLSR
To determine whether the method used to construct the PNRS
significantly impacted our results, we implemented an alternative
PNRS using a commonly used multivariate method, PLSR. In this
case, we used the same independent training (ABCD) and test
(Oregon) samples as used for the primary PNRS. PLSR (Rosipal
and Krämer, 2006) aims to predict dependent variables from a
large set of independent variables through a latent variable (com-
ponents) approach by maximizing the covariance between both
the predictor and response variables. This method has been vali-
dated and used several times by our group (Rudolph et al., 2017,
2018; Kovacs-Balint et al., 2019; Miranda-Domínguez et al., 2020;
Silva-Batista et al., 2021; Ragothaman et al., 2022; Byington et al.,
2023). Here, we used functional connectivity as the independent
variable and ADHD composite score as the dependent variable.
For each threshold (top 1%, top 10%, and top 25% of connec-
tions), the connections included in the model were selected based
on their univariate ability to predict within-sample outcomes. We
explored the performance of PLSR using a different number of
components. In this implementation, we use leave-one-out cross-
validation to identify the optimal number of components able to
predict the outcome. Once the optimal number of components
was identified in the training sample, the entire ABCD data set
was used to recalculate the weights. The resulting optimal models
were applied to the independent Oregon cohort. The PLSRmodel
showed predictive power (maximum proportion of variance
explained in the Oregon cohort = 2.8%) slightly lower than, but
comparable to, the primary PNRS (Fig. 10).

Discussion
PNRS reveals a distributed view of the brain-wide association
with ADHD symptoms
Our findings demonstrate a robust association between brain-
wide connectivity patterns (PNRS) and ADHD symptoms in
two independent cohorts with different recruitment procedures,
supporting the generalizability of these findings. The findings
demonstrate the importance of evaluating these types of mea-
sures in cohorts enriched for the trait of interest, given the larger
effects seen in both the Oregon-ADHD-1000 case–control cohort
and the ABCD matched case–control subsample. Importantly,
the effect sizes seen in these enriched cohorts may better repre-
sent the effects seen in certain clinical populations.

PNRS that represent cumulative, brain-wide effects explained
a significantly greater proportion of the variation in symptom
scores than the most significant individual connections.
Although the strongest contributions to the PNRS were concen-
trated among connections involving the default mode and
cingulo-opercular networks, the most predictive PNRS incorpo-
rated connections involving all networks (Fig. 4) and explained
∼4% of the variation in symptoms—roughly eight times the var-
iation explained by the single most significant connection.
Though the PNRS incorporating the top 10% of most significant
connections was most predictive in our data, there was no sign-
ificant difference among the various significance thresholds
tested, and the optimal threshold should be examined in future
studies. Discovery set sample size and the distribution of effect
sizes across the brain are likely to be important factors influen-
cing the optimal inclusion threshold, as has been shown for poly-
genic scores (Dudbridge, 2013; Wray et al., 2014). In addition,
other methods for modeling connectivity–behavior associations,
such as alternate strategies for parcellation or estimating

Figure 9. ADHD polyneuro scores measured in the same subject were significantly correlated when measured (A) approximately 2 years apart and (B) approximately 3 years apart.

Figure 10. The proportion of ADHD symptom score variance explained by both the PNRS
and the PLSR model in the Oregon baseline cohort (without adjusting for covariates). Due to
the computational complexity of the PLSR, that model was fit with a maximum of 25% of the
most significant functional connections. Nevertheless, the two methods provide comparable
predictive power across various connection inclusion thresholds, suggesting there is no mean-
ingful benefit from the more complex PLSR model. Bootstrapped standard errors are shown.
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measures of connectivity (Dadi et al., 2019; Pervaiz et al., 2020),
may improve the predictive power of PNRS and should be an
area of future research.

In the enriched Oregon cohort, subjects with an ADHD
PNRS in the highest 10% had 3.86 times greater odds of an
ADHD diagnosis than those with a PNRS below the median
(Fisher’s exact p = 1.2 × 10−5), demonstrating the potential pre-
dictive utility of the brain-wide summary measure. In ABCD
ARMS-2, this odds ratio was 2.32 (p = 0.0023), demonstrating
that even at the population level, extreme values of the PNRS
may have utility for risk prediction when combined with other
risk factors. The explanatory power of the PNRS examined here
is comparable to PRS and will likely improve with larger dis-
covery data sets. Like polygenic scores (in most cases), PNRS
do not currently have utility for diagnostic decision-making;
however, they can be useful in research settings for risk stratifi-
cation and exploration of causal mechanisms (Yang et al.,
2022).

The specific network contributions to the brain-wide score
should be further evaluated and clarified with additional data.
Our results are consistent with previous results implicating the
default mode and cognitive control networks in ADHD but
also demonstrate that the effects of individual networks do not
fully capture connectivity patterns associated with the disorder.
Our findings emphasize a distributed view of brain function,
where complex cognitive behaviors or traits are best explained
by cumulative effects across most brain networks (Rosenberg et
al., 2016; Zhao et al., 2019; Marek et al., 2022).

Our results also exemplify the need to better understand
the phenotypic heterogeneity among those with ADHD.
Identification of PNRS specific to certain subgroups (e.g., ages,
disorder subtypes, and patterns of comorbidity) may provide
insight into the mechanisms driving this heterogeneity.

Sensitivity analyses suggest a robust association between
brain-wide connectivity and ADHD symptoms
Sensitivity analyses were conducted to ensure that potential
sources of bias (relatedness among subjects, history of
ADHDmedication usage, and motion during MRI acquisition)
were accounted for, lending confidence to our results. In
addition, while Bayesian-adjusted PNRS, which account for
outcome signal-to-noise ratio and the correlation of effects
across the brain, were slightly more predictive than unadjusted
PNRS, the difference was not significant, contrary to previous
work (Zhao et al., 2019). It is possible that our use of parcel-
lated connectivity data, which already accounts for spatial
correlation across the brain (by collapsing multiple highly
correlated, spatially adjacent voxels into a single feature, or
parcel), reduced the need for the adjustment. However, given
the previously demonstrated benefit of this type of Bayesian
adjustment (Vilhjálmsson et al., 2015; Zhao et al., 2019), we
believe it to be good practice and its effect should be examined
further in future studies of brain-wide summary scores, includ-
ing those using other types of brain features (e.g., structural
features).

In addition, an alternative method for constructing the PNRS
(using PLSR) showed comparable results to the linear additive
model used for the primary PNRS reported here. These results
suggest that, for these types of brain-wide summary scores, the
use of large sample sizes for discovery and appropriate quality
control procedures is far more important than the method for
combining/summarizing the brain-wide signal.

Lack of evidence for mediation of ADHD polygenic risk by the
PNRS
Given the small effects of both ADHD PNRS and ADHD PRS, it
is not surprising we did not observe evidence of the ADHD PNRS
mediating common genetic risk for ADHD. However, it is
important to note that larger sample sizes may allow for more
precise scores and the detection of small but meaningful media-
tion effects. In addition, access to more diverse GWAS discovery
cohorts for PRS is sorely needed to address the generalizability of
PRS effects (Martin et al., 2019).

The lack of mediation effect, however, does not rule out the
possibility of environmental factors influencing ADHD-related
connectivity patterns. Low-to-moderate heritability for many
brain features (Miranda-Dominguez et al., 2017; Sudre et al.,
2017; Adhikari et al., 2018) and the growing recognition of the
important role of environmental and developmental context in
the etiology of ADHD suggest more work is needed to under-
stand the interplay between genetic liability, environmental
exposures, and brain endophenotypes in causal models of
ADHD.

Longitudinal extension of PNRS models can assess specificity
to childhood ADHD
Another important direction for future work should be the exam-
ination of how ADHD-associated connectivity changes with age
(Kessler et al., 2016). The PNRS reported here were derived from
data on children 9–10 years of age in the ABCD sample and
showed at least suggestive evidence in the Oregon cohort of
reduced predictive power in older subjects. This result raises
the question of whether the scores examined here are specific
to childhood ADHD or whether brain connectivity is simply
less predictive of ADHD in older individuals. Subsequent waves
of data released from the ABCD Study will allow further explora-
tion of age effects.

We recognize that the stringent quality control procedures
used here likely reduced the diversity of the discovery data set,
given the known associations between rs-fcMRI data quality
and several clinical and sociodemographic variables in ABCD
(Cosgrove et al., 2022) and hence the generalizability of the
PNRS. In addition to exploring the effect of age, the PNRS should
be further evaluated in more diverse samples.

PNRS approach leverages small effect sizes to develop
generalizable brain measures for clinical research
Overall, our findings provide strong evidence for the use of brain-
wide summary measures of resting-state connectivity as a predic-
tive measure of ADHD—and the importance of evaluating these
measures in multiple large data sets, including those enriched for
the trait of interest. These polyneuro scores have several advan-
tages. First, because of the larger effect sizes for PNRS, they will
increase the utility of small neuroimaging data sets (which are
underpowered to detect associations with individual brain fea-
tures) to test brain-behavior associations—similar to the way
PRS have allowed testing for associations with cumulative genetic
risk in relatively small samples. Second, PNRS partially alleviate
issues of heterogeneity, given that the same cumulative risk can
be the result of different individual risk factors. Third, PNRS
may provide new ways to examine shared brain mechanisms
across disorders (e.g., does an ADHD PNRS predict depression
symptoms?) and provide insights into relationships between
diagnostic categories and the risk of psychiatric comorbidities.
Finally, further development of the PNRS approach and
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integration with other risk factors (e.g., polygenic and environ-
mental measures) has the potential to provide clinically mean-
ingful prediction of behavioral disorders and patient outcomes.
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