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ABSTRACT

PURPOSE Although immune checkpoint inhibitors (ICIs) have improved outcomes
in certain patients with cancer, they can also cause life-threatening
immunotoxicities. Predicting immunotoxicity risks alongside response
could provide a personalized risk-benefit profile, inform therapeutic
decision making, and improve clinical trial cohort selection. We aimed to
build a machine learning (ML) framework using routine electronic health
record (EHR) data to predict hepatitis, colitis, pneumonitis, and 1-year
overall survival.

METHODS Real-world EHR data of more than 2,200 patients treated with ICI through
December 31, 2018, were used to develop predictive models. Using a prediction
time point of ICI initiation, a 1-year prediction time window was applied to
create binary labels for the four outcomes for each patient. Feature engineering
involved aggregating laboratory measurements over appropriate time windows
(60-365 days). Patients were randomly partitioned into training (80%) and test
(20%) sets. Random forest classifiers were developed using a rigorous model
development framework.

RESULTS The patient cohort had a median age of 63 years and was 61.8% male. Patients
predominantly had melanoma (37.8%), lung cancer (27.3%), or genitourinary
cancer (16.4%). They were treated with PD-1 (60.4%), PD-L1 (9.0%), and
CTLA-4 (19.7%) ICIs. Our models demonstrate reasonably strong performance,
with AUCs of 0.739, 0.729, 0.755, and 0.752 for the pneumonitis, hepatitis,
colitis, and 1-year overall survival models, respectively. Eachmodel relies on an
outcome-specific feature set, though some features are shared among models.

CONCLUSION To our knowledge, this is the first ML solution that assesses individual ICI risk-
benefit profiles based predominantly on routine structured EHR data. As such,
use of our ML solution will not require additional data collection or docu-
mentation in the clinic.

INTRODUCTION

New cancer immunotherapies extend lives in previously
rapidly fatal cancers.1 Although some patients experience
remarkable response to immunotherapy,2,3 other patients
have severe immune-related adverse events (irAEs).2,4,5 These
irAEs can occur at any point, affecting 20%-30% of patients
receiving immune checkpoint inhibitor (ICI) monotherapy
and more than 50% receiving ICI combinations.2,4,5 Notably,
effectiveness is associated with toxicity, suggesting that
patients most likely to benefit from immunotherapy are also
most at risk.6-8

There are no practical reliable methods for predicting
efficacy/effectiveness and toxicity to maximize safety and
benefit in clinical care and clinical trials. Instead, current
practice is limited to routinemonitoring andmanagement of
significant and potentially fatal toxicities.2,4,5,9

Predictive toxicity-effectiveness modeling using machine
learning (ML) could provide clinical decision support.
However, most existing methods for predicting toxicity or
effectiveness cannot be practically implemented clinically
and require measurement of irAE-associated biomarkers.
Many of these, such as cytokines, immune cell subsets (eg,
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CD41 lymphocytes), and polygenic signatures, are novel, not
collected in clinical routine, and largely unstudied in larger
cohorts.10-15 Other studies usedmore practical data but either
used small cohorts, data that were not human-verified, did
not consider multiple toxicities, were limited in drug or
disease setting, or did not address both toxicity and efficacy/
effectiveness.16-18 Thus, there is a need for comprehensive
tools to accurately predict irAEs alongside effectiveness from
routinely collected data.

We formed an academic-industry partnership between
Vanderbilt University Medical Center (VUMC) and GE
HealthCare to develop a practical, comprehensive toxicity-
efficacy tool. Here, we report on the development of random
forest classification models for effectiveness and each of the
three most common severe irAEs—autoimmune hepatitis,
colitis, and pneumonitis. We demonstrate that this multi-
model framework can reliably predict toxicities and effec-
tiveness in a test data set. In contrast to past studies,19-21 we
developed and validated our algorithms using a large cohort
of more than 2,200 ICI-treated individuals from an National
Cancer Institute–designated Comprehensive Cancer Center
with human-verified outcomes data. Our models have po-
tential utility in clinical decision support guiding therapy
selection and cessation, such as avoiding combination
therapies for patients at higher predicted risk for toxicities.

METHODS

This study was conducted under the approval of the VUMC
Institutional Review Board (study: 211814) and granted
consent exemption for study participants.

Study Population

Patients (N5 2,710)were identified using drug keywords and
pharmaceutical codes at Vanderbilt-Ingram Cancer Center

(Nashville, TN). The following patients were excluded: no
cancer diagnosis, last known alive age older than 90 years,
no ICI treatment receipt, or ICI receipt only on clinical trial
(n5 480). Patients receiving confirmed ICI before December
31, 2018, andwith requisitemodeling data were included. For
hepatitis, patients were excluded if they did not have lab-
oratory measurements of the four liver enzymes within
1 year of ICI initiation (n 5 274). We excluded patients with
an indefinite colitis or pneumonitis diagnosis as determined
by expert curators or a clinician (n 5 95 and n 5 151, re-
spectively). In these cases, the patients’ treating physicians
did not give and laboratory or imaging did not yield a de-
finitive diagnosis of colitis or pneumonitis or lack thereof.
For 1-year overall survival (OS), patients lost to follow-up
within 1 year of ICI initiation with no death date were ex-
cluded (n 5 213). Unanticipated systematic reasons why
some patients were lost to follow-up could have introduced
bias into the models; additional details about OS data
completeness and provenance are included in the Data
Supplement. Patients were randomly partitioned into
training (80%) and test (20%) sets for development and
validation, respectively (n 5 1,564 and 392 for hepatitis;
n 5 1,708 and 427 for colitis; n 5 1,663 and 416 for pneu-
monitis; n 5 1,614 and 403 for OS; Fig 1).

Manual Curation of Unstructured EHR Data

Automated electronic health record (EHR) extraction
methods often yield conflicting and incomplete information.
To ensure robustness of predictive models, human data
verification was used to reduce noise and improve label
quality. We developed manual curation databases for clini-
copathologic variables, pneumonitis, and colitis using Re-
search Electronic Data Capture (REDCap).22,23 Standard
curation protocols were used to extract and structure data
from clinician notes and other EHR natural language ele-
ments. We manually curated variables for treatment start/

CONTEXT

Key Objective
To build a machine learning (ML) solution that can assess a patient’s immune checkpoint inhibitor (ICI) risk-benefit profile
based primarily on routinely collected, structured electronic health record (EHR) data.

Knowledge Generated
We developed random forest classification models for four prediction outcomes—pneumonitis, colitis, hepatitis, and 1-year
overall survival—after ICI initiation. The models primarily used structured EHR data before ICI treatment, and they dem-
onstrate reasonably strong performance with area under the receiver operator curve between 0.729 and 0.755 for the four
outcomes.

Relevance
The authors present a ML algorithm to predict 1 year survival and risk of pneumonitis, hepatitis and colitis during the 1 year
after initiation of ICI treatment. With further validation across other data sets, this tool could help clinicians assess the risk/
benefit tradeoff of initiating ICI therapy.
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stop dates (including treatment pauses), cancer diagnosis,
biomarkers, andmedication for eachpatient. For pneumonitis,
curators globally searchedeachEHR for pneumonitis, followed
by assignment of positive, negative, or unknown status for
each new pneumonitis event. All unknown status cases were
adjudicated by a physician (T.J.O). For colitis, because of
the frequency of keywords (eg, diarrhea) needed to identify
ICI-related colitis in EHR notes, we created an automated
pipeline to facilitate chart review, which has been previously
described.24 For positive colitis or pneumonitis cases, curators
extracted occurrence dates, etiology, any ICI hold dates, and
details of additional toxicity-related treatment. See curator
training, QC process descriptions, and REDCap codebooks in
the Data Supplement.

Design of the Predictive Models

Figure 2A depicts the model design. For each patient, the
prediction time point was set as ICI initiation date. Patient
data were aggregated to create the predictive features for the
models. A 60- or 120-day aggregation time window was
applied to generate features from laboratory and clinical
measurement data. A 1-year window was used for all other
data sources, such as diagnosis codes, medications, smoking
history, and procedures.

The four prediction outcomes consisted of three of the most
common irAEs and OS as an effectiveness proxy. Binary
outcome labels were created using a 1-year time window
since most toxicity events occur by this time point. The goal
was to build four binary classification models—one for each
outcome—using ML.

Feature Engineering

Model features were created from both structured and
curator-structured natural language EHR data. The REDCap
data tables were processed into model development-
compatible formats. VUMC stores structured EHR data
using the Observational Medical Outcomes Partnership
(OMOP) Common Data Model.25 We used OMOP data tables
to derive features describing demographics, laboratory (eg,
albumin) and clinical measurements (eg, BMI), diagnoses,
drugs, procedures, visits, and observations from structured
EHR data. In a multistep data transformation process,
concept tables were used tomap OMOP table concept codes to
concept names (Fig 3). Condition codes were derived from
EHR data encoded in different diagnosis coding systems
(eg, International Classification of Diseases [ICD]-9, ICD-10,
SNOMED CT [Systemized Nomenclature of Medicine—
Clinical Terms]); all codes were transformed to ICD-10.
The ICD-10 codes used in the features are defined in the
Data Supplement (Table S1). Laboratory measurement
units were harmonized for consistency. Sex variables re-
corded at VUMC are based on legal sex; therefore, this
variable will not represent a unified variable of either sex
assigned at birth or gender identity. Medication data were
synthesized from both curator-structured data tables and
structured EHR variable data. Intermediate tables were
constructed for time-dependent data. The final data table
was assembled by aggregating laboratory and clinical
measurements within a 60- or 120-day time window and
applying a 1-year time window to all other data types. The
feature engineering procedure resulted in approximately
10,000 features.

Patients included in
the hepatitis model

(n = 1956)

Patients included in
the colitis model

(n = 2135)

Patients included in
the pneumonitis
model (n = 2079)

Patients included in
 the OS model

(n = 2017)

Excluded for no
laboratory values for
all 4 liver enzymes

1 yr post ICI initiation
(n = 274)

Excluded for
unknown/

indeterminate index
colitis etiology

(n = 95)

Excluded for
unknown/

indeterminate index
pneumonitis etiology

(n = 151)

Excluded if no death
date and lost to

follow-up
(n = 213)

Excluded for no ICI,
no cancer, last alive
age >90 yrs, ICI only
as clinical trial agent

(n = 480)
Patients meeting

inclusion criteria after
manual review

(n = 2230)

Patients with ICI
treatment + cancer

indicators
(n = 2710)

FIG 1. Flow diagram. ICI, immune checkpoint inhibitor; OS, overall survival.
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FIG 2. Design of the predictive models and model development framework. (A) For
each patient, ICI initiation date was set as the prediction time point (dotted line).
A 60- or 120-day time window (red curly brace) was applied to aggregate lab-
oratory and clinical measurements data (top red box), indicated in the pre-ICI
period; a 1-year time window (gold curly brace) before ICI initiation (gray dotted
box) was applied to other data types (eg, diagnosis codes, drugs; bottom left gold
box). The features were used to train ML models to predict four binary outcomes
(bottom right blue box). The binary outcome label indicates the occurrence of at
least one episode (for toxicities) within 1 year of ICI initiation (blue curly brace).
(B) For each outcome, patients were randomly partitioned into training (80%) and
test (20%) sets using stratified split on the basis of the binary target. Nested CV
was used in model development, hyperparameter optimization was performed in
the inner loop, and generalization performance was estimated in the outer loop.
Each experiment included a baseline and an alternative model. The alternative
model was selected if it demonstrated statistically significant superiority over
the baseline model based on a paired t-test using the outer loop AUC results. BP,
blood pressure; CMP, complete metabolic panel; CV, cross-validation; ICD-10,
International Classification of Diseases; ICI, immune checkpoint inhibitor; ML,
machine learning; SpO2, oxygen saturation.

4 | © 2024 by American Society of Clinical Oncology

Lippenszky et al



Prediction Outcomes

All outcomes were modeled as binary variables indicating
occurrence (for death) or occurrence of at least one episode
(for toxicities) within 1 year of ICI initiation. Although cu-
rators recorded EHR-identified toxicity etiologies, we
modeled all-cause pneumonitis as the proxy variable instead
of ICI-induced pneumonitis alone. This was decided because
EHR documentation of etiology was inconsistent, and, even
when recorded, clinical determination of pneumonitis eti-
ology is imprecise and subjective. Although use of all-cause
pneumonitis may sometimes lead to risk identification for
non–ICI-caused pneumonitis, such as radiation-induced
pneumonitis occurring during ICI therapy but shortly after
radiation therapy, many pneumonitis cases would have had
to have been excluded from the training and test data sets.
Colitis prediction was limited to episodes that met a

standardized definition of ICI-related etiology (eg, were
clinically determined to be ICI-related, who had immune-
related colitis on biopsy, whose colitis responded to ICI
cessation, immune suppressive therapy and/or rebounded
on ICI restart, etc). Hepatitis was defined, guided by clinical
expertise, as any laboratory measurement in the 1-year
window where any of the four liver enzymes, namely AST,
ALT, alkaline phosphatase (ALP), and total bilirubin,
exceeded three times the upper limit of normal. Similar to
our use of all-cause pneumonitis, the specific etiology of
hepatitis during ICI therapy can be difficult to ascertain and
does not affect resulting clinical decisions. The hepatitis
modelmay be limited by the inclusion of bilirubin, which can
indicate progression. Additionally, although isolated bili-
rubin is not traditionally associated with hepatitis,26 bili-
rubin levels more than three times the upper limit of normal
would often lead clinicians to discontinue therapy as they
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FIG 3. Feature engineering pipeline. Clinician notes and other unstructured EHR data were transformed into structured tables by curators.
Data tables constructed directly from structured EHR variables included demographic, laboratory (eg, albumin levels) and clinical mea-
surement (eg, BMI), condition, drug, procedure, visit, and observation data. Condition codes and drug codeswere aligned into common coding
systems. Laboratory measurements underwent cleansing procedures, and units were harmonized. Intermediate tables were constructed
containing data for each patient at various time points. Features were created by aggregating data using different time windows, example
features displayed on the right. The ICD-10 codes used in the features are defined in the Data Supplement (Table S1). AJCC, American Joint
Committee on Cancer; BMI, body mass index; dx, diagnosis; EHR, electronic health record; ICD, International Classification of Diseases; ICI,
immune checkpoint inhibitor; OH, one-hot encoding; OMOP, Observational Medical Outcomes Partnership; PHEWAS, phenome-wide as-
sociation studies; rel freq, relative frequency; SNOMED, Systemized Nomenclature of Medicine; TWA, time-weighted average.
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would in the case of typically defined hepatitis. OS served as a
proxy variable for ICI-related effectiveness; death dates
were obtained from either the EHR or from a third-party
vendor (Redsson, Toledo, OH).

Model Development and Evaluation

For each outcome, we created development and test data sets
using stratified random assignment to ensure equal pro-
portions of patients with the outcome in the training and test
data sets, which yielded different sets of patients in each
outcome model. The characteristics of the data and pre-
diction tasks shaped modeling framework choice. Because
our data set is tabular and its scale does not meet the typical
volume required for models with high complexity (usually
deep learning models), we considered traditional ML ap-
proaches (ie, logistic regression, random forest algorithms).
Furthermore, many studies using similar data apply tradi-
tional ML algorithms for prediction tasks.9,10 Our data set
exceeded 2,200 patients while the number of engineered
features exceeded 10,000. Because of the curse of dimen-
sionality,27 the number of patients necessary to achieve
accurate generalization of ML models grows exponentially
with the dimensionality of the feature space, limiting us to a
relatively small number of features (<100) for each model.
Finally, we aimed to build models that are easy to deploy in
clinical practice. This led us to start from a minimal feature
set and experiment with adding new features. For each

model, clinically validated features showing strong associ-
ation with the binary target in the training set were incor-
porated into the minimal feature set. Subsequently, data
scientists and clinicians collaboratively formulated hy-
potheses regarding additional features that may increase the
predictive power of the models (Data Supplement). Feature
selection was performed on the basis of validation perfor-
mance in our setting. The immense number of possible
feature combinations causes a high risk of overfitting in
model selection.28 To mitigate this risk, we conducted hy-
pothesis tests to make modeling decisions. Nested cross-
validation (CV) was used to optimize the hyperparameters of
the ML algorithms (Data Supplement, Table S2) in the inner
loop (10-fold CV) and estimated the generalization perfor-
mance in the outer loop (10-fold CVwith three repeats). Each
experiment incorporated a baselinemodel and an alternative
model, where the latter included additional features or used a
different ML algorithm. A paired t-test using the outer loop
AUC results was conducted with the null hypothesis of no
performance difference between models. If the null hy-
pothesis was experimentally rejected at an a priori a of .05,
the alternative model was selected. A moderate number of
experiments were performed to reduce erroneous inferences
from the multiple testing problem.29

For each outcome, a binary classification model was de-
veloped following the procedure above. Each model was
evaluated on the corresponding 20% test set (Fig 2B).
Predictive performance was measured using AUC, sensi-
tivity, specificity, positive predictive value (PPV), and neg-
ative predictive value (NPV); 1,000-fold bootstrap was
performed to calculate 95% CI (Data Supplement).

RESULTS

Cohort Characteristics

The study cohort included 2,230 patients (Table 1). The
median age of patients was 63 years; 61.8% were male. The
cohort primarily included three cancer types: melanoma
(37.8%), lung cancer (27.3%), and genitourinary cancer
(16.4%). Most patients (60.4%) received PD-1 ICI treatment.
PD-L1 and CTLA-4 treatment were administered to 9.0%
and 19.7% of the patients, respectively. 60.1% had chemo-
therapy before ICI. Slightly more than half of the patients
(52.4%) had confirmed smoking history.

Model Performance

For each outcome, we conducted multiple experiments and
selected features using the model development framework,
with statistically significantly superior validation perfor-
mance driving model selection. Despite exploration of al-
ternative ML algorithms including logistic regression,
random forest was experimentally chosen for each outcome.
Using the 20% test cohort, we evaluated overall model
performance and model performance in the three largest
cancer subgroups using AUC, sensitivity, specificity, PPV,

TABLE 1. Characteristics of 2,230 Included Patients

Patient Characteristic No. (%)

Sex

Female 852 (38.2)

Male 1,378 (61.8)

Cancer type

Melanoma 842 (37.8)

Lung 608 (27.3)

Genitourinary 365 (16.4)

Other 490 (22.0)

Drug class

PD-1 1,348 (60.4)

PD-L1 201 (9.0)

CTLA-4 440 (19.7)

PD-1 1 CTLA-4 236 (10.6)

PD-L1 1 CTLA-4 5 (0.2)

Traditional chemotherapy before ICI 1,340 (60.1)

Smoking history

Current or former smoker 1,169 (52.4)

Never-smoker 774 (34.7)

Unknown 287 (12.9)

Age at first ICI, years, median (IQR) 63 (54-70)

NOTE. Details on the categorization of cancer diagnoses into cancer
types can be found in the Data Supplement.
Abbreviation: ICI, immune checkpoint inhibitor.
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and NPV (Table 2). Categorization of cancer diagnoses into
subgroupswas performed based on the keywords provided in
the Data Supplement (Table S3). Except for AUC, all metrics
require binarized predictions; predicted probabilities were
dichotomized by optimizing sensitivity and specificity in the
training set.30

All models performed reasonably well,31 achieving an AUC
between 0.72 and 0.76 when considering all test patients
(Table 2). Lower limits of the 95% bootstrap CI were above
0.63 for all models, demonstrating statistically significant
superiority to random chance. The toxicity models’ per-
formances vary among cancer subgroups, whereas the ef-
fectiveness model exhibits good performance throughout.
All models perform strongly in patients with lung cancer.
Pneumonitis and hepatitis models show diminished per-
formance for patients with melanoma as does the colitis
model for patients with genitourinary cancer.

We also assessed the models’ capabilities as an eligibility
criterion for a clinical trial cohort of patients with a low risk
of toxicity or high likelihood of ICI effectiveness (two
rightmost columns in Table 2). We imagined selection of
patients at the 50th percentile or lower likelihood of expe-
riencing a toxicity or death. Random selection would yield
comparable toxicity incidences and OS rates as those ob-
served in the complete data set. In Table 2, we compare the
incidence rates on the basis of random selection versus
prioritization of 50% by selecting the patients with the
lowest model-predicted toxicity probabilities and highest
model-predicted OS probabilities. The results show that
model-driven prioritization reduces the incidence rate for
each toxicity by over half and elevates the OS incidence rate
from 52% to 68%.

The modeling strategy selected a different feature subset for
each outcome; these features cover a wide variety of patient
information, including ICD-10 codes, procedures, smoking
history, medication history, demographics data, and labo-
ratory and clinical measurements (Table 3). Most features
are EHR structured data; only two (smoking status, number
of ICI drugs) are derived from unstructured notes. We used a
60- or 120-day time window before treatment initiation
measurement aggregation, using basic functions such as
minimum, maximum, last value, and time-weighted aver-
age. Other data types were aggregated over a 1-year time
window before treatment initiation, primarily using relative
frequency and one-hot encoding. Smoking indicator was a
binary variable distinguishing ever-smokers and never-
smokers. Feature contributions for each model are depic-
ted in the Data Supplement (Fig S1). Feature sensitivity
analysis is detailed in the Data Supplement (Fig S2).

This study relied on patients who had data available before
initiation of ICI. However, not every feature was consistently
populated across all patients. Missing data were imputed
using the median of the feature in the training folds.

DISCUSSION

Here, we describe ML models leveraging routinely collected
clinical data to accurately forecast effectiveness and toxic-
ities of cancer immunotherapy. To our knowledge, this
approach is the first capable of immunotherapy risks and
benefits assessment using only routinely collected EHR data.
Most ML-based immunotherapy solutions focus on a single
prediction outcome, usually effectiveness, and are restricted
to one or few cancer indications and a single ICI drug.16,17

Although studies have been conducted that focus on im-
munotherapy irAEs,19,20 this research marks the first to
address three significant toxicities.

A primary advantage of our models is that inputs are readily
available in clinical practice. Only two features—smoking
status and number of ICI drugs—were drawn frommanually
curated data. In the pneumonitis model, Smoking:C34/C78
was the third and Smoking was the eighth most important
feature as depicted in the Data Supplement (Fig S1). ICI
drugs, freq was the fourth most important feature in the
colitis model. These features were incorporated as no al-
ternative feature sets that excluded these variables exhibited
statistically significant superior performance. They are
easily attainable by treating physicians, their assistants, or
clinical trial staff and could be readily entered into themodel.
We intentionally designed models using practically available
data because many published models are not available for
clinical use and/or do not have clinical utility because of
onerous additional testing or data ascertainment (eg, using
nonstandard biomarkers).

Because of broad availability of the input features, the
models presented here have potential for wide deployment
and adoption. One envisaged use case is to assist pre-
screening of eligible clinical trials patients. The OS and
toxicity models may inform novel immunotherapy trial
cohort selection on the basis of patient safety profiles.
Toxicity prediction may also assist patient management in
routine clinical care through early detection of high-grade
toxicities that cause significant morbidity and mortality.
Improved awareness of likely toxicities will allow additional
monitoring visits and tests for higher-risk patients, facili-
tating early detection and management of irAEs. Other
scenarios include assigning patients at high risk of toxicity to
less intensive therapy (eg, monotherapy instead of combi-
nation, particularly if they had favorable OS profiles) or
conducting early intervention or prevention studies with
immunomodulators to prevent toxicities. In clinical practice,
attention should be paid to tradeoffs in sensitivity and PPV.
In some scenarios a poor PPV may not be a barrier because
the intervention in response to an elevated risk for a patient
is feasible and reasonable, whereas in other scenarios, cli-
nicians may prefer a strong NPV to optimize clinical trial
enrollment. Care should be taken in applying these models
clinically, considering the implications of both false posi-
tives and false negatives.
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TABLE 2. Performance Results for the Four Models Predicting Three Toxicity Outcomes and OS in the 20% Test Set and in the Three Largest Cancer Diagnosis Groups

Outcome
Modeled Diagnosis (N) AUC (95% bootstrap CI)

Sensitivity (95%
bootstrap CI)

Specificity (95%
bootstrap CI) PPV (95% bootstrap CI) NPV (95% bootstrap CI)

IR, Half the Patients on
the Basis of Model

Predictions, %

IR, Random
Selection of
Patients, %

Pneumonitis 1y All cancer
types
(n 5 416)

0.739 (0.638 to 0.823) 0.711 (0.561 to 0.845) 0.701 (0.653 to 0.746) 0.193 (0.129 to 0.261) 0.960 (0.937 to 0.981) 3.8 9.1%

Melanoma
(n 5 166)

0.590 (0.353 to 0.841) 0.444 (0.125 to 0.800) 0.917 (0.874 to 0.956) 0.235 (0.059 to 0.462) 0.966 (0.936 to 0.993) 6.0 5.4%

Lung cancer
(n 5 111)

0.723 (0.600 to 0.840) 0.952 (0.846 to 1.000) 0.256 (0.172 to 0.346) 0.230 (0.146 to 0.317) 0.958 (0.867 to 1.000) 10.7 18.9

GU cancer
(n 5 67)

0.845 (0.686 to 0.960) 0.857 (0.500 to 1.000) 0.617 (0.484 to 0.741) 0.207 (0.069 to 0.357) 0.974 (0.914 to 1.000) 0.0 10.4

Hepatitis 1y All (n 5 392) 0.729 (0.655 to 0.804) 0.455 (0.333 to 0.574) 0.859 (0.822 to 0.899) 0.395 (0.284 to 0.508) 0.886 (0.851 to 0.921) 8.2 16.8

Melanoma
(n 5 136)

0.567 (0.373 to 0.777) 0.214 (0.000 to 0.455) 0.893 (0.838 to 0.943) 0.188 (0.000 to 0.400) 0.908 (0.850 to 0.958) 8.8 10.3

Lung cancer
(n 5 107)

0.884 (0.792 to 0.965) 0.500 (0.200 to 0.818) 0.907 (0.845 to 0.959) 0.357 (0.125 to 0.636) 0.946 (0.896 to 0.989) 0.0 9.3

GU cancer
(n 5 53)

0.639 (0.376 to 0.863) 0.444 (0.111 to 0.777) 0.795 (0.674 to 0.909) 0.308 (0.077 to 0.583) 0.875 (0.769 to 0.958) 15.4 17.0

Colitis 1y All (n 5 427) 0.755 (0.638 to 0.856) 0.750 (0.581 to 0.909) 0.608 (0.563 to 0.654) 0.134 (0.086 to 0.182) 0.968 (0.943 to 0.988) 3.3 7.5

Melanoma
(n 5 161)

0.747 (0.631 to 0.850) 0.957 (0.857 to 1.000) 0.174 (0.112 to 0.238) 0.162 (0.100 to 0.223) 0.960 (0.864 to 1.000) 5.0 14.3

Lung cancer
(n 5 112)

0.853 (0.717 to 0.964) 0.750 (0.000 to 1.000) 0.833 (0.764 to 0.900) 0.143 (0.000 to 0.308) 0.989 (0.958 to 1.000) 0.0 3.6

GU cancer
(n 5 68)

0.560 (0.447 to 0.672) 0.000 (0.000 to 0.000) 0.806 (0.712 to 0.894) 0.000 (0.000 to 0.000) 0.982 (0.934 to 0.983) 0.0 1.5

OS 1y All (n 5 403) 0.752 (0.706 to 0.796) 0.817 (0.764 to 0.865) 0.558 (0.487 to 0.627) 0.664 (0.609 to 0.719) 0.741 (0.673 to 0.806) 67.8 51.6

Melanoma
(n 5 158)

0.794 (0.716 to 0.861) 0.917 (0.861 to 0.868) 0.500 (0.362 to 0.639) 0.798 (0.723 to 0.866) 0.735 (0.585 to 0.882) 83.5 68.4

Lung cancer
(n 5 115)

0.681 (0.580 to 0.781) 0.674 (0.533 to 0.814) 0.611 (0.500 to 0.714) 0.509 (0.387 to 0.630) 0.759 (0.642 to 0.8680 50.0 37.4

GU cancer
(n 5 63)

0.741 (0.600 to 0.858) 0.742 (0.576 to 0.889) 0.625 (0.448 to 0.814) 0.657 (0.487 to 0.814) 0.714 (0.542 to 0.880) 65.6 49.2

NOTE. Detailed interpretation of the results can be found in the Data Supplement.
Abbreviations: 1y, 1-year prediction time window; GU, genitourinary; IR, incidence rate; NPV, negative predictive value; OS, overall survival; PPV, positive predictive value.
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Direct comparison of our models to those in the literature is
challenging because of prediction outcome definition vari-
ation, data types used, and data set size differences. Nev-
ertheless, our models’ performances are similar to those
previously reported.16,20 OS model performance is compa-
rable with summary AUC (sAUC) values reported in a large-
scalemeta-analysis that pooled results of studies onUS Food
and Drug Administration–approved PD-L1 immunohisto-
chemistry tests.10 A significant limitation of the previous

study is that sAUC was calculated for objective response rate
rather than 1-year OS, on the basis of prior ICI trials
reporting it as a well-correlated surrogate for 1-year OS.32

Our 1-year OS model on the whole test cohort shows a
significant gain in performance (AUC 5 0.75 v sAUC of 0.65;
PPV of 0.66 v 0.34) versus this previous study.

Additional work will be needed to ensure that these models
align with clinical knowledge and have practical clinical

TABLE 3. Features Used in Each of the Models

Outcome
Modeled Feature Data Type Time Window

Pneumonitis 1y Rel freq of C34, C78, R91, J, R05, R06, R07, R09 codesa ICD-10 condition codes 1 year

Rel freq of C34 code ICD-10 condition codes

Rel freq of C78 code ICD-10 condition codes

OH of J44 code indicator ICD-10 condition codes

OH of smoking indicator Curation Smoking history

OH of smoking indicator and OH (C34 or C78 codes) indicator interaction Curation and ICD-10 condition
codes

Smoking history and 1
year

TWA of oxygen saturation in blood values Laboratory measurements 120 days

TWA of body mass index values Body measurements

Hepatitis 1y Min, max, last value, TWA of aspartate aminotransferase (AST) values Laboratory measurements 60 days

Min, max, last value, TWA of ALT values

Min, max, last value, TWA of alkaline phosphatase (ALP) values

Min, max, last value, TWA of total bilirubin values

Colitis 1y Rel freq of K50, K51, K52, K57, K58 codes ICD-10 condition codes 1 year

OH of chemotherapy administration indicator Procedures

OH of C43 code indicator ICD-10 condition codes

OH of anti–CTLA-4 drug indicator Drugs

OH of anti–PD-1 drug indicator Drugs

Freq of ICI drugs Drugs

Rel freqs of hemoglobin values below and above normal range Laboratory measurements 120 days

Rel freqs of albumin values below and above normal range

Rel freqs of red blood cell values below and above normal range

Rel freqs of absolute lymphocytes count values below and above normal
range

Rel freqs of white blood cell values below and above normal range

OS 1y Freq of chemotherapy instances Procedures 1 year

Last value, TWA of albumin values Laboratory measurements 120 days

Last value of neutrophils % values

Last value of lymphocytes % values

Last value of lactate dehydrogenase (LDH)

Last value, time-weighted average of alkaline phosphatase values

Average difference of alanine transaminase values

Average difference of packed cell volume % values

Last value of oxygen saturation in blood

Frequency of C78 codes ICD-10 condition codes 1 year

Age in years Demographics At first ICI

Abbreviations: freq, frequency; ICD, International Classification of Diseases; ICI, immune checkpoint inhibitor; OH, one-hot encoding; OS, overall
survival; rel freq, relative frequency; TWA, time-weighted average.
aCodes collapsed to a single indicator due to clinical reasoning (all codes lung-related). Details on feature types and descriptions of the ICD-10
codes can be found in the Data Supplement. Feature contributions are shown in Data Supplement (Fig S1).
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utility. The work presented in this article represents the first
step: these models were developed in close collaboration with
clinical subject matter experts, as tying appropriate potential
interventions to the model predictions will be critical for
success. In the future, we plan to extend this work to longi-
tudinal predictions.We are in the process of validatingmodels

with external data sets from other health systems and
countries. EHR-based models could provide clinical decision
support to oncologists in tumor board settings. It remains to
be seen whether additional data sources, such as tumor and
germline genomic data, can further improve models as these
data become increasingly available.
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