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Abstract 

Data analysis tools are continuously changed and impro v ed o v er time. In order to test how these changes influence the comparability between 
analyses, the output of different w orkflo w options of the nf-core / rnaseq pipeline were compared. Five different pipeline settings (STAR+Salmon, 
S TAR+R SEM, S TAR+feat ureCounts, HIS AT2+feat ureCounts, pseudoaligner Salmon) were run on three datasets (human, Arabidopsis, zebrafish) 
containing spike-ins of the External RNA Control Consortium (ERCC). Fold change ratios and differential expression of genes and spike-ins were 
used for comparative analyses of the different tools and versions settings of the pipeline. An overlap of 85% for differential gene classification 
between pipelines could be shown. Genes interpreted with a bias were mostly those present at lo w er concentration. Also, the number of 
isoforms and exons per gene were determinants. Previous pipeline versions using featureCounts showed a higher sensitivity to detect one- 
isof orm genes lik e ER CC. To ensure dat a comparabilit y in long-term analysis series it would be recommendable to either stay with the pipeline 
version the series was initialized with or to run both versions during a transition time in order to ensure that the target genes are addressed the 
same w a y. 
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ntroduction 

he nf-core framework offers standardized, portable and re-
roducible pipelines for bioinformatic analysis workflows ( 1 ).
he nf-core / rnaseq pipeline ( 2 ) is one of the most utilized
ipelines in the nf-core portfolio, according to the number
itHub contributors, star-gazers and users associated to its
lack channel. Its purpose is to analyse RNA sequencing data
rom any organism for which a reference genome and anno-
ation is available. The pipeline takes care about data pre-
rocessing as well as quality control and offers multiple align-
ent and quantification routes. It does not include steps to

nalyse differential gene expression. 
Several tools and workflows are available to perform the

hree main steps in RNA-seq analysis: (i) align reads to the
eference genome, (ii) quantify genes and transcripts and (iii)
dentify differentially expressed genes. Some of the most pop-
lar tools used today, like STAR ( 3 ), Salmon ( 4 ) or fea-
ureCounts ( 5 ), have been released between 2013 and 2015.
enchmarking studies have been published in the years fol-

owing, attributing influence on the analysis output to the
ools of each of the three steps, although to different de-
rees, depending on the study. Williams et al. ( 6 ) tested nine
ligner tools, twelve expression modelers and thirteen tools
or the detection of differential expression in 219 combina-
orial implementations. They found a significant heterogene-
ty in the outcome of these workflows and attributed this
eceived: October 6, 2023. Revised: January 7, 2024. Editorial Decision: Februar
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hich permits unrestricted reuse, distribution, and reproduction in any medium, 
mainly to differential gene expression identification and less
to the choice of read aligner and expression modeler. Also,
Teng et al. ( 7 ) confirmed that mapping algorithms had a com-
paratively small effect on differential gene expression dis-
covery. Other studies showed that these two latter steps are
equally important for the outcome of differential gene ex-
pression analysis. Srivastava et al. ( 8 ) showed the influence
of mapping and alignment approaches on the variation of
quantification in experimental datasets, which in turn is cru-
cial for differential gene expression estimation. The RGASP
consortium ( 9 ) and Baruzzo et al. ( 10 ) evaluated tools for the
alignment step. Both found major performance differences be-
tween the aligners evaluated. Alignment outcome varied with
genome complexity and choice of parameter settings, where
default values of the tools were not always set to an optimal
choice. Aligners based on tools that were designed for DNA
and do not consider intron-sized gaps, varied most in perfor-
mance. They recommended that benchmarking of tools and
pipelines should be updated regularly, due to the fast develop-
ment in the field. In 2021, Sarantopoulou et al. ( 11 ) published
an extensive benchmark of quantification tools, comparing
six most popular isoform quantification methods. Tools per-
formance was highly dependent on the dataset structure.
They identified length and sequence compression complex-
ity as parameters with the greatest impact on quantification
accuracy. 
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The nf-core pipelines are constantly reviewed and updated
by the open-source nf-core community. The nf-core / rnaseq
pipeline was first released in 2018 and is currently available
at version 3.x (latest 3.12.0, in July 2023). All versions are
available on the pipelines GitHub repository ( https://github.
com/ nf-core/ rnaseq ) and can be run by specifying the pipeline
version in the run command (e.g. -r 1.4.2). According to the
discussions in the developer community of the nf-core / rnaseq
pipeline (Slack), the version v3.x pipelines did not imple-
ment featureCounts anymore, because the tool presents dis-
advantages for organisms where gene splicing occurs ( 11 , 12 ).
Therefore, it was deprecated and replaced by approaches that
use statistical modules, like Salmon and RSEM. In the ver-
sion 3.x releases, the user can choose between the aligners
HISAT2 ( 13 ) without quantification, STAR ( 3 ) in combina-
tion with quantification by Salmon ( 4 ) or RSEM ( 14 ), as well
as the pseudo-alignment and quantification by Salmon, while
in the previous version v1.x releases, the aligner STAR and
HISAT2 are available with quantification by either feature-
Counts, StringTie ( 15 ), Salmon or tximport ( 16 ). 

Baruzzo et al. ( 10 ) recommended to monitor pipeline per-
formance following tool updates and changes, because such
a comparison is necessary for the pipeline users to interpret
data generated with different versions. Therefore, the present
analysis has the objective to investigate the influence of the dif-
ferent tools on the analysis result when migrating from v1.x
to v3.x releases of the nf-core / rnaseq pipeline. Five different
pipeline settings were run on three publicly available datasets
from different organisms (human, plant, fish) of varying sizes
(191.41 Gigabases (Gb), 119.55 Gb, 27.46 Gb) containing
spike-ins of the External RNA Control Consortium (ERCC)
( 17 ). Fold change ratios and differential expression of genes
and spike-ins were determined with DESeq2 ( 18 ) and used
for comparative analyses of the different tools and versions
settings of the nf-core / rnaseq pipeline. 

Materials and methods 

Datasets 

Three public RNA-seq datasets from different organisms, con-
taining External RNA Control Consortium (ERCC) spike-ins,
were used in the analysis. One dataset was derived from hu-
man cell lines, one from Arabidopsis thaliana seedlings and
the third from zebrafish. The ERCC spike-in control is a mix-
ture of 92 synthetic polyadenylated (polyA) oligonucleotides
of 250–2000 nucleotides, that are meant to resemble human
transcripts ( 19 ). There are two mixtures (mix 1 and mix 2)
with differing molar concentrations of these sequences. The
concentrations of the transcripts in each spike-in mix span an
approximately 106-fold concentration range (0.0143–30 000
attomoles / μl) at defined molar concentration ratios between
the two mixtures, distributed into four subgroups (4.0, 1.0,
0.67 and 0.5). Reference fasta and gtf files of the three or-
ganisms were prepared by adding the ERCC sequences and
annotations ( 20 ). 

Human cell dataset. The human cell dataset consists of
the SEQC benchmark data set and data from the ENCODE
project ( 21 ). The Sequencing Quality Control (SEQC) con-
sortium generated two datasets (Group A and Group B)
from two reference RNA samples in order to evaluate tran-
scriptome profiling by next-generation sequencing technology.
Each sample contains one of the reference RNA sources and
a set of synthetic ERCC RNAs at known concentrations. The 
‘Group A’ dataset contains 5 replicates of the Strategene Uni- 
versal Human Reference RNA (UHRR), which is composed of 
total RNA from 10 human cell lines, with 2% by volume of 
ERCC mix 1. The ‘Group B’ dataset includes 5 replicate sam- 
ples of the Ambion Human Brain Reference RNA (HBRR) 
with 2% by volume of ERCC mix 2. The samples were se- 
quenced on the Illumina HiSeq 2000 platform. 

Arabidopsis dataset. The Arabidopsis dataset was gener- 
ated by Califar et al. ( 22 ) and compared the transcriptome 
of Arabidopsis embryos (cultivar: Wassilewskija, WS) during 
orbital flights to ground controls. ERCC mix 1 was added 

to flight samples and ERCC mix 2 to ground control sam- 
ples. The controls were added with a concentration of 1 μl of 
1:2000 diluted RNA spike-in ERCC spike to 50 ng of total 
RNA, which is half the amount suggested in the ERCC user 
guide. The sequencing platform for this dataset was the Illu- 
mina NovaSeq 6000. 

Danio rerio dataset. The zebrafish dataset was published 

by Schall et al. ( 23 ). In this study a zebrafish model for Short 
Bowel Syndrome (SBS) was used to test the hypothesis that 
acute SBS has significant effects on gene expression associ- 
ated with proliferation, inflammation, bile acid synthesis and 

immune system activation. The zebrafish were grouped into 

either SBS surgery ( n = 29, ERCC mix 2) or sham surgery 
( n = 28, ERCC mix 1) groups. The data used for this bench- 
mark originated from three fish from each group which were 
harvested for RNA sequencing at 2 weeks after surgery. Se- 
quencing was performed on the Illumina NovaSeq 500 plat- 
form. 

Reference genomes and annotations. The iGenomes En- 
sembl references for Homo sapiens (GRCh37), Arabidopsis 
thaliana (TAIR10) and Danio rerio (GRCz10) were used for 
analysis after adding the ERCC information to the fasta and 

gtf files. Gene length, exon number and number of isoforms 
per gene were retrieved from the gtf files using gtftools.py ( 24 ).
For gene length, the tool provides four different types of gene 
lengths (the mean, median and max of lengths of isoforms of 
a gene, and the length of merged exons of isoforms of a gene),
of which the mean length was used here for comparisons. Ex- 
ons are calculated for each gene by merging exons of all splice 
isoforms from the same gene. 

Pipeline settings: nf-core / rnaseq 

Versions 1.4.2 and 3.2 of the nf-core / rnaseq pipeline were run 

on the institute’s computing cluster with nextflow (v22.10.4) 
( 25 ) and singularity (v. 3.8.7) ( 26 ) in five settings, differing in 

aligner and quantification tools. For pipeline version v1.4.2 

the options for alignment by STAR or HISAT2 were used,
with quantification by featureCounts. For pipeline version 

v3.2 alignment was done by STAR and quantification by ei- 
ther Salmon or RSEM. The fifth setting executed employed the 
pseudo aligner option using Salmon only (see full commands 
in Supplementary Table S1 ). 

Downstream analysis 

Differential expression. The qbic-pipelines / rnadeseq pipeline 
(v2.0.1, https:// github.com/ qbic-pipelines/ rnadeseq ) was used 

to apply downstream analysis with DESeq2 (v1.34.0) to iden- 
tify differentially expressed (DE) genes (see full commands in 

Supplementary Table S1 ). Resulting log2 featurecounts and 

https://github.com/nf-core/rnaseq
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae020#supplementary-data
https://github.com/qbic-pipelines/rnadeseq
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae020#supplementary-data
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ene expression classification, as well as baseMean values
ere used for comparison statistics. 
Accuracy and sensitivity of pipeline performance. Compar-

ng the known log 2 ERCC spike-in concentration with the
easured log 2 Transcripts Per Million (TPM) can be used as

n indicator for measurement accuracy and sensitivity ( 17 ,
9 ). Accuracy is determined by the slope of the linear regres-
ion between these two parameters. The closer the regression
lope is to 1, the more accurately the pipeline predicted the rel-
tive abundance of the ERCC spike-ins. Sensitivity of the anal-
sis workflow can be estimated by determination of the lowest
imit of detection (LLD). It is defined as the molar amount of
RCC transcripts detected in a sample above a certain thresh-
ld value. When defining a sensitivity threshold of 1 TPM
log 2 TPM = 0), the LLD corresponds to the Y-axis value,
here the regression line crosses the X-axis. This results in the

og 2 number of control molecules detected per concentration
f Poly(A)RNA (ERCC spike-in) added to the sample ( 19 , 27 ).
he higher the LLD, the more molecules were detected based
n the same spike-in concentration in the sample, thus being
n indicator of higher analytic sensitivity. 

Computation efficiency. All pipeline runs were executed
n the institute’s computing cluster, which consists of 28
odes in total (24 regular 32Cores / 64Threads—2* AMD
PYC 7343, 512 GB RAM and 2TB NVME disks—and
 HighMem 64Cores / 128Threads—2* AMD EPYC 7513,
084 GB RAM and 4 TB NVME disks) and a Parallel
eeGFS Filesystem with a total capacity of 400TB. CPU hours
nd total memory usage were retrieved from the files in the
ipelines output folder </ pipeline_info /> , where the runs’
PU hours can be found in the < execution_report.html > and

otal memory can be calculated from the information given
n the < execution_trace.txt > file produced by each pipeline
un. 

Statistical analysis. Analysis and visualization of the DE-
eq2 output was performed in a Python Jupyter Notebook
6.3.0) ( 28 ), applying the packages pandas (1.2.4), numpy
1.20.2), scipy.stats (1.7.0) and scikit-learn (1.0). Graphs were
enerated with the python packages matplotlib (3.3.4) and
eaborn (0.11.2). Venn diagrams were drawn using the R
4.2.2) library VennDiagram (1.7.3). 

Gene classification as differentially expressed (DE) or not
not_DE), related gene length, baseMean and number of exons
ere compared on the level of the whole dataset and for ERCC

pike-ins only. The DESeq parameter baseMean was used as
n estimate of the dispersion of a gene, as an estimation of
equencing depth. The baseMean is defined as the ‘average
f the normalized count values, divided by size factors, taken
ver all samples’ ( 29 ). 
One-way ANOVA was applied to compare the log 2 feature

ount values of all pipeline outcomes. In case of significant
ifferences, the Tukey–Kramer post hoc test was applied for
airwise comparisons in order to determine which pipeline
ettings were differing from each other. Gene length, exon
umber and number of isoforms were compared as possi-
le causes of pipeline differences by applying the independent
 -test. The aim was to investigate if these parameters corre-
ated with the classification of genes as DE or not_DE. It was
lso tested if these parameters were associated with the con-
ordant classification of genes by all pipelines (concordant vs
on-concordant). 
ERCC sequence recovery was determined and ERCC es-

imates were used to calculate quality indicators like the
root mean squared error between expected and observed log 2
fold-change, as well as the lower limit of detection (LLD)
( 17 , 19 ). 

Results and discussion 

Identification of differentially expressed genes in 

whole datasets 

Concordance between pipeline outputs and the influence of
dataset structure. In a first step, the classification of all genes
in the datasets as differentially (DE) and non-differentially ex-
pressed (not_DE) was compared for the five pipeline settings.
As already observed in previous benchmarks studies ( 6 , 8–
11 ), log 2 feature count values and hence the number of dif-
ferentially expressed genes varied between pipelines and tools
(Figure 1 ). Dataset related parameters that may influence the
analysis of RNA expression include gene length, number of
exons and gene isoforms, as well as sequencing depth. Short
gene length, a high number of exons and a low sequencing
depth were characteristic for the genes that were ambiguously
classified in a benchmark study of RNA-sequencing analysis
workflows ( 30 ). Also, the number of isoforms and the expres-
sion pattern of those were shown to have an influence on tool
performance, especially if the short isoforms are the dominant
transcripts ( 12 ). 

The counts done by gtftools.py ( 24 ) for the organisms’ ref-
erence genomes used in this study were differing in size, num-
ber of exons and isoforms per gene. These counts from the gtf-
files include not only protein-coding genes, but also the non-
coding genes in the reference genome, including non-protein
coding RNA-producing genes. The human reference genome
was the largest ( ∼58 000 genes) and had an elevated num-
ber of genes with a low exon count: 40% of all genes in this
dataset had one exon, 71% up to five and a maximum of 367
exons were counted in one gene ( Supplementary Figure S1 ).
Regarding the number of isoforms for one gene, the human
reference genome stood out for having more genes with a high
number of isoforms, with a maximum of 82 transcripts for one
gene ( Supplementary Figure S2 ). The Arabidopsis genome was
of medium size ( ∼34 000 genes) with a comparable distribu-
tion of exons (34% containing one, 73% up to 5 exons), a
maximum number of 77 exons in one gene and a maximum
of 27 isoforms for the most varied gene. The zebrafish genome
on the contrary was the smallest genome ( ∼29 000 genes) with
a higher exon number per gene: only 14% of genes contained
one exon, 41% up to five exons and the maximum number
within one gene was 590. The highest number of isoforms for
one gene was 20. 

In the human cell dataset, the largest amount of DE genes
was identified, while the Arabidopsis dataset was the one
with the least DE genes. It is also noteworthy that in the
human cell dataset, a larger number of DE genes was de-
tected by the version v1.4.x pipelines (STAR+featureCounts,
HISAT2+featureCounts), being more pronounced after align-
ment with HISAT2 (Figure 1 ). The use of featureCounts
is supposed to have a higher performance on one-isoform
genes ( 11 ), which in the human reference genome make up
62% of all genes. Not shown in the Venn Diagrams are the
non-differentially expressed genes (non_DE) identified in all
pipeline runs, which sum up to 18 387, 19 054 and 13 625
for the human cell, Arabidopsis and zebrafish datasets, respec-
tively. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae020#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae020#supplementary-data
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Figure 1. Venn diagrams showing the number of differentially expressed (DE) genes identified by pipeline for each dataset. The number in the center 
represents all genes identified as differentially expressed by all pipelines. All other overlaps include the number of genes identified as DE by the 
pipelines represented in the o v erlap. In the human cell dataset a total of 24768 DE genes were detected, of which 84.7% were concordant in all pipeline 
settings. For the Arabidopsis dataset these were 4370 DE genes with 84.9% concordant identifications and in the zebrafish dataset 8305 DE genes with 
84.0% concordant hits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general recommendation given by authors of bench-
marking studies ( 11 , 12 ) is to prefer tools that use statistical
modules, like Salmon and RSEM, over featureCounts, consid-
ering them more reliable. One study ( 12 ) compared feature-
Counts with RSEM and attributed the difference between the
two approaches primarily to the number of transcripts in a
gene. The more transcripts a gene had, the larger the differ-
ence tended to be, especially when the short isoforms were the
dominant transcripts. The study of Sarantopoulou et al. ( 11 )
attributed accuracy differences mainly to length and sequence
compression complexity and to a lesser extent to the number
of isoforms. Comparing six quantification tools on idealized
and realistic datasets, the tools that exhibited the highest accu-
racy on idealized data, did not perform dramatically better on
the more realistic data. While in their introduction the authors
explicitly did not recommend featureCounts, they then con-
cluded that their results confirmed that simpler approaches
such as featureCounts appeared to do better on one-isoform
genes, with the final suggestion to treat those genes separately
( 11 ). 

Considering the sum of genes identified concordantly as DE
or not_DE by all pipelines, a mean of 84.5% was reached for
all datasets, while 0.3% to 1.4% were assigned as DE by only
one pipeline setting. This is in accordance with other bench-
mark studies, where a range of 80% to 85% of concordance
between tools was determined ( 11 , 30 ). In the benchmark of
quantification tools performed by Sarantopoulou et al. ( 11 ),
Salmon, RSEM and Cufflinks were shown to be highly con-
cordant with the truth up to the 80th percentile, while for
featureCounts this was less. Also, Everaert et al. ( 30 ) found
that about 85% of the genes showed consistent results in their
benchmarking study. 

DE genes only detected by a single pipeline setting had in
common that they presented a significantly lower baseMean
value than the concordant DE genes (one-way ANOVA, P =
4 × 10 

−70 , 3 × 10 

−34 and 6 × 10 

−14 for human, Arabidopsis
and zebrafish, respectively). This should be considered, if the
purpose of the RNA-sequencing is to find low expressed genes.
Gene length and exon number did not show a consistent pat-
tern of correlation with the concurring assignment of genes
by tool combinations. Concordant DE genes had a greater
mean length, with a significant difference in the human cell
and Arabidopsis datasets (t-test P < 3 × 10 

−5 ), but not in 

the zebrafish dataset ( P = 0.13). In the human cell dataset,
the genes identified concordantly as DE by all pipelines also 

contained a significantly higher number of exons than the DE 

genes identified only by a single pipeline setting (t-test P = 2 ×
10 

−43 ), corresponding with previous benchmark finding ( 30 ).
Regarding the number of isoforms for one gene, the human 

cell dataset showed a significantly higher number of isoforms 
( P = 1.3 × 10 

−68 ) for the genes concordantly identified as 
DE by all pipeline setting. This could not be confirmed in the 
other two datasets, matching findings for the tools compared 

by Kanitz et al. ( 31 ), including RSEM, where the output was 
‘largely not affected by structural features’ as exon number 
or transcript length, but who also confirmed that abundant 
transcripts, here indicated by a higher baseMean value, were 
quantified more accurately compared to rare ones. 

Log 2 fold c hange: correlation betw een pipelines. In a sec- 
ond step, the log 2 fold-change values for all genes were com- 
pared between all analysis settings. The deviation of one 
pipeline setting against another was determined by setting 
one measurement as ground truth and calculating the root 
mean squared error (RMSE) and the R 

2 of the second setting 
against it (Table 1 , Supplementary Figure S3 ). Best correla- 
tion and lowest errors occurred between pipelines of the same 
version, with an average RMSE of 0.53 ±0.1. Increased differ- 
ences in terms of a significantly higher RMSE ( t -test P = 5.4 

× 10 

−8 ) occurred when comparing the outcome of the 1.4.2 

version to 3.2 version pipelines (RMSE 0.92 ±0.16). This find- 
ing varied with the dataset and was least pronounced in the 
zebrafish dataset (Table 1 ). It is noteworthy that the outcome 
of STAR+Salmon for alignment and quantification showed a 
high correlation with the results from the much faster pseudo- 
aligner salmon (Table 1 : human cell dataset 95%, Arabidopsis 
0.85%, zebrafish 0.94%). Together with the data on CPU and 

memory demand for the pseudoaligner (see below), this turns 
into an interesting option for high throughput data. 

ERCC spike-ins: detection, pipeline sensitivity and 

accuracy 

Recovery of ERCC spike-ins. The ERCC spike-in mix used 

in all three datasets contains 92 synthetic polyadenylated 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae020#supplementary-data
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Table 1. Root mean squared error and correlation coefficient R 

2 (in brackets) of observed log 2 fold-change compared to a hypothetical equal outcome for 
two pipelines. (ssal = STAR+Salmon, srsem = STAR+RSEM, sfc = STAR+featureCounts, hfc = HISAT2+featureCounts, psal = pseudo-aligner Salmon) 

Homo sapiens Arabidopsis thaliana Danio rerio 

srsem 3.2 sfc 1.4.2. hfc 1.4.2 psal 3.2 srsem 3.2 sfc 1.4.2. hfc 1.4.2 psal 3.2 srsem 3.2 sfc 1.4.2. hfc 1.4.2 psal 3.2 

ssal_3.2 0.398 
(0.97) 

0.985 
(0.85) 

1.140 
(0.81) 

0.545 
(0.95) 

ssal_3.2 0.517 
(0.85) 

0.982 
(0.55) 

1.010 
(0.53) 

0.521 
(0.85) 

ssa_3.2 0.683 
(0.84) 

0.854 
(0.85) 

0.659 
(0.84) 

0.388 
(0.94) 

srsem_3.2 1.010 
(0.84) 

1.150 
(0.81) 

0.565 
(0.94) 

srsem_3.2 1.040 
(0.50) 

1.030 
(0.52) 

0.675 
(0.75) 

srsem_3.2 0.755 
(0.81) 

0.703 
(0.83) 

0.701 
(0.83) 

sfc_1.4.2 0.486 
(0.97) 

0.945 
(0.86) 

sfc_1.4.2 0.397 
(0.92) 

0.931 
(0.59) 

sfc_1.4.2 0.432 
(0.93) 

0.684 
(0.83) 

hfc_1.4.2 1.090 
(0.83) 

hfc_1.4.2 0.955 
(0.57) 

hfc_1.4.2 0.674 
(0.84) 
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polyA) oligonucleotide sequences of differing length, concen-
ration and mix 1 to mix 2 concentration ratio. The number
f spike-ins identified in the sequenced datasets and the ac-
uracy with which output counts are reflecting the expected
oncentration and ratios were analyzed. 

The Venn Diagrams in Figure 2 give an overview of the
RCC spike-ins identified by the different pipeline settings

n the three datasets. The total of all 92 ERCC spike-ins
ere only identified once: in the human cell dataset with

he HISAT2+featureCounts setting. In this dataset, the v1.4.2
TAR+featureCounts pipeline found 90 ERCCs and the v3.2
ool combinations only detected 87 spike-ins. In the Arabidop-
is dataset, the v1.4.2 pipelines also detected more ERCC
pike-ins, than v3.2 output, with 79 versus 77 spike-ins. The
owest number of detected ERCC spike-ins occurred in the
rabidopsis dataset, where a total of 13 spike-in sequences
ere missing in any of the pipeline settings, while in the ze-
rafish dataset only three spike-ins were not recovered. In the

atter all pipelines identified 87 of the 92 spike-ins, while the
ettings STAR+RSEM and STAR+featureCounts each identi-
ed an additional ERCC gene. Spike-in concentrations in the
RCC mixes varied between 0.0143 and 30 000 attomoles / μl.
he undetected spike-in sequences were the ones with the low-
st concentration in the mix. In the zebrafish dataset the spike-
ns with an original concentration of < 0.028 attomoles / μl
ere not detected, while in the Arabidopsis dataset the spike-

ns of < 1.83 attomoles / μl were missing, but here the ERCC
ix was only added at half the concentration recommended
y the manufacturer. 
Pipeline accuracy and sensitivity for ERCC indicators. In

rder to estimate how accurately the pipelines predicted the
ctual ground truth given by the concentration of the artificial
RCC spike-ins and their ratio in mix 1 and mix 2, expected
nd observed log 2 fold-change were compared. 

The parameter baseMean, used as an estimate of the disper-
ion of a gene and therefore related to sequencing depth, has
 significant impact on the result of DE analysis ( 30 ), which
ould also be confirmed in this study. Thus, measured ERCC
pike-ins were filtered by increasing baseMean and the root
ean squared error (RMSE) of the observed to expected log 2

old-change was calculated. Figure 3 shows how the RMSE
ecreases with increasing baseMean for the different pipeline
ettings in the three datasets. Numbers above the data points
ndicate how many ERCC spike-ins were part of the baseMean
ange and were included in the error calculation. 

In the zebrafish dataset the baseMean showed little influ-
nce on the RMSE, while in the Arabidopsis dataset the error
rew exponentially when including the reads with low base-
ean. Filtering the data by increasing baseMean leads to an
MSE approaching a value between 0.5 and 0.6. For the hu-
man cell dataset, the error value decreased from 0.8 to below
0.6 with a baseMean equal or greater than 3, containing 65 of
the 92 ERCC sequences present in the mix. In the Arabidopsis
dataset a decrease from 1.7 to < 0.6 was reached at a base-
Mean > 6, including 45 ERCC sequences. Compared to other
datasets, the zebrafish dataset improved less (0.7 to < 0.6) with
baseMean cutoff > 4 with 46 ERCC sequences. 

After filtering for higher baseMean values, the log 2 fold-
change showed a correlation to the ERCC ground truth such
that the linear regression line through the data points has the
same slope of 1 as the expected ground truth (Figure 4 ). With-
out filtering this slope decreased to 0.83, 0.30 and 0.88 for the
human cell, Arabidopsis and zebrafish datasets, respectively. 

Figure 4 also shows a shift of 0.5 in fold-change estimates to
the left or to the right, depending on the dataset but indepen-
dent of pipeline settings. The fold-changes in the human cell
dataset were overestimated (regression line shifted to the right,
Figure 4 A) and underestimated in the Arabidopsis (Figure 4 B)
and zebrafish datasets (regression line shifted to the left, Fig-
ure 4 C). This over- or underestimation (a dataset specific sys-
tematic error) could not be explained within this benchmark
setting and might be due to upstream processes like sample
preparation and sequencing techniques. Further investigation
with more datasets would be needed focusing on upstream
sample handling procedures. 

The accuracy of the measurement can be determined us-
ing the slope of a regression line between the observed log 2
TPM values of ERCC spike-ins with the expected log of spike-
in concentrations. The closer the regression slope is to 1, the
more accurately the pipeline predicted the relative abundance
of the ERCC spike-ins. The linear regression slopes for the
three datasets reached values > 0.9, with a minimum of 0.92
(zebrafish dataset with pseudo-aligner salmon) and a maxi-
mum of 0.97 (Arabidopsis dataset for v1.4.2 pipelines). In
the human cell dataset, no difference was detected between
pipeline settings (0.96 for all settings) (Table 2 ). 

The determination of the LLD (Table 2 ) gives an estimate of
the method’s sensitivity. In the Arabidopsis and the zebrafish
datasets determination of LLD values (Table 2 ) resulted in
slightly higher values in the v1.4.2 settings. This difference
was more pronounced in the human cell line dataset, indicat-
ing a higher sensitivity of the v1.4.2 pipelines to detect the
ERCC spike-ins. This finding also corresponds to the data vi-
sualized in the Venn-Diagram (Figure 2 ), where more ERCC
spike-ins were detected with the v1.4.2 pipelines. The v1.4.2
pipelines use featureCounts for quantification and this tool is
more sensitive to one-isoform genes ( 11 ). This is also of partic-
ular interest in prokaryote research, where gene splicing does
not occur. Genes identified as differentially expressed only by
the v1.4.2 pipelines in the human cell dataset had a signif-



6 NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 1 

Figure 2. Venn diagrams showing the number of ERCC spike-ins detected by each pipeline version and setting (expected: 92). The number in the center 
represents spike-ins detected by all pipelines. All other fields include the number of ERCCs identified only by the pipelines represented in the overlaps. 

Figure 3. Root mean squared errors (RMSE) for computed log2 fold-change of ERCC spike-ins compared to ERCC ground truth, filtering data by 
baseMean. The numbers above data points indicate the number of ERCCs included in the respective baseMean ( ≥ value) range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

icantly lower number of isoforms (2.2 ±3.6) than the genes
identified as DE exclusively by v3.2 pipelines (5.3 ±5.8, inde-
pendent t -test P = 1.65 × 10 

−115 ). 
Overall, the v1.4.2 pipeline setting using featureCounts for

quantification demonstrated a higher sensitivity in detecting
ER CC spike-ins. However, the ER CC spike-ins are non-spliced
sequences, therefore any advantage of Salmon or RSEM re-
garding the differentiation of these cannot be assessed through
these markers. The higher sensitivity on ERCC spike-ins is
in concordance with the findings of Sarantopulou et al. ( 11 ),
which confirmed a higher performance of featureCounts on
one-isoform genes. The human cell dataset also is what ( 11 )
described as ‘idealized‘ data, which is expected to obtain up-
per bounds on the accuracy of all methods. They draw at-
tention that in their study also brain cells were compared to
liver cells, which results in an elevated amount of DE genes
compared to typical experiments and therefore ‘may be be-
yond the assumptions of the DE software, particularly regard-
ing normalization‘. Therefore, the difference in tools’ perfor-
mance could be more pronounced on these idealized than on
more realistic data. This can also apply to the present study,
where the difference in sensitivity was more pronounced in
the ‘idealized‘ human cell dataset compared to the other two
datasets. 
Computation efficiency. The three datasets had very dif- 
ferent sizes (Table 3 ) and thus CPU hours and memory us- 
age differed between them. Regarding the different pipeline 
settings, it could be observed that the v3.2 pipelines using 
alignment (STAR+Salmon and STAR+RSEM) had the high- 
est demand compared to the old version v1.4.2 pipelines with 

alignment and featureCounts for quantification. The pseudo- 
aligner Salmon using an estimator instead of alignment was 
the most efficient and fast setting, however at the cost of a 
slight decrease of sensitivity (Table 2 ). For DE gene expres- 
sion the pseudo-aligner Salmon reached a correlation coef- 
ficient R 

2 of up to 95% when compared to the alignment- 
based approach with STAR and Salmon (Table 1 ). High cor- 
relation and computation efficiency make this option inter- 
esting for high throughput data. For small or medium sized 

RNA-Seq studies genome alignments are recommended ( 11 ),
because then coverage plots can be examined in a genome 
browser. 

Recommendations for pipeline use and development. The 
main motivation for this benchmark study was to find out,
how the change of tools applied in a migration from the nf- 
core / rnaseq pipeline v1.4.2 to v3.x would influence the com- 
parability of the output. As described above, the different tool 
combinations showed an overlap of around 85%, a range al- 
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Figure 4. Observed and expected log 2 fold-change for ERCC spike-ins, filtered by baseMean values (with root mean squared error [RMSE] to ground 
truth < 0.6). Green: data points with a baseMean v alue abo v e the cut-off, gray: data points with a baseMean value below the cut-off. The gray dotted line 
indicates the linear correlation between measured log 2 fold-change of the filtered (green) data points. The orange line shows the expected ground truth 
of the synthetic ERCC spike-ins. 
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eady reported in other studies ( 11 , 30 ). Genes interpreted
ith a bias between pipelines were mostly those present in

ower concentrations. Besides this, the overlap of the tools
utput was dependent on the dataset structure, were the num-
er of transcripts per gene and the number of exons were de-
erminants. To ensure data comparability in long-term analy-
is series it would be recommendable to either stay with the
ipeline version the series was initialized with or to run both
versions during a transition time in order to ensure that the
target genes are addressed the same way. This is especially im-
portant, if the target genes are known to have a single isoform,
as predominant in prokaryotes, or a low expression rate is
expected. 

Regarding pipeline development, it would be worth dis-
cussing to include the tool featureCounts as a quantification
tool option also in the v3.x pipelines. The advantage of fea-
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Table 2. Linear regression slope and lo w est limit of detection (LLD) for observed transcripts per million (TPM) and expected ERCC concentration values 
in the three datasets: human cell lines ( Homo sapiens ), Arabidopsis ( Arabidopsis thaliana ) and zebrafish ( Danio rerio ) 

Dataset Homo sapiens Arabidopsis thaliana Danio rerio 

pipeline settings Slope LLD Slope LLD Slope LLD 

star+salmon 0.96 3.81 0.96 4.11 0.93 7.14 
star+rsem 0.96 3.88 0.96 4.41 0.95 6.89 
star+featureCounts 0.96 18.5 0.97 4.48 0.95 7.75 
hisat+featureCounts 0.96 17.6 0.97 4.56 0.95 6.72 
pseudoaligner salmon 0.96 3.78 0.96 4.05 0.92 6.81 

Table 3. Computing statistics from pipeline runs retrie v ed from the ne xtflo w to w er output (CPU time and total memory) 

Dataset (Gigabases, Gb) H. sapiens 191.42 Gb A. thaliana 119.55 Gb D. rerio 27.46 Gb 

pipeline settings CPUh Total memory (GB) CPUh Total memory (GB) CPUh Total memory (GB) 

star+salmon 608 .6 1379 .31 528 .7 412 .5 58 .3 779 .83 
star+rsem 930 .5 1121 .70 382 .5 393 .46 98 .9 404 .52 
star+featureCounts 328 .8 868 .51 420 .5 187 .91 64 .5 551 .05 
hisat+featureCounts 240 .7 684 .14 150 .3 257 .01 47 .4 335 .42 
pseudoaligner salmon 130 .6 257 .01 62 .0 26 .94 17 .0 147 .51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tureCounts on datasets with a high number of one-isoform
genes has been shown here and in a previous study ( 11 ) and
should also be kept in mind for the analysis of prokaryotic
transcriptomes. 

Running a benchmark script on a selected dataset at new
pipeline releases could be used to determine how or if the
pipeline performance is increased with new releases. Of the
three datasets used in the present study, the human cell dataset
would probably be the most informative, because here all
92 ERCC spike-ins were detected with at least one of the
pipeline settings (HISAT2+featureCounts). This confirms that
this dataset includes reads of all spike-in sequences. In the Ara-
bidopsis and zebrafish datasets the non-detection of ERCC se-
quences could mean that they are either absent in the read files
due to upstream issues in sample generation and sequencing
steps or that the applied pipeline tools were not able to detect
them. Also, in the human cell dataset the lowest baseMean
cutoff could be applied to achieve a slope close to 1 when
comparing the expected and measured log 2 fold-change of
spike-ins (Figure 4 ). As shown in this study, possible indicators
of performance improvement could be the number or ERCC
spike-ins recovered, slope and LLD of expected versus mea-
sured ERCC spike-ins, minimum baseMean cutoff to reach a
slope close to 1 for the linear regression of observed versus
expected log 2 fold-change values, as well as the computation
efficiency (CPU hours, total memory). The values determined
in this study may serve as the baseline for future benchmark
comparisons of the nf-core / rnaseq and equivalent pipelines. 

Data availability 

The datasets used in this study are publicly available under the
following project IDs: human cell dataset ( 21 ) PRJNA214799
(GEO: GSE49712, samples SRR950078- SRR950087),
Arabidopsis thaliana dataset ( 22 ) PRJNA674629 (GEO:
GSE160846, samples SRR12980996- SRR12981001), Danio
rerio dataset ( 23 ) PRJNA325275 (GEO: GSE83195, samples
SRR3655791- SRR3655802). 

Data and Code from RNA-seq and DEseq analysis are
available under the Zenodo DOI 10.5281 / zenodo.10458056.
Supplementary data 

Supplementary Data are available at NARGAB Online. 
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