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Homologous recombination (HR) repair for DNA double-strand breaks

(DSBs) is critical for maintaining genome stability and conferring the resis-

tance of tumor cells to chemotherapy. Nuclear PTEN which contains both

phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and protein phos-

phatase plays a key role in HR repair, but the underlying mechanism

remains largely elusive. We find that SUMOylated PTEN promotes HR

repair but represses nonhomologous end joining (NHEJ) repair by directly

dephosphorylating TP53-binding protein 1 (53BP1). During DNA damage

responses (DDR), tumor suppressor ARF (p14ARF) was phosphorylated

and then interacted efficiently with PTEN, thus promoting PTEN SUMOy-

lation as an atypical SUMO E3 ligase. Interestingly, SUMOylated PTEN

was subsequently recruited to the chromatin at DSB sites. This was

because SUMO1 that was conjugated to PTEN was recognized and bound

by the SUMO-interacting motif (SIM) of breast cancer type 1 susceptibility

protein (BRCA1), which has been located to the core of 53BP1 foci on

chromatin during S/G2 stage. Furthermore, these chromatin-loaded PTEN

directly and specifically dephosphorylated phosphothreonine-543 (pT543)

of 53BP1, resulting in the dissociation of the 53BP1 complex, which facili-

tated DNA end resection and ongoing HR repair. SUMOylation-site-

mutated PTENK254R mice also showed decreased DNA damage repair in

vivo. Blocking the PTEN SUMOylation pathway with either a SUMOyla-

tion inhibitor or a p14ARF(2-13) peptide sensitized tumor cells to chemo-

therapy. Our study therefore provides a new mechanistic understanding of

PTEN in HR repair and clinical intervention of chemoresistant tumors.
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1. Introduction

DNA lesions caused by environmental or endogenous

genotoxic insults are major threats to genomic integ-

rity [1,2]. DNA double-strand breaks (DSBs) are the

most deleterious DNA lesions, which cause gene muta-

tion, cell death, development disorder, and tumor pre-

disposition if not repaired correctly and promptly

[3,4]. There are two major pathways for DSB repair,

homologous recombination (HR), and nonhomologous

end joining (NHEJ) repair [5]. 53BP1, a pro-choice of

DSBs, promotes NHEJ repair through inhibiting

recruitment of HR repair factors including BRCA1

and CtIP to DSB sites in G1 stage [6]. DNA

damage-induced phosphorylation at multiple sites in

the N terminus of 53BP1 mediates its interaction with

downstream factors RIF1 and PTIP [7]. RIF1 recruits

the Shieldin complex, of which the subunit SHLD2

directly binds ssDNA and blocks DNA end resection,

and loss of this complex dramatically increases HR

repair [8–10]. On the other hand, HR repair depends

on the exist of sister chromatid, which occurs mainly

in S/G2 stage. BRCA1, a critical regulator of HR

repair, promotes multiple steps including DNA end

resection, RAD51 loading and ssDNA strand pairing

[11,12]. BRCA1 can recruit a ubiquitin E3 ligase

UHRF1 to mediate polyubiquitination of RIF1, result-

ing in RIF1 dissociation from 53BP1 and thus promot-

ing HR repair in S/G2 stage [13]. Moreover, BRCA1

can also facilitate dephosphorylation of 53BP1 during

S/G2 stage [14]. The region coded by exon11 of

BRCA1 is required for the dephosphorylation of

53BP1 and RIF1 release from DNA breaks; however,

the underlying molecular mechanism remains largely

elusive [15,16].

PTEN, a dual phosphatase, is frequently deleted,

mutated or downregulated in a variety of human

tumors [17]. In cytoplasm, PTEN antagonizes PI3K-

AKT signaling through its lipid phosphatase activity,

while loss of which markedly promotes tumor cell pro-

liferation [17]. It has been well-documented that

the nuclear PTEN plays a critical role in maintaining

the genome stability, centrosome stability, replication

stress recovery, and DSB repairs [18–24]. Post-

translational modifications (PTMs) of PTEN including

SUMOylation, phosphorylation, and methylation are

involved in DNA damage and repair [18,21,24,25].

SUMOylation has been extensively studied in DNA

damage repair [26,27], and many DNA damage

response (DDR)-associated proteins including CtIP,

BMI1, BLM, RAD52, and TOP2A can be induced

occurring SUMOylation by replication stress, DSB

and DNA crosslinking [28–33]. Especially, PTEN

SUMOylation plays a key role in repairing for DSB,

but the underlying mechanism remains unexplored. In

addition, there still remains dispute about the function

of PTEN protein phosphatase activity in DDR.

Here, we provided evidences that SUMOylation of

PTEN was increased by SUMO-E3-like p14ARF in

DDR. SUMOylated PTEN was recognized and then

recruited by the N-terminal SUMO-interacting motif

(SIM) of BRCA1 to the chromatin. PTEN located at

chromatin directly and specifically dephosphorylated

pT543 of 53BP1, leading to RIF1 release and therefore

facilitating DNA end resection. PTENK254R knock-in

mice model also showed HR deficiency in DDR in

vivo. Notably, inhibiting SUMOylation of PTEN by

either a SUMOylation inhibitor or a peptide p14ARF

(2-13) sensitized tumor cells to DNA damage agents,

which might provide a new therapeutic strategy for

clinical intervention of chemo-resistant tumor cells.

2. Materials and methods

2.1. Cell culture, transfection and lentiviral

infection

HEK293T (RRID: CVCL_0063), HEK293FT (RRID:

CVCL_6911), DU145 (RRID: CVCL_0105), HeLa

(RRID:CVCL_0030), H1299 (RRID:CVCL_B7N7),

and mouse embryonic fibroblasts (MEFs) were cultured

in DMEM supplemented with 10% FBS and 1% 100 U

of penicillin, and 100 lg�mL�1 streptomycin (Yeasen,

Shanghai, China). PC3 (RRID:CVCL_0035) was cul-

tured in RPMI1640 supplemented with 10% FBS and

1% 100 U of penicillin, and 100 lg�mL�1 streptomycin

(Yeasen). DU145-PTEN�/� was generated with CRSPR/

Cas9. U2OS-DR-GFP was a gift from Dr Daming Gao

[34]. PtenWT and PtenK254R MEFs were obtained from

13-day pregnant mouse embryos of wild-type and

PtenK254R knock-in C57BL/6 mice, respectively, and

then immortalized with SV40-LT at passage three. The

mice were purchased from BRL Medicine Company

(Shanghai, China). The other cell lines were from Cell

Bank/Stem Cell Bank, Chinese Academy of Sciences.

All cell lines have been authenticated in the past 3 years

by Short Tandem Repeat (STR) analysis. Experiments

were performed in mycoplasma-free cells. Plasmids and

siRNA transfection were carried out with PEI for

HEK293T, HEK293TSenp1�/� and HEK293FT and

Lipo2000 (Invitrogen, Carlsbad, CA, USA) for other

cells following the manufacturer’s protocol. Packaging

lentiviral and subsequent infection of all cell lines were

carried out according to protocol in our laboratory.
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2.2. Antibodies, reagents, plasmids, siRNA,

shRNA, and sgRNA

Antibodies used in this study were listed in Table S1.

PTEN cDNA was subcloned into pCMV-Flag, pEF-

5HA, pEGFP-C1, pCD510B, and pGEX-4T-1 vectors.

shRNAs of BRCA1, PTEN and p14ARF were

designed and cloned into the vector pLKO.1. RFP-

PCNA was a gift from Prof Pumin Zhang [35]. Flag-

53BP1 and Myc-BRCA1 were gifts form Prof Xingzhi

Xu [36]. pCBASceI, EJ5-GFP, and DR-GFP were pur-

chased from Addgene (Watertown, MA, USA).

p14ARF was cloned into pGEX-4T-1, pEYFP-N1, and

pCD513B vectors. PCR-mediated site-directed muta-

genesis and truncated proteins were performed accord-

ing to standard procedures to create the PTEN,

p14ARF, 53BP1, and BRCA1 mutants. All clones were

sequenced to confirm the desired mutations. siRNAs

targeting BRCA1 were synthesized by GenePharma

(Shanghai, China). Two sgRNAs were designed to

knockout PTEN. In brief, sgRNA was insert into Len-

tiCRISPR v2 and delivered into DU145 cells, each sin-

gle clone was selected and cultured. PTEN knockout

clones were identified and used in our study. A list of

the sequence information for the shRNAs, siRNAs,

and sgRNAs was provided in Table S2.

2.3. Immunoblot and denatured

immunoprecipitation for SUMOylation detection

Cells were washed once with PBS and lysed in lysis

buffer (50 mM Tris–HCl pH 7.4, 150 mM NaCl, 1 mM

DTT, 1 mM EDTA, 1% NP-40, complete protease

inhibitor cocktail (Roche, Basel, Switzerland) and

20 mM N-ethylmaleimide) on ice for 30 min, then

lysates were sonicated and centrifuged at 12 000 g for

30 min. Protein concentrations were quantified with

BCA kit (Thermo-Fisher, Waltham, MA, USA).

Equivalent amounts of protein (1–2 mg) were incu-

bated with 1 lg indicated antibody and 20 lL protein

A/G beads (#IP05, Calbiochem, Oakville, Canada) at

4 °C overnight. Beads were collected with centrifuga-

tion and washed with lysis buffer for five times, and

then boiled with 29 protein loading buffer before

analysis by SDS/PAGE.

Denatured immunoprecipitation for SUMOylation

detection was carried out as previously described with

several modifications [37]. Briefly, cells were lysed

with SUMO lysis buffer (62.5 mM Tris pH 6.8, 2%

SDS), sonicated, and boiled after addition of 1 mM

DTT. The lysis was centrifuged at 12 000 g for

15 min. Supernatant was transferred into new EP tube

and diluted to a final concentration of 0.1% SDS with

lysis buffer. Equivalent amounts of protein were incu-

bated with indicated antibodies (anti-PTEN, anti-HA

and anti-Flag) and protein A/G beads overnight at

4 °C. Beads were washed with lysis buffer containing

300 mM NaCl and 0.1% SDS for five times and boiled

with 29 protein loading buffer before analysis by

SDS/PAGE. All western blot experiments were

repeated at least twice.

2.4. Ni2+-NTA pull down for SUMOylation assay

For the detection of PTEN SUMOylation during

DNA damage repair, 293T cells were transfected with

His-SUMO1 and indicated plasmids for 48 h. CPT

(#S1288, Selleck, Houston, TX, USA) and Zeocin

(#60216ES80, Yeasen) were used to induce DNA dam-

age for 1 h. cells were harvested at indicated time,

10% cells were used as input. SUMO-PTEN were

pulled down with Ni2+-NTA beads (#30210, Qiagen,

Germantown, MD, USA) and analyzed with

SDS/PAGE as previous described [25].

2.5. Immunofluorescence

Cells were seeded on glass coverslips. After treatment

with various DNA damage stimuli, cells were washed

with PBS and then fixed with 4% (w/v) paraformalde-

hyde in PBS for 15 min at room temperature. For

immunofluorescence after pre-extraction, cells were

treated with 1% triton/TBS for 5 min on ice before

fixing. When staining RPA32, cells were pre-extracted

with cold 0.5% Triton X-100 in PBS for 3 min before

fixing. After fixing, cells were permeabilized with 0.5%

(v/v) Triton X-100 in PBS for 60 min and blocked

with 5% BSA in PBS for 60 min at room temperature.

Generally, cells were then incubated with the primary

antibody diluted in PBS-BSA overnight at 4 °C. Cells
were washed three times with PBST and then incu-

bated with secondary antibodies diluted in PBS-BSA

supplemented with 2 lg�mL�1 of Hoechst 33342

(#62249, Thermo-Fisher) to stain DNA for 1 h at

room temperature. Cells were washed three times with

PBST and then the coverslips were mounted onto glass

slides with Prolong Gold mounting agent (#P36931,

Thermo-Fisher). Confocal images were taken with a

LSM710 or Zeiss (Oberkochen, Germany) LSM880

laser-scanning confocal microscope.

For the discrimination of cells at S stage, cells were

pre-incubated with 10 lM EdU (#C0081S, Beyotime,

Shanghai, China) for 30 min before DNA damage

induction. Click-It reaction were carried out as manu-

facture’s protocol to staining EdU-positive cells. After

this, cells were used for further immunostaining.
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Intensity and number of DNA damage induced foci

were counted with the FOCO software [38].

2.6. HR and NHEJ repair assay

To determine the efficiency of HR-mediated DSB

repair in cells expressing different form of PTEN with

mutation, we first generated stably PTEN knockdown

U2OS-DR-GFP cells with shRNA. Then, PTEN-WT,

C124S, G129E, K254R, and K266R were re-expressed

in those cells. To increase RFP-I-Sce1 expression effi-

ciency, RFP-I-Sce1 was subcloned into the vector

CD510B. Pseudo-lentivirus expressing RFP-I-Sce1 was

used to infect U2OS-DR-GFP cells. After 48–72 h,

cells were collected for FACS analysis. Percentage of

RFP- and GFP-positive cells were quantified. Homolo-

gous recombination efficiency was quantified as

(GFP+/RFP+)*100%. For NHEJ repair efficiency, we

first re-expressed PTEN-WT, C124S, G129E, K254R

and K266R in U2OS-shPTEN cells. The NHEJ effi-

ciency was detected with the EJ5-GFP reporter [39].

Plasmids EJ5-GFP and ISCE1-RFP were co-

transfected into U2OS cells. Forty-eight hours after

transfection, cells were collected and fixed for the flow

cytometry analysis of RFP and GFP. The NHEJ effi-

ciency was calculated by the ratio of GFP/RFP.

2.7. Laser micro-irradiation

Generation of localized DNA damage by laser was

done as previously described [35]. Briefly, cells were

seeded in a live-cell imaging culture dish, transfected

with GFP-PTEN and RFP-PCNA and cultured for

48 h. 2 lg�mL�1 Hoechst 33342 was used to pre-

sensitize cells for 10 min before laser micro-irradiation.

For micro-irradiation, the cell dish was mounted on the

stage of a Leica SP8 microscope at 37 °C. 405 nm UVA

focused through a 639 1.4NA oil objective was used to

induce localized DNA damage. Laser power was set to

50% and iterations were set to 50 times. Time-lapse

imaging of recruitment of GFP- or RFP-tagged proteins

to DNA damage site was captured every 30 s after

micro-irradiation with 488 and 561 nm laser.

2.8. GST pull-down

GST-fused protein was expressed in Escherichia coli

BL21 and affinity-purified with GST beads (#17-0756-

01, GE Healthcare Life Sciences, Marlborough, MA,

USA). 293T cells overexpressing indicated proteins

were treated with DNA damage reagents and lysed.

And then cell lysates were incubated with above GST-

fused protein beads overnight. Beads were collected

and washed five times, followed by western blotting

analysis.

2.9. In vitro dephosphorylation assay

For measuring dephosphorylation of 53BP1 by PTEN,

the GST-fused PTENWT, PTENC124S, PTENG129E, and

PTENG129R, as well as GST protein were purified from

E. coli BL21. Full-length Flag-53BP1 and GFP-53BP1

were purified from 293T cells after Zeocin treatment.

The dephosphorylation assays were performed in phos-

phatase assay buffer (20 mmol�L�1 HEPES, pH 7.2,

100 mmol�L�1 NaCl, and 3 mmol�L�1 DTT). The

reactions were incubated at 37 °C for 60 min with or

without the addition of recombinant GST-fused

PTENWT, PTENC124S, PTENG129E, or PTENG129R, as

well as GST protein as negative control, and then were

stopped by adding 29 SDS loading buffer for immu-

noblotting analysis.

2.10. Cellular fractionation

Mouse embryonic fibroblasts, DU145, H1299 cells cul-

tured with 90–100% confluence were harvested after

treatment with DNA damage reagents and recovery

for indicated time. Extraction of cytoplasmic and

nuclear proteins was performed using the Nuclear/Cy-

tosol Fractionation Kit (BioVision, Waltham, MA,

USA) according to its instruction.

Separation of chromatin-associated proteins was per-

formed as previously described with minor modification

[40]. Briefly, cell pellets were washed with cold PBS and

then incubated with buffer A (10 mM pH 7.9 HEPES,

10 mM KCl, 1.5 mM MgCl2, 0.34 M sucrose, 10% glyc-

erol, 1 mM DTT, protease inhibitors, 0.1% Triton-

X100) for 10 min on ice. Cell pellets were collected with

centrifugation and washed twice with buffer A. Next,

cell pellets were gently resuspended in buffer B (3 mM

EDTA, 0.2 mM EGTA, 1 mM DTT, protease inhibitors)

and incubated for 30 min on ice. Then, cell pellets were

collected by centrifugation and lysed in 2% SDS as

chromatin-associated proteins. When detecting proteins

tightly associated with chromatin, we pipetted cell pel-

lets with buffer B harshly until sticky chromatin pellets

were visible after incubation with buffer A. After

another 30-min incubation in buffer B, chromatin pel-

lets containing tightly associated proteins was collected

by centrifugation and lysed with 2% SDS.

2.11. Cell viability and colony formation assay

For cell viability assay, cells were counted and 10 000

cells were seeded into 96-well plates. After 24 h, DNA
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damage reagents were added and cultured for another

3 days. CCK8-kit was used to detect cell viability and

all quantitative results were normalized to non-

treatment group. For colony formation assay, 500 or

1000 cells were seeded into a 12-well plate. After 24 h,

CPT and Zeocin were added for 48 h and replaced

with fresh medium. Cisplatin was added into medium

for 72 h and replaced with fresh medium. All culture

medium was changed every 3 days until colony was

visible. Colonies were washed, fixed and stained with

0.1% crystal violet overnight. Visible colonies were

counted and analyzed between groups with IMAGEJ.

2.12. Cell cycle profile and EdU

incorporation assay

Cells were collected and fixed by 4% PFA when prolif-

erated to 80–90% in culture dish. DNA content and

cell cycle profile was determined by flow cytometry

after PI staining. The EdU incorporation assay was

performed to detect cell proliferation rate. EdU

(10 lM) was added into culture dish for 2 h when cell

proliferated to 80–90% and then fixed with 4% PFA.

Click-It reaction were carried out as manufacture’s

protocol to staining EdU positive cells. After this, per-

centage of EdU-positive cells were quantified by flow

cytometry.

2.13. Mouse model and IHC

All animal studies were conducted with the approval

and guidance of Shanghai Jiao Tong University Medi-

cal Animal Ethics Committees (Approval NO. A-2019-

036). The mice were housed in specific pathogen-free

environment, handled with care, and allowed for adap-

tion to the environment before experiments. Pten-

K254R and Pten-K266R knockin C57BL/6 mice were

generated by BRL medicine company with CRISPR-

Cas9 and homozygous mice were verified with PCR

sequencing. For IHC, 4-month-old male mice were

chosen and subjected to whole body irradiation (IR)

with 8 Gy. Mice were sacrificed at Day 4 post IR,

small intestines were used for histological analysis. HE

staining were used to quantify villi length, and Ki67

staining was used to identify proliferating cells in small

intestines.

2.14. Statistical analysis

Group data are presented as mean with or

without � SD. The statistical significance between

experimental groups was determined by Student’s t-test

(two tailed and unpaired). P < 0.05 was considered to

be significant (n.s., not significant; *0.01 < P < 0.05,

**0.001 < P < 0.01 and ***P < 0.001). If not specified,

analysis was performed with GRAPHPAD PRISM 8

(Boston, MA, USA).

2.15. Ethics approval

All procedures followed were in accordance with the

ethical standards of the Animal Care and Use Com-

mittee of School of medicine, Shanghai Jiao Tong

University. All institutional and national guidelines for

the care and use of laboratory animals were followed.

3. Results

3.1. PTEN promotes HR repair through

facilitating DNA end resection

We first validated the role of PTEN in DSB repair. As

shown in Fig. S1A–C, knockdown of PTEN in DU145

cells indeed delayed DSB repair after the treatment

with Zeocin (a radiomimetic reagent), as measured by

ionizing radiation-induced foci (IRIF) of cH2AX and

53BP1 [18,24]. Either PTEN knockdown in DU145

and HeLa cells or PTEN knockout in MEFs reduced

the numbers of RAD51 (a key HR repair regulator)

foci (Fig. S1D–F), which was consistent with previous

reports [18,21]. In addition to RAD51 filament forma-

tion, DNA end resection, a key step prior to RAD51,

is also critical for the choice of DSB repair pathway

and can be regulated in many ways [41]. To test

whether PTEN regulates DNA end resection, we

detected the phosphorylation level of RPA32(S4/8), a

surrogate marker of ssDNA accumulation and DNA

end resection [42], to show that knockdown of PTEN

downregulated pS4/8-RPA32 in HeLa cells after irradi-

ation (IR) treatment (Fig. 1A), suggesting that PTEN

is involved in the regulation of DNA end resection in

DSB repair.

To further identify whether both the phosphatase

activity and SUMOylation of PTEN are required for

its role in DNA end resection, we used the CRISPR/

Cas9 system to knockout PTEN in DU145 cells and

then stably re-expressed PTENWT, PTENC124S (dual

phosphatase dead), PTENG129E (lipid phosphatase

dead, but protein phosphatase still active), PTENK254R

(SUMO-site mutant) and PTENK266R (SUMO-site

mutant) (Fig. S1G). As expectedly, knockout of PTEN

decreased IR-induced pS4/8-RPA32 in DU145 cells

(Fig. 1B). There were little differences on pS4/8-

RPA32 among PTENWT, PTENC124S and PTENG129E

after IR treatment; however, pS4/8-RPA32 was decreased

in PTENK254R and PTENK266R compared to that in
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PTENWT (Fig. 1C). Similar results of PTENK254R and

PTENK266R in decreasing pS4/8-RPA32 were also

observed by using other DNA damage reagents includ-

ing Zeocin and Camptothecin (CPT) in DU145

(Fig. S1H,I), and IR in PC3 cells (Fig. S1J). Thus,

above results suggest that SUMOylation but not phos-

phatase activity of PTEN is associated with DNA end

resection.

Determination of chromatin-associated proteins has

been often applied to monitor DNA damage repair

process, for examples, chromatin loading of RPA32

and RAD51 can represent HR efficiency [21,40,43,44].

When compared with PTENWT, mutants PTENK254R

and PTENK266R inhibited the chromatin loading of

RPA32 and RAD51 in DU145 cells induced by Zeocin

(Fig. 1D), Etoposide (Fig. S1K) and CPT (Fig. S1L),

whereas PTENC124S and PTENG129E seemed not affect

(Fig. 1D). We also detected chromatin associated p-

RPA32 with immunofluorescence after pre-extraction

in DU145 cells and the results were consistent with

western blot results (Fig. S1N). Furthermore, we also

investigated IRIF of RAD51 in S phase (EdU+) cells

to show the similar pattern of results that numbers of

RAD51 foci were comparable among PTENC124S,

PTENG129E and PTENWT, but decreased in

PTENK254R and PTENK266R (Fig. 1E). These results

suggest that SUMOylation but not phosphatase activ-

ity of PTEN affects the chromatin loading of RPA32

and RAD51.

In addition to RAD51 foci as a marker of HR repair,

an HR reporter of DR-GFP was employed to detect the

overall efficiency of HR repair [45]. In accordance with

previous reports, HR efficiency was reduced after

PTEN knockdown (Fig. S1M). Surprisingly, HR effi-

ciency was also compromised in PTENC124S, as like

PTENK254R and PTENK266R, but not in PTENG129E,

suggesting PTEN protein phosphatase was indispens-

able for it function in HR repair efficiency despite its lit-

tle influence on chromatin loading of RPA32 and

RAD51 (Fig. 1F). We also detected the NHEJ repair

efficiency of these mutants with EJ5-GFP reporter [39].

Knockdown of PTEN and re-expressing PTENWT or

mutants in U2OS cells did not change the NHEJ repair

efficiency (Fig. S1O,P). Given cell cycle can regulate the

choice of DNA damage repair pathway, we detected cell

cycle profile and EdU incorporation in different human

cancer cell lines used in this study. There is no obvious

difference in cell cycle among parental, PTEN knock-

down, PTEN knockout and PTEN reconstituted cells of

HeLa and DU145 (Fig. S1R,S). We only observed a

mild decrease of S phase cell population when overex-

pressing PTEN in PC3 cells, which might be due to

downregulation of PI3K/AKT signaling (Fig. S1Q).

There was no significant difference in percentage of

EdU incorporation in HeLa, PC3, and reconstituted

DU145-PTEN�/� cells (Fig. S1T–V). In summary, con-

sidering that HR repair mainly occurs in the S/G2

phase, the above results demonstrated that the differ-

ence in HR repair efficiency in these cells was not due to

the influence of cell cycle or cell proliferation. Taken

together, these data provide substantial evidences that

PTEN promotes HR repair partially through enhancing

DNA end resection, which is dramatically abolished

when its SUMO-sites mutated.

3.2. DNA damage promotes PTEN chromatin

loading by inducing its SUMOylation

As previous reported [29], DNA damage stimuli can

strongly induce SUMOylation of proteins involved in

different DNA damage repair pathways. To further

investigate the induction and turnover of PTEN

SUMO modification in DNA damage repair, we over-

expressed His-SUMO1 and Flag-PTEN in 293T cells.

After Zeocin treatment, cells were collected and lysed

at different recovery time as indicated, and His-

SUMO1 modified proteins were enriched with Ni2+-

NTA agarose beads (Fig. 2A) and Co-IP (Fig. S2A)

methods under denatured condition. Interestingly,

SUMOylated PTEN was significantly increased

Fig. 1. PTEN promotes HR repair through facilitating DNA end resection. (A) Immunoblot of pS4/8-RPA32 of HeLa-pLKO and -shPTEN cells

treated with 20 Gy and recovery for indicated time. (B) Immunoblot of pS4/8-RPA32 of DU145-PTENWT and -PTEN�/� cells treated with 10 Gy

and recovered for indicated time. (C) Immunoblot of pS4/8-RPA32 of DU145-PTEN�/� cells stably re-expressed PTENWT, K254R and K266R cells

after treated with 10 Gy. (D) Immunoblot of chromatin associated RPA32 and RAD51 in DU145 cells after treated with Zeocin (200 lg�mL�1)

for 1 h and recovered for indicated time. (E) RAD51 foci were quantified in DU145 cells treated with 5 Gy and recovery for 6 h and then pre-

sented with dot graph. Representative images of RAD51 foci were shown at right panel. scale bar, 20 lm. (F) HR (homologous recombiantion)

efficiency were detected in U2OS-DR-GFP-shPTEN cells stably re-expressing PTENWT, PTENC124S, PTENG129E, PTENK254R and PTENK266R.

Inset: immunoblot of PTEN in U2OS-DR-GFP-shPTEN cells stably re-expressing indicated PTEN mutants. Left panel: quantification of HR effi-

ciency shown as bar graph. Right panel: representative images of FACS. Unpaired Student’s t-test was used (**P < 0.01, ***P < 0.001) and

data were shown as mean or mean � SD. All results were shown with one representative image from three independent experiments. Chro.,

chromatin; FACS, fluorescence-activated cell sorting; HR, homologous recombination; WT, wide type.
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overtime by Zeocin treatment. Similarly, CPT treat-

ment also enhanced SUMOylation of PTEN (Fig. 2B).

These data strongly demonstrated that DNA damage

stimuli promoted PTEN SUMOylation. To further

determine which SUMO-site is responsible for SUMO1

conjugation induced by DNA damage and whether its

phosphatase activity is involved in this process, we over-

expressed His-SUMO1 and Flag-tagged PTENC124S,

PTENG129E, PTENK254R or PTENK266R in 293T cells

and detected SUMOylated PTEN with the method of

Ni2+-NTA agarose pull down. In contrast to mutations

C124S and G129E, both mutations of K254R and

K266R led to significant reduction of PTEN SUMOyla-

tion induced by Zeocin, suggesting that these two

SUMO-sites were critical for DDR (Fig. 2C).

One previous study reported that K254R mutation

prevented PTEN nuclear localization and DNA damage

repair function in U87MG glioblastoma cells [18],

however our results of immunofluorescence showed no

changes in the localization between PTENWT and

PTENK254R or PTENK266R in DU145 cells under

normal condition (Fig. 2D). We also observed there was

little effects on PTEN nuclear localization in DU145

cells after IR treatment (Fig. S2C). Consistently, the

detection of the nuclear PTEN level in non-treated and

IR-treated DU145 cells with nuclear-cytosol fraction-

ation showed the same result that IR treatment had

no effect on PTEN nuclear localization (Fig. S2D).

Furthermore, we detected the influence of IR on

subcellular localization of PTEN in DU145-shPTEN-

PTENWT/K254R/K266R cells with immunofluorescence.

After IR treatment, there was still no difference in

PTEN localization between PTENWT, mutant PTENK254R,

and PTENK266R (Fig. S2E). Moreover, another two

nuclear-cytosol separation results also revealed that the

localizations of PTEN were almost not affected in

DU145-PTEN�/� re-expressing PTEN-WT and mutants

including PTENK254R, PTENK266R, PTENC124S, and

PTENG129E cells even after treatments with Zeocin

(Fig. 2E) and CPT (Fig. S2B). More interestingly, the

nuclear location of PTENC124S was markedly higher

than that of all others (Fig. 2E and Fig. S2B), the under-

lying mechanism should be further studied. Although

SUMO-site mutations K254R and K266R had little

influence on PTEN nuclear localization, we wanted to

assess whether SUMOylation of PTEN influences its

chromatin loading under DNA damage. First, we

observed that PTEN was indeed recruited into the

DNA-damage location induced by the laser micro-

irradiation (Fig. S2F). Second, Zeocin (Fig. 2F) and

CPT (Fig. S2G) treatments induced PTEN accumula-

tion on the chromatin. The chromatin loading of

PTENK254R was significantly suppressed whereas that

of PTENG129E and PTENK266R was similar with

PTENWT after Zeocin and CPT treatments. For the case

of PTENK266R, it was unexpectedly and might be a dif-

ferent mechanism from PTENK254R. In accordance with

enhanced nuclear localization of PTEN-C124S, the

chromatin loading of PTENC124S was remarkably

increased (Fig. 2F), but how the mutation C124S to

increase the nuclear localization and chromatin loading

of PTEN was not clear. Third, to further validate

whether SUMOylated PTEN can directly accumulate

on the chromatin, we separated chromatin associated

proteins under harsh condition. After IR treatment, one

shifted band with higher molecular weight than normal

PTEN was clearly observed in re-expression of

PTENWT but not SUMO-site mutants PTENK254R and

PTENK266R in DU145-PTEN�/� cells (Fig. 2G). Given

that endogenous PTEN gene in DU145 cells was

knocked out with CRSPR/Cas9 technique, this shift

band from re-expression of normal PTENWT was most

likely to be SUMOylated-PTEN other than variants of

PTEN such as PTEN a or b isoform.

Collectively, all above results demonstrate that

DNA damage promotes PTEN SUMOylation and

Fig. 2. DNA damage promotes PTEN chromatin loading by inducing its SUMOylation. (A) 293T cells transfected with His-SUMO1 and Flag-

PTEN were treated with Zeocin (200 lg�mL�1) for 1 h and recovered for indicated time. His-SUMO1 conjugates were pulled down with

Ni2+-NTA beads and SUMOylated PTEN were analyzed with immunoblot. (B) 293T cells transfected with His-SUMO1 and Flag-PTEN were

treated with CPT (20 lM) for 1 h and recovered for indicated time. His-SUMO1 conjugates were pulled down with Ni2+-NTA beads and

SUMOylated PTEN were analyzed with immunoblot. (C) 293T cells transfected with His-SUMO1 and Flag-PTENWT, C124S, G129E, K254R, K266R

were treated with Zeocin (200 lg�mL�1) for 1 h and recovered for 4 h, Ni2+-NTA pulldown were used to analyze PTEN SUMOylation. (D)

Images of staining of PTEN in DU145-shPTEN cells stably re-expressed PTEN-WT, K254R and K266R. scale bar, 20 lm. (E) Nuclear(N)-

Cytosol(C) separation was performed in DU145-PTEN�/� cells stably re-expressing PTENWT, C124S, G129E, K254R and K266R treated with Zeocin

(400 lg�mL�1) for 1 h and recovery for 4 h. Localization of PTEN was detected with immunoblot. (F) Immunoblot of chromatin associated

PTEN in DU145 cells treated with Zeocin (400 lg�mL�1) for 1 h and recovery for indicated time. (G) Chromatin protein separation were per-

formed at harsh condition in DU145-PTEN�/� cells stably re-expressing PTENWT, K254R and K266R after treatment with 10 Gy. PTEN tightly

associated with chromatin was detected with immunoblot. All results were shown with one representative image from three independent

experiments. Chro., chromatin; CPT, camptothecin; WT, wide type.
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especially K254-SUMOylation of PTEN is essential

for its chromatin loading.

3.3. p14ARF is a novel SUMO E3 ligase to

mediate PTEN SUMOylation during DDR

p14ARF, a well-known tumor suppressor, is an atypi-

cal SUMO E3 ligase for promoting SUMOylation of

its binding proteins such as MDM2, NPM, and EGR1

[37,46,47]. Interestingly, we found that PTEN

SUMOylation was dramatically enhanced by overex-

pression of p14ARF and UBC9 (SUMO-conjugating

enzyme E2) (Fig. 3A and Fig. S3A) whereas sup-

pressed by knockdown of p14ARF (Fig. 3B). Since

p14ARF promotes SUMOylation of target proteins

via direct interaction, we assumed p14ARF might

interact with PTEN. Co-IP and GST-pull down results

showed that p14ARF directly bound to PTEN in cells

and in vitro (Fig. 3C,D and Fig. S3B). To identify the

interaction region between p14ARF and PTEN, we

generated a series of truncates (Fig. S3C) and per-

formed co-IP. Two regions of 2-14aa and 82-101aa in

p14ARF are important for substrate interaction, and

deletion of these two regions dramatically inhibit

SUMO conjugation on substrates mediated by

p14ARF [48]. Our results also showed that these two

regions in p14ARF were required for their interaction.

Deletion of either one reduced their interaction and

deletion of both completely abolish their interaction

(Fig. 3E and Fig. S3D,E). Moreover, the ability of

p14ARF to enhance PTEN SUMOylation was indeed

weakened when deletion of either one region.

Although both regions contributed to PTEN

SUMOylation, p14ARF(D2–14) seemed to be more

effective than p14ARF(D82–101) in suppression of

PTEN SUMOylation (Fig. 3F). In addition, we identi-

fied that the C-terminal region 188-403aa of PTEN

mediated its interaction with p14ARF (Fig. S3F).

Since DNA damage stimuli can induce PTEN

SUMOylation, we wondered whether p14ARF is

involved in this process. Knockdown of p14ARF sub-

stantially reduced Zeocin-induced PTEN SUMOyla-

tion (Fig. 3G). In response to treatments with both

Zeocin (Fig. 3H) and CPT (Fig. S3G), the interaction

between exogenous PTEN and p14ARF was obviously

enhanced. CPT treatment also significantly increased

the interaction between endogenous PTEN and

p14ARF in DU145 cells (Fig. S3H). Given that phos-

phorylation signal is critical for DDR and there is

exactly one threonine (T8) located in p14ARF(2-14aa),

which can be phosphorylated [49], so we detected the

phosphorylation of p14ARF with the method of Phos-

tag gel and showed a clear shifted band of p14ARF,

which was increased after Zeocin treatment (Fig. 3I),

suggesting that DNA damage induced phosphorylation

of p14ARF. The mutation T8A at p14ARF signifi-

cantly inhibited the interaction between PTEN and

p14ARF, on the contrary, the mutation T8D enhanced

their interaction not only under normal condition but

also after treatment with CPT (Fig. 3J). The mutation

T8A of p14ARF also attenuated its ability to promote

PTEN SUMOylation after Zeocin treatment (Fig. 3K).

Consistently, knockdown of p14ARF inhibited PTEN

chromatin loading while overexpression of p14ARF

increased its loading (Fig. 3L and Fig. S3I–K). Knock-

down of p14ARF also sensitized DU145 cell to

Fig. 3. p14ARF is a novel SUMO E3 ligase to mediate PTEN SUMOylation during DDR. (A) 293T cells were transfected with His-SUMO1,

HA-UBC9, Myc-p14ARF and Flag-PTEN for 48 h. His-SUMO1 conjugates were pulled down with Ni2+-NTA beads and SUMOylated PTEN

were analyzed with immunoblot. (B) 293T-pLKO or shARF-1 cells were transfected with His-SUMO1, HA-UBC9 and Flag-PTEN for 48 h. His-

SUMO1 conjugates were pulled down with Ni2+-NTA beads and SUMOylated PTEN were analyzed with immunoblot. (C) 293T cells were

transfected with Myc-p14ARF and Flag-PTEN for 48 h. Co-IP were used to detect interaction between PTEN and p14ARF. (D) GST pull-

down were used to detect interaction between PTEN and p14ARF. Upper panel: GST-PTEN was purified from BL21 and incubated with

293T lysis which transfected with HA-p14ARF for 48 h. Lower panel: GST-p14ARF was purified from BL21 and incubated with 293T lysis

which transfected with Flag-PTEN for 48 h. (E) Truncated Myc-p14ARF and Flag-PTEN were transfected into 293T cells, interaction domain

between PTEN and p14ARF were identified with Co-IP. (F) Truncated Myc-p14ARF, His-SUMO1, Flag-UBC9 and HA-PTEN were transfected

into 293T cells. His-SUMO1 conjugates were pulled down with Ni2+-NTA beads and SUMOylated PTEN were analyzed with immunoblot. (G)

His-SUMO1 and HA-PTEN were transfected into 293T-pLKO and shARF-1 cells. After 48 h, cells were treated with Zeocin (400 lg�mL�1)

for 1 h and recovery for indicated time. His-SUMO1 conjugates were pulled down with Ni2+-NTA beads and SUMOylated PTEN were ana-

lyzed with immunoblot. (H) Interaction between PTEN and p14ARF post CPT (20 lM) treatment were detected with Co-IP in 293T cells. (I)

Phosphorylation of p14ARF after Zeocin (400 lg�mL�1) treatment for 1 h and recovery for indicated time was detected with phos-tag gel.

(J) Interaction of PTEN and p14ARF-WT, T8A and T8D were detected under normal condition or CPT (20 lM) treatment with Co-IP in 293T

cells. (K) 293T cells were transfected with Flag-SUMO1, Myc-p14ARF-WT or T8A and HA-PTEN for 48 h. Flag-SUMO1 conjugates were

immunoprecipitated and SUMOylated PTEN were analyzed with immunoblot. (L) chromatin loading of PTEN were detected with immunoblot

in DU145-pLKO and shARF-1 cells after treatment with CPT (20 lM) for 1 h and recovery for indicated time. All results were shown with

one representative image from three independent experiments. Chro., chromatin; Co-IP, Co-immunoprecipitation; CPT, camptothecin; GST,

glutathione S-transferase tag; WCL, whole cell lysis; WT, wide type.
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Cisplatin (Fig. S3L). All these results suggest that

p14ARF is a functional SUMO E3 ligase responsible

for promoting SUMOylation of PTEN during DDR.

3.4. PTEN relieves HR repair barrier posted by

53BP1 through directly dephosphorylating pT543-

53BP1

Given that HR repair efficiency is compromised when

PTEN lacking protein phosphatase activity [18]

(Fig. 1F), next we tried to identify potential protein

substrates targeted by PTEN in DNA damage repair.

53BP1, a key negative regulator of HR repair, is phos-

phorylated at multiple S/TQ sites which are essential

for recruitment of downstream effectors [7]. Thus, we

first examined the phosphorylation levels of 53BP1 in

cells after treatment with CPT or Zeocin. The pT543-

53BP1, which is necessary for recruitment of RIF1,

was dramatically increased in PTEN-knockdown

DU145 and HeLa cells (Fig. 4A, left panels) whereas

significantly decreased in PTEN overexpression in PC3

cells which are devoid of endogenous PTEN (Fig. 4A,

right and upper panel) after treatment with CPT (for

30 min). Moreover, we also detected the pT543-53BP1

level in PTEN-knockout DU145 cells after treatment

with higher concentration of CPT for 1 h, to show

that the pT543-53BP1 level was higher and lasted lon-

ger in PTEN-knockout cells than that of PTEN-WT

cells (Fig. 4A, right and lower panel). Consistent with

above results, when treated with Zeocin, the pT543-

53BP1 level was increased in PTEN-knockdown

DU145 and HeLa cells (Fig. S4A), while weakened in

PTEN overexpression in PC3 cells (Fig. S4B). In addi-

tion, we confirm that the intensity of pT543-53BP1

foci was stronger in PTEN-knockdown DU145 than

control cells (Fig. 4B and Fig. S4C) by staining with

antibody pT543-53BP1.

Since it has been reported that PTEN loss led to the

increase of pS25/29-53BP1 after treatment with etopo-

side and the mutation S25A enhanced RIF1 recruitment

during DNA damage repair [24,50]; thus, we also

detected the dynamics of pS25/29-53BP1 in PTEN-

knockdown or -knockout cells after treatment with

CPT or Zeocin. Indeed, pS25/29-53BP1 was induced in

both PTEN-WT and PTEN-knockout DU145 cells

after treatment with CPT. Increased pS25/29-53BP1

level was the same and even a little down whereas as

expectedly, increased pT543-53BP1 level was higher in

PTEN-knockout DU145 when compared with PTEN-

WT DU145 (Fig. 4C). Furthermore, after treatment

with Zeocin, the number and intensity of pT543-53BP1

foci were expectedly increased in DU145-shPTEN cells

compared to those in DU145-pLKO cells (Fig. 4D); in

contrast, there was little difference in the number and

intensity of pS25-53BP1 foci between DU145-pLKO

and DU145-shPTEN cells (Fig. 4E). These results dem-

onstrate that PTEN regulates the level of pT543-53BP1

other than pS25/29-53BP1 in DDR.

As pT543-53BP1 helps to recruit RIF1 to DNA

breaks [7], so we stained RIF1 in DU145-pLKO and

shPTEN cells after IR treatment. In accordance with

the pT543-53BP1 levels, the number and intensity of

RIF1 foci were both increased (Fig. 4F). It has been

well-documented that the 53BP1-RIF1-shieldin axis

forms a barrier to inhibit HR repair through suppres-

sing DNA end resection and HR repair mainly occurs

at S/G2 of cell cycle [9,10,51,52], we wondered that

whether PTEN in regulation of pT543-53BP1 is depen-

dent on cell cycle. DU145 cells were firstly synchro-

nized at G1/S with double thymidine block, and then

directly released 5 h to enter S phase or synchronized

at G1 with lovastatin, respectively. Cyclin A2 was used

to show synchronization efficiency (Fig. S4D). The

pT543-53BP1 levels were enhanced in both G1 and S

Fig. 4. PTEN relieves HR barrier posted by 53BP1 through directly dephosphorylating pT543-53BP1. (A) Immunoblot of pT543-53BP1 in

DU145 (top left), HeLa (lower left) cells and PC3 (top right) after treatment with CPT (2 lM) for 30 min and recovery for indicated time.

pT543-53BP1 was also detected in DU145 (lower right) cells after treated with CPT (20 lM) for 1 h and recovery for indicated time. (B) Dot

graph of pT543-53BP1 foci intensity in DU145 cells after Zeocin (100 lg�mL�1) treatment for 30 min and recovery for indicated time. (C)

Immunoblot of pT543-53BP1 and pS25/29-53BP1 in DU145 cells after treatment with CPT (20 lM) for 1 h and recovery for indicated time.

(D) Dot graph of pT543-53BP1 foci number and intensity after Zeocin (200 lg�mL�1) treatment for 1 h and recovery for 2 h. Representative

images were shown at right panel. scale bar, 20 lm. (E) Dot graph of pS25-53BP1 foci number and intensity after Zeocin (200 lg�mL�1)

treatment for 1 h and recovery for 2 h. Representative images were shown at right panel. scale bar, 20 lm. (F) Dot graph of RIF1 foci num-

ber and intensity after Zeocin (200 lg�mL�1) treatment for 1 h and recovery for 2 h. Representative images were shown at right panel. scale

bar, 20 lm. (G) Immunoblot analysis of pT543-53BP1 level in DU145-PTEN�/� cells stably re-expressed PTEN-WT, C124S and G129E after

10 Gy treatment and recovery for indicated time. (H) Dot graph of pT543-53BP1 foci number and intensity in DU145-PTEN�/� cells stably re-

expressed PTEN-WT, C124S and G129E after 5 Gy treatment and recovery for 2 h. (I) in vitro phosphatase assay. GFP tagged phosphory-

lated 53BP1(1–600) were purified from 293T cells. GST-PTENWT, C124S and G129E were purified from E. coli BL21. Unpaired Student’s t-test

was used (**P < 0.01, ***P < 0.001) and data were shown as mean. n.s., not significant. All results were shown with one representative

image from three independent experiments. CPT, camptothecin; GST, glutathione S-transferase tag; NC, negative control; WT, wide type.
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phases after treatment with Zeocin (Fig. S4E,F). How-

ever, the increased pT543-53BP1 levels in S phase were

much weaker in PTENWT cells than those PTEN�/�

cells (Fig. S4E). In contrast, the increased pT543-

53BP1 levels in G1 phase were slightly weaker in

PTENWT cells when compared with PTEN�/� cells

(Fig. S4F). These data suggest that PTEN regulating

pT543-53BP1 is a cell-cycle dependent manner and

mainly occurs in S phase.

To further verify whether PTEN phosphatase is

responsible for dephosphorylating pT543-53BP1, we

determined the pT543-53BP1 levels in PTEN�/�,
PTENWT, PTENC124S and PTENG129E DU145 cells.

After treatment with IR or Zeocin, the pT543-53BP1

levels in PTEN�/� cells were higher than those in

PTENWT cells, as was expected (Fig. 4G and Fig. S4G,

top panels). We found that pT543-53BP1 was increased

in PTENC124S but not in PTENG129E cells when com-

pared with PTENWT cells (Fig. 4G and Fig. S4G, mid-

dle and low panels). As similar to immunoblot results,

the number and intensity of pT543-53BP1 foci were also

increased in PTENC124S but not in PTENG129E cells

compared to those in PTENWT DU145 cells at 2 h after

treatment with IR (5 Gy) (Fig. 4H and Fig. S4H).

Above results indicated that PTEN protein phosphatase

was required for dephosphorylation of pT543-53BP1.

Thus, we further speculated whether PTEN directly

dephosphorylates pT543-53BP1.

To verify above hypothesis, we first purified phos-

phorylated full-length Flag-53BP1 from 293T cells for

the in vitro reaction with GST-PTENWT or GST-

PTENG129R (a dual phosphatase deficient mutant).

The following western blotting results showed that

PTEN-WT but not PTEN-G129R efficiently depho-

sphorylated pT543-53BP1 (Fig. S4I), suggesting that

the PTEN phosphatase activity is required for dephos-

phorylation of pT543-53BP1. However, we noticed

that Flag-53BP1 partly degraded after the in vitro reac-

tion with GST-PTENWT other than GST-PTENG129R.

Given that 53BP1 consists of 1972 aa which is a

relatively high-molecular-weight protein and could be

much easier degraded when purified for in vitro reac-

tion, we constructed a short truncated form, GFP-

53BP1(1–600), for in vitro phosphatase assay. We

found that GFP-53BP1(1–600) was easily detected by

antibody anti-pT543-53BP1 and more strongly after

CPT treatment; on the contrary, GFP-53BP1(1–300)
could not be detected (Fig. S4J), suggesting this anti-

body could still specifically recognize phosphorylated

T543 in GFP-53BP1(1–600). In order to further distin-

guish protein phosphatase and lipid phosphatase of

PTEN in dephosphorylation of pT543-53BP1, simi-

larly, we purified phosphorylated GFP-53BP1(1–600)
from 293T cells for the in vitro reaction with GST-

PTENWT, GST-PTENC124S or GST-PTENG129E. Con-

sistent with cellular results, PTENC124S lost the ability

to dephosphorylate pT543-53BP1, whereas PTENG129E

could moderately dephosphorylate pT543-53BP1 but

was less efficient than PTEN-WT, which might be

because the G129E mutation not only abolished lipid

phosphatase of PTEN, but also reduced its protein

phosphatase by about a half [53] (Fig. 4I). However,

we still noticed that GFP-53BP1(1–600) partly

degraded after the in vitro reaction with GST-PTENWT

and GST-PTENG129E, but not GST-PTENC124S, sug-

gesting that phosphorylation modification might be

important to maintain 53BP1 protein stability in vitro.

Thus, above results suggest that PTEN directly

dephosphorylates pT543-53BP1 in vitro and in DDR.

Taken together, our data demonstrate that PTEN

directly dephosphorylates pT543-53BP1 in response to

DNA damage, which relieves HR repair barrier posted

by 53BP1.

3.5. PTEN chromatin loading is mediated by

BRCA1 recruiting SUMOylated PTEN via its N-

terminal SIM

BRCA1 can remove HR repair barrier posted by

53BP1 via several molecular mechanisms, including

Fig. 5. PTEN chromatin loading is mediated by BRCA1 recruiting SUMOylated PTEN via its N-terminal SIM. (A) Immunoblot of pT543-53BP1

in DU145 cells in which BRCA1 were knockdown with siControl or siBRCA1-1 after Zeocin (400 lg�mL�1) treatment for 1 h and recovery

for indicated time. (B) Immunoblot of chromatin loaded PTEN and pS4/8-RPA32 in BRCA1 knockdown DU145 cells after treatment with CPT

(20 lM) for 1 h and recovery for indicated time. (C) 293Tsenp1�/� cells were transfected with Myc-BRCA1, HA-UBC9, His-SUMO1 and Flag-

PTEN for 48 h. Co-IP were performed to identify interaction between PTEN and BRCA1. (D) 293Tsenp1�/� cells were transfected with Myc-

BRCA1, HA-UBC9, His-SUMO1 and Flag-PTEN (WT or mutants) for 48 h and treated with Zeocin. Co-IP were performed to identify interac-

tion between PTEN (WT or mutants) and BRCA1. (E) 293Tsenp1�/� cells were transfected with Myc-BRCA1(WT or SIM mutants), HA-UBC9,

His-SUMO1 and Flag-PTEN for 48 h. Co-IP were performed to identify interaction between PTEN and BRCA1 (WT or SIM mutants). (F)

Immunoblot of pT543-53BP1 in DU145-PTEN�/� cells stably re-expressed PTEN-WT, K254R and K266R after treatment with Zeocin

(400 lg�mL�1) for 1 h and recovery for indicated time. All results were shown with one representative image from three independent exper-

iments. Chro., chromatin; CPT, camptothecin; WCL, whole cell lysis; WT, wide type.
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suppression of 53BP1 phosphorylation induced by

DNA damage [14], so we wondered whether PTEN is

a downstream effector of BRCA1. As expectedly,

knockdown of BRCA1 by siRNA strongly increased

the pT543-53BP1 level in DU145 after Zeocin

treatment (Fig. 5A). Consistent with this, knockdown

of BRCA1 by either siRNA or shRNA displayed the

same results of enhancing pT543-53BP1 in U2OS cells

after treatment with Zeocin and Etoposide (Fig. S5A).

For the other hand, we questioned whether BRCA1 is
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involved in PTEN chromatin loading. Indeed, chroma-

tin separation experiments showed that knockdown of

BRCA1 by shRNA or siRNA significantly suppressed

PTEN chromatin loading as well as pS4/8-RPA32 (as

a positive control) in DU145 cells after treatment with

CPT, indicating that BRCA1 was needed for PTEN

chromatin loading during DDR (Fig. 5B and

Fig. S5B). Therefore, we next tested whether PTEN

interacts with BRCA1 and this can be enhanced by

SUMOylation. We transfected Flag-PTEN and Myc-

BRCA1 with SUMO1 into Senp1�/� (SUMO Specific

Peptidase 1) 293T cells for 48 h, and then treated with

or without CPT. Co-IP/western blotting results showed

that PTEN interacted with BRCA1, and the interaction

was moderately enhanced by CPT treatment. Most

strikingly, the interaction was strongest when cotrans-

fected with SUMO1 and UBC9, which was not

increased any more even with CPT treatment (Fig. 5C).

Furthermore, CPT greatly increased the interaction

between endogenous PTEN and BRCA1 in DU145 cells

(Fig. S5C). To identify whether the interaction is specifi-

cally enhanced by SUMO1 modification, we also

detected the ability of other SUMO isoform SUMO2

whose amino acid sequence is a little different from

SUMO1. The interaction was much weaker in SUMO2

transfected than that in SUMO1 transfected cells under

CPT treatment. Surprisingly, cotransfected with

SUMO2 and UBC9 did not enhance the interaction at

all (Fig. S5D). These data suggest that the interaction

between PTEN and BRCA1 is specifically promoted by

SUMO1 modification.

Given that the SUMO-site mutation of PTEN inhib-

ited its chromatin loading induced by DNA damage, we

wondered whether the interaction between PTEN and

BRCA1 is directly mediated by SUMO-SIM (SUMO

interacting motif), which is an important mechanism to

mediate the protein–protein interaction. Indeed, the

double mutations K254/266R of PTEN remarkably

repressed the interaction although the single mutation

K254R or K266R did not inhibit, suggesting SUMO1

modification of PTEN was important for its interaction

with BRCA1. Additionally, the lack of lipid phospha-

tase activity of mutants PTENC124S and PTENG129E did

not affect the interaction (Fig. 5D).

To identify SIMs of BRCA1 which are responsible for

the interaction with SUMO1 attached to PTEN, we used

two software GPS-SUMO and JASSA [54,55] to predict

possible SIMs of BRCA1 (Fig. S5E,F). Since depletion

of exon11 of BRCA1 abolishes its suppression on 53BP1

phosphorylation and DNA end resection [15,16], we

mainly focused on SIMs located in this region, which are

marked in red (Fig. S5E,F). Further to find out which

SIM is essential for the interaction, we mutated amino

acids of SIM1, 2, 3, 4, into alanine, referred as mSIMn,

and deleted SIM5-1 and SIM5-2, referred as MSIM5,

respectively (Fig. S5G). Co-IP/western blotting results

showed that the interaction was efficiently weakened by

mSIM2 (412VLDVL416--AAAAA) but not by other

mutants of BRCA1 (Fig. 5E).

Since the interaction between PTEN and BRCA1 was

dependent on SUMO-SIM, we wondered that the

SUMO-site mutant PTEN is also be defective in dephos-

phorylation of 53BP1. The pT543-53BP1 level was rela-

tively higher in PTENK254R cells than that in PTENWT

DU145 cells after treatment with Zeocin. However, the

pT543-53BP1 level in PTENK266R cells was comparable

with that in PTENWT cells (Fig. 5F). These suggest that

chromatin loading of PTEN mediated by K254-SUMO1

modification is also very important for its role in dephos-

phorylation of pT543-53BP1. All above results demon-

strate that BRCA1 recruits SUMOylated PTEN to

chromatin via its N-terminal SIM, thereby dephosphor-

ylating pT543-53BP1 in DDR.

3.6. HR repair is impaired by PTENK254R in vivo

To verify whether SUMO site mutated PTEN impairs

HR repair in vivo, we generated knock-in mice with a

Fig. 6. HR repair is impaired by PTENK254R in vivo. (A–D) Numbers of 53BP1, cH2AX, RAD51 and RPA32 foci of MEFs post 5 Gy were

quantified with FOCO software and presented as dot graph. (E) Immunoblot of pS4/8-RPA32 of MEFs after treatment with 20 Gy. (F) Immu-

noblot of chromatin loaded PTEN and RPA32 which were separated from MEFs post 20 Gy. (G) Nuclear-cytosol separation of MEFs post

5 Gy and detection of PTEN localization with immunoblot. (H) Immunofluorescence of PTEN in MEFs after 5 Gy treatment and recovery for

4 h. Scale bar, 50 lm. (I) PtenWT and PtenK254R mice were treated with 8 Gy whole-body IR. Villus length were quantified at indicated time

and representative image of HE stained sections of small intestine were shown. More than 100 villi were assessed from each mouse. scale

bar, 300 lm. (J) Ki-67 positive cells in intestinal crypts were quantified and representative image of Ki-67 stained sections of small intestine

were shown. More than 100 crypts were assessed from each mouse. scale bar, 50 lm. (K) Viability of MEFs treated with Cisplatin, Zeocin

or CPT were detected with CCK8 and each group were normalized to no treatment group. Unpaired Student’s t-test was used (*P < 0.05,

**P < 0.01, ***P < 0.001) and data are shown as mean or mean � SD. All results were shown with one representative image from three

independent experiments. Chro., chromatin; CPT, camptothecin; HE, Hematoxylin and Eosin; MEFs, mouse embryonic fibroblasts; NT, non-

treatment; WCL, whole cell lysis; WT, wide type.
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point-mutation of PtenK254R or PtenK266R by using

CRISPR-Cas9 technique. PtenK254R mice developed

normally and was indistinguishable to PtenWT mice,

but interestingly, PtenK266R mice exhibited low birth

rate and some of them show abnormal localization of

seminal vesicle. Mouse embryonic fibroblasts isolated

from PtenWT and PtenK254R mice were verified by

DNA sequencing and used to examine DNA damage

repair efficiency (Fig. S6A). Compared with PtenWT

MEFs, PtenK254R MEFs showed significant increase of

cH2AX and 53BP1 foci (Fig. 6A,B and Fig. S6B,C)

but decrease of RPA32 and RAD51 foci (Fig. 6C,D

and Fig. S6D,E) after treatment with IR, indicating

PtenK254R MEFs were insufficient in HR repair. The

levels of cH2AX were also higher in PtenK254R MEFs

compared to those in PtenWT MEFs in the late stage

after CPT or Zeocin (Fig. S6F). Furthermore, the

pS4/8-RPA32 levels were much weaker in PtenK254R

MEFs than those in PtenWT MEFs after treatment

with IR of 20 Gy or 30 Gy (Fig. 6E and Fig. S6G),

which proved that PTENK254R function in regulation

of DNA end resection during HR repair was indeed

compromised. We also detected pS4/8-RPA32 levels in

primary PtenK254R MEFs and PtenWT MEFs after

30 Gy, and the result was similar with immortalized

MEFs (Fig. S6H). Consistent with results of tumor cell

lines, PTEN chromatin loading induced by IR and

CPT was also inhibited in PtenK254R MEFs (Fig. 6F

and Fig. S6I). Chromatin-bound RPA32 was also

decreased in PtenK254R MEFs in response to IR treat-

ment, indicating reduced DNA end resection efficiency

(Fig. 6F). Collectively, these data confirm that

PTENK254R impairs HR repair by decreasing its chro-

matin loading and DNA end resection.

To validate that K254-SUMOylation is essential for

PTEN loading to the chromatin to promote HR

repair, we isolated the chromatin for analysis of poten-

tial PTEN SUMOylation, showing that a shifted 90-

kDa which could be SUMOylated PTEN band, was

enhanced in PtenWT but not in PtenK254R MEFs at 4,

8 h after Zeocin treatment (Fig. S6J). One study

reported that K254R mutation may affect the subcellu-

lar localization of PTEN [18], however our nuclear-

cytosol separation results showed there were no any

differences between PtenWT and PtenK254R MEFs

under normal condition, even after treatments with

IR, CPT or Zeocin (Fig. 6G and Fig. S6K,L). More-

over, immunofluorescence staining of PTEN also dis-

played not much differences in subcellular localization

between PtenWT and PtenK254R under both normal

condition and IR treatment (Fig. 6H). To exclude the

impact of cell cycle on DNA damage repair, we also

detected the cell cycle profile in primary and

immortalized MEFs. There was little differences

between PtenWT and PtenK254R in both primary and

immortalized MEFs (Fig. S6M).

To compare the protective effect of PtenWT and

PtenK254R mice against DNA damage under physiolog-

ical condition, villus length and proliferation of intesti-

nal crypts cells, which are highly sensitive to IR due to

their rapid turnover rate [21,34], were determined after

treatment with whole-body IR. PtenWT mice had no

significant difference in crypts morphology and villus

length between NT (no treatment) and IR (8 Gy)

group, which indicated PtenWT mice completely recov-

ered, whereas PtenK254R mice showed significant des-

tructed crypts and length-shortened villi 4 days after

treatment with IR (Fig. 6I). Similarly, there was no

significant difference in numbers of ki67-positive cells

between PtenK254R and PtenWT mice under no treat-

ment, while numbers of ki67-positive cells in intestine

crypts of PtenK254R mice were less than those of

PtenWT mice after IR treatment, suggesting reduced

proliferating cells of intestine crypts might be due to

functional deficiency in DDR (Fig. 6J). These results

proved K254-SUMOylation was essential for PTEN

mediating DNA damage repair and irradiation protec-

tion in vivo. Lastly, we tested the sensitivity of PtenWT

and PtenK254R MEFs to DNA damage reagents, and

found that PtenK254R MEFs were more sensitive to

Cisplatin, CPT and Zeocin than PtenWT MEFs in a

dose-dependent manner (Fig. 6K). Taken together,

above results demonstrate that K254-SUMOylation of

PTEN is required for PTEN mediating HR repair in

DDR in vivo.

3.7. Blocking PTEN SUMOylation pathway

sensitizes tumor cells to DNA damage reagents

We first determined appropriate concentrations of

DNA damage reagents including Cisplatin, Zeocin and

CPT for the treatment on DU145-PTENWT or

DU145-PTEN�/� cells, and found that there was little

difference in survival colony numbers between DU145-

PTEN�/� and DU145-PTENWT cells when treated

with low doses of Cisplatin (0.5 and 1 lM), Zeocin (2

and 5 lg�mL�1) and CPT (25 and 50 nM), whereas

DU145-PTEN�/� cells were much more sensitive to

high doses of Cisplatin (1.5 and 2 lM), Zeocin (10 and

15 lg�mL�1) and CPT (150 nM) than PTENWT

(Fig. 7A–C and Fig. S7A–C).
Given that SUMOylation signaling is critical for cell

survival during DNA damage and a specific SUMO

E3 inhibitor is lacking, we tried to assess the cellular

sensitivity to DNA damage agents after blocking

SUMOylation pathway with SUMO E1 inhibitor,
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Fig. 7. Blocking PTEN SUMOylation pathway sensitizes tumor cells to DNA damage reagents. (A–C) DU145-PTEN�/� and PTENWT cells
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10 days. Colony number was counted and presented as bar graph. (D) DU145-PTEN�/�, PTENWT, PTENK254R and PTENK266R cells were trea-

ted with or without TAK981 (100 nM) for 3 days and cultured for another 7–10 days. Total intensity of stained colony was measured by IMA-

GEJ and then normalized to DU145-PTEN�/� group without TAK981 treatment. (E–G) DU145-PTEN�/�, PTENWT, PTENK254R and PTENK266R
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TAK981 [56], which has been in clinical trial to treat

advanced and metastatic solid tumors. In accordance

with previous report [57], the total levels of SUMOyla-

tion in DU145 cells were inhibited by TAK981 in a

dose dependent manner and completely suppressed at

the concentration greater than 100 nm (Fig. S7D). We

found that TAK981 effectively inhibited the growth/

survival of DU145-PTEN�/�, -PTENWT, -PTENK254R

and -PTENK266R cells, although there was no much

difference among PTENWT, PTENK254R and

PTENK266R cells either with or without TAK981 treat-

ment (Fig. 7D and Fig. S7E). By assessing combina-

tion effects of TAK981 with Cisplatin, Zeocin or CPT,

we found that both PTENK254R and PTENK266R cells

were more sensitive compared with PTENWT

cells (Fig. 7E–G and Fig. S7E), which was consistent

with our results that PTEN SUMO site mutations of

K254R and K266R decreased DNA damage repair

efficiency (Fig. 1C,D). Most strikingly, combination

treatment with TAK981 resulted in an additive effect

on the sensitivity to Cisplatin, Zeocin or CPT

(Fig. 7E–G and Fig. S7E). These results indicated that

inhibiting the SUMOylation pathway might increase

killing efficiency of DNA damage reagents in clinical

cancer treatment.

Since p14ARF knockdown inhibited chromatin load-

ing of PTEN and sensitized DU145 cells to DNA dam-

age (Fig. 3K and Fig. S3H–K), we further synthesized a

small peptide called CPP-p14ARF(2-13), which was a

Fitc-labeled cell penetrating peptide (CPP) YGRKKR

RQRRR fused by p14ARF(2-13aa)/VRRFLVTLRIRR

(Fitc-YGRKKRRQRRRVRRFLVTLRIRR), the main

region interacting with and promoting PTEN

SUMOylation (Fig. 3F). We assessed whether CPP-

p14ARF(2-13) can interfere PTEN SUMOylation and

loading to the chromatin under DNA damage. Indeed,

CPP-p14ARF(2-13) dramatically inhibited the interac-

tion between PTEN and p14ARF (Fig. S7F) as well as

chromatin loading of PTEN (Fig. S7G) under CPT

treatment. Next, we tested whether CPP-p14ARF(2-13)

enhances the cell sensitivity to DNA damage. As previ-

ously reported that a peptide of p14ARF(1-22aa) inhib-

ited cell proliferation [58], so we also detected whether

CPP-p14ARF(2-13) influences it. There was no differ-

ence in survival colony numbers between PTEN�/� and

PTENWT DU145 cells treated with CPP-p14ARF(2-13)

in different doses, suggesting CPP-p14ARF(2-13) did

not affect cell proliferation (Fig. 7H and Fig. S7H).

Interestingly, the cell sensitivity to Cisplatin, Zeocin or

CPT treatment was increased by combination with

CPP-p14ARF(2-13) (Fig. 7I–K and Fig. S7H). The low

dose of CPP-p14ARF(2-13) at 2 lM was capable to

enhance killing efficiency for Cisplatin and Zeocin

treatments to DU145-PTENWT cells (Fig. 7I,J), and the

high dose at 10 lM also increased killing efficiency for

CPT treatment (Fig. 7K). Furthermore, CPP-p14ARF

(2-13) treatment also decreased survival rate of DU145-

PTEN�/� cells when combined with these reagents, sug-

gesting CPP-p14ARF(2-13) might block the interaction

of p14ARF with other targets besides PTEN. Thus,

above results suggest that TAK981 or CPP-p14ARF(2-

13) has the potential to enhance the effect of DNA dam-

age reagents in killing tumor cells.

4. Discussion

Post-translational modifications of PTEN including

SUMOylation [18], methylation and phosphorylation

[24] are involved in DDR. Although one study

reported that PTENK254R impaired HR repair effi-

ciency, the underlying molecular mechanism remained

largely elusive [18]. Our data suggested that DNA

damage induced PTEN SUMOylation in a time-

dependent manner other than rapid activation like

phosphorylation. Both K254 and K266 of PTEN

could be conjugated with SUMO1, but one single

mutation was enough to reduce DNA damage-induced

PTEN SUMOylation. Interestingly, the mutation

K254R, but not K266R, suppressed DNA damage-

triggered PTEN chromatin loading. It is an open ques-

tion how K266-SUMOylation of PTEN to participate

in DDR. Given that K266 has also been identified as a

ubiquitination site [59], it might exist a crosstalk

between SUMOylation and ubiquitination of PTEN

during DDR. Moreover, SUMOylation of PTEN on

K266 promotes its association with cell membrane and

which in turn inhibits PI3K-AKT signaling [25]. As

PI3K-AKT pathway can be also activated by DNA

damage stimuli and regulated function of DDR related

proteins [60–63], K266-SUMOylation of PTEN might

also promote DDR through the PI3K-AKT pathway.

Additionally, the mutation C124S remarkably

enhanced PTEN nuclear localization and chromatin

loading. Due to PTEN interacting with RAD51 and

RPA32 [19,23], this might explain why PTENC124S

decreased HR repair efficiency but not affected the

chromatin loading of RAD51 and RPA32. It remains

to be further explored how C124S influences PTEN

localization and whether the chromatin trapped

PTENC124S has other additive side effects on DNA

damage repair.

Several SUMO E3 ligases including PIAS1, PIAS4,

CBX4 and ZNF451 play an important role in regula-

tion of SUMOylation signal transduction in response

to DNA damage [32,33,64]. Here, we identified an

atypical SUMO E3 ligase, p14ARF, responsible for
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PTEN SUMOylation under DNA damage such as IR,

CPT and Zeocin through their interaction, which was

enhanced by DNA damage-induced phosphorylation

of p14ARF. UV stress disrupts the p14ARF-B23 inter-

action in the nucleolar, resulting in a transient translo-

cation of p14ARF to the nucleoplasm [65]. In

addition, ATM, a main DDR kinase, promotes the

release of p14ARF from the nucleus and subsequent

degradation after doxorubicin treatment [66]. So, the

sub-nuclear distribution and protein–protein interac-

tions of p14ARF are critical for its function in pro-

moting PTEN SUMOylation after DNA damage.

As for the role of PTEN protein phosphatase in HR

repair, the conclusions from two different groups are

contradictory [21,24]. Our results supported that

PTEN protein phosphatase was necessary for HR

repair. In addition to cH2AX as a substrate of PTEN

during DDR [24], we identified a new target, 53BP1,

which was directly dephosphorylated by PTEN in cells

and in vitro. More interestingly, PTEN selectively

dephosphorylated pT543-53BP1 other than pS25-

53BP1 in cells. It has been early reported that phos-

phorylation at 7S/TQ sites in the N-terminal region of

53BP1 is responsible for its recruitment of RIF1,

whereas phosphorylation at the other 8S/TQ sites of

53BP1 is essential for PTIP accumulation at DNA-

break sites [7]. And interestingly, as long as one site of

7S/TQ is phosphorylated, it is sufficient for 53BP1

recruiting RIF1 [14]. However, most recently one

study reported that RIF1 is recruited to IR-induced

foci by recognizing three related phosphorylated epi-

topes on 53BP1 [67]. Thus, PTEN might also target

phosphorylation at other sites responsible for RIF1

recruitment, besides pT543-53BP1 that is one of

7S/TQ, during DDR. In addition, it has been reported

another phosphatase, PP4C, dephosphorylates 53BP1

and promotes HR repair [14]. Given that knockout of

PP4C or PTEN can upregulate the phosphorylation

of 53BP1, both PP4C and PTEN are probably neces-

sary rather than redundant for inhibiting the phos-

phorylation of 53BP1. However, it is not yet clear

whether the function of PP4C or PTEN is specific to

cell type or DNA damage. More efforts are needed to

further differentiate their roles in this process.

As known that BRCA1 is critical for HR repair by

against 53BP1 posted barrier through serval molecular

mechanisms, including inhibition of 53BP1 phosphoryla-

tion [14]. Our results supported that PTEN was a down-

stream effector of BRCA1 and PTEN SUMOylation was

required for their interaction, which was efficiently

decreased by double mutation of K254/266R. One SIM

located in the N terminus of BRCA1 was essential for

recognition of SUMO1 conjugated to PTEN, by which

PTEN was subsequently recruited by BRCA1 to DNA-

break sites. This might partially explain why that the

deletion of exon11 of BRCA1 resulted in loss of BRCA1

function in inhibition of phosphorylation of 53BP1

[15,16].Moreover, as 53BP1 is pro-choice for DNA

breaks and BRCA1 complex can relocate into the core of

53BP1 foci at S/G2 in a time dependent manner [68,69],

so we speculate that after entering the core, BRCA1

recruits PTEN to directly dephosphorylate 53BP1, thus

releasing downstream effectors of 53BP1 such as RIF1

and PTIP, which further facilitates DNA end resection

and ongoing of HR repair.

The in vivo results from PtenK254R mice validated

that PTEN SUMOylation promoted HR repair. Signif-

icantly, we did not observe the mutation K254R influ-

ence PTEN nuclear localization [18], by in vivo and in

vitro results, which is consistent with our early report

[25]. However, our data strongly demonstrated that

SUMOylation of PTEN was induced by several DNA

damage agents and this sub-pool of SUMOylated

PTEN was tightly associated with chromatin via

BRCA1. It is worth noting that Bassi et al. [18]

claimed that K254-SUMOylated-PTEN was decreased

and excluded from the nucleus upon DNA damage,

which was totally inconsistent with our observations

that SUMO-mutant K254R had no differences in the

localization. We have analyzed the possible reasons for

these discrepancies as follows. Firstly, in addition to

our model, several studies have reported that PTEN

nuclear localization or chromatin association is impor-

tant for DNA damage repair. For examples, Hou

et al. [70] showed that Grb2 mediates PTEN nuclear

translocation to repair H2O2-induced DNA damage in

HeLa cells. Chen et al. [71] found that the activation

of ATM by DNA damage reagents phosphorylates

PTEN at Ser113, which promotes PTEN nuclear reten-

tion in HeLa and A549 cells. Ma et al. [21] found that

FGFR phosphorylates PTEN at Y240 to facilitate

PTEN nuclear localization and recruitment onto chro-

matin after IR treatment. Zhang et al. [24] also pre-

sented evidences that the phosphorylation at T398 of

PTEN induced by DNA damage is recognized by

MCD1 to promote PTEN chromatin loading. All

above studies suggest that PTEN nuclear localization

or chromatin association is a prerequisite to perform

its function during DNA damage repair. However,

Bassi et al. showed that re-expressed PTEN in

U87MG, which is a PTEN-deficient gliomas cell line,

was excluded from the nucleus after IR treatment.

This was inconsistent with our observation in DU145

that is a prostate cancer cell line with the expression of

endogenous PTEN. We guess the exclusion of exoge-

nous PTEN in U87MG cells after IR might be a cell
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type-specific phenotype. Second, Bassi et al. also

claimed that SUMOylated-PTEN, which was mostly

localized in the nucleus in basal conditions, was

excluded from the nucleus after DNA damage. They

conducted the nuclear-cytosol fractionation to detect

endogenous PTEN in HeLa cells after IR treatment

and found that the nuclear PTEN was significantly

decreased. It was very interesting that two close bands

higher than normal PTEN were observed, which they

thought as SUMOylated PTEN. However, these two

bands are more likely to be the other two isoforms,

PTENa and PTENb [72], which are both recently dis-

covered. Third, for the nuclear-cytosol separation

assay, nuclear fraction consists of both soluble and

precipitated parts. Soluble part contains soluble pro-

teins, while precipitated part is mainly made up of

chromatin and its associated proteins. Detailed

nuclear-cytosol separation method was not included in

their paper. In our results, SUMOylated PTEN was

tightly bound with chromatin and mainly in the

nuclear precipitates during DNA damage repair.

Therefore, another possible explanation is that they

might detected only soluble part of nuclear fractions

but not whole or precipitated fractions, which resulted

in decreased level of SUMOylated PTEN in their

observation. In all, the discrepancies between these

results needs to be further explored. More efforts

should be made to analyze the SUMOylation of PTEN

at K254 in different cellular context during DNA dam-

age repair.

Since we proved that activation of SUMOylation

pathway was essential for correct DNA damage repair,

so the combination of SUMOylation inhibitor with

DNA damage reagents might enhance sensitivity of

tumor cells to chemotherapy. As expectedly, the

SUMOylation inhibitor TAK981 remarkedly increased

killing efficiency of DNA damage reagents. Further-

more, the small peptide CPP-p14ARF(2-13) also sup-

pressed DNA damage-induced chromatin loading of

PTEN and sensitized tumor cells to chemotherapy.

5. Conclusions

In summary, our study uncovers a new mechanism

that SUMOylated PTEN promotes HR repair through

dephosphorylation of 53BP1 (Fig. 7L). In response to

DNA damage, p14ARF as a SUMO E3 ligase is phos-

phorylated to enhance the interaction with PTEN in

the nucleus, which subsequently promotes PTEN

SUMOylation. Then, SUMOylated PTEN is recog-

nized and recruited to the chromatin near DSB by the

N-terminal SIM of BRCA1. This pool of PTEN

relieves HR repair barrier posted by 53BP1 through

directly dephosphorylating 53BP1, promoting HR

repair. Blocking PTEN SUMOylation pathway by

TAK981 and CPP-p14ARF(2-13) sensitizes tumor cells

to DNA damage reagents. Thus, our study elucidated

a new molecular mechanism of the key role of PTEN

in HR repair during DDR, which may provide a new

strategy for clinical cancer therapy.
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Fig. S1. PTEN promotes HR repair through enhanc-

ing DNA end resection.

Fig. S2. DNA damage promotes PTEN chromatin

loading by inducing its SUMOylation.

Fig. S3. p14ARF is a novel SUMO E3 ligase to medi-

ate PTEN SUMOylation during DDR.

Fig. S4. PTEN relieves HR barrier posted by 53BP1

through directly dephosphorylating pT543-53BP1.

Fig. S5. PTEN chromatin loading is mediated by

BRCA1 recruiting SUMOylated PTEN via its N-

terminal SIM.

Fig. S6. Homologous recombination repair is impaired

by SUMO-deficient PTEN in vivo.

Fig. S7. Blocking PTEN SUMOylation pathway sensi-

tizes tumor cells to DNA damage reagents.

Table S1. List of antibodies used in this study.

Table S2. Sequences of shRNA, siRNA, and sgRNA

used in this study.
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