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Abstract
Composting is a natural process of decomposition of organic matter that occurs by the action of microorganisms such as 
fungi, bacteria, and actinobacteria. The actinobacteria are present throughout the process due to their resistance to differ-
ent environmental conditions. They are Gram-positive, filamentous bacteria with a high capacity for producing secondary 
metabolites of biotechnological importance. Thus, the objective of this work was to isolate and characterize actinobacteria 
from industrial composting soil of oil palm (Elaeis guineensis) in the municipality of Igarapé-Açu, Pará. Ten samples of 
the material were collected and seeded on soy tryptone agar, Reasoner’s 2A agar, and Columbia agar, using the serial dilu-
tion technique. For morphological characterization of the strains, Gram staining and microculture were performed, and for 
biochemical characterization, the motility, triple sugar iron, Simmons citrate, maltose, phenylalanine, catalase, and DNAse 
tests were performed. It was observed that compost actinobacteria have a great diversity in morphological and metabolic 
production, which may be associated with the substrate and cultivation conditions. Therefore, palm oil compost material 
represents a rich source of bacterial biodiversity, bringing new perspectives for the bioprospecting of actinobacteria of bio-
technological importance in little explored environments.
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Introduction

Composting is a natural process by which organic com-
pounds are degraded by the action of microorganisms, such 
as fungi, bacteria, and actinobacteria, under aerobic condi-
tions [1]. The organic substrate, the decomposition step, the 
handling, and the physicochemical conditions of the envi-
ronment (temperature, pH, humidity, etc.) directly affect the 
diversity and activity of microorganisms in the site [2, 3]. 
All the decomposed material is transformed into organic and 
inorganic products that can be used in soil fertilization and 
correction [4, 5].

This process occurs in four distinct stages, mesophilic, 
thermophilic, maturation, and cooling, which ends with the 
formation of humus [6]. Bacteria are the predominant micro-
organisms in all phases of composting since they can tolerate 
the temperature variations of the process [7]. The actinobac-
teria are a representative group in composting, because they 
are excellent indicators of organic matter biotransformation, 
besides having a diverse physiology and metabolic flexibility 
to produce biocompounds [8, 9].

The actinobacteria are a phylum of Gram-positive bac-
teria with a genome rich in guanine and cytosine that have 
fungal-like filamentous structures and reproduce by spor-
ulation [10]. They can be found in various environments, 
especially in the soil, where they act in the decomposition 
of residues and in carbon cycling [11]. Their potential for 
waste degradation is associated with the high production 
of secondary metabolites and enzymes that not only favor 
nutrition and survival in the environment, but also have great 
technological and industrial importance [12].

During maturity, actinobacteria produce different types 
of reproductive spores, such as arthrospores, conidia, and 
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sporangia, which are fundamental structures for the taxon-
omy of these bacteria [13]. In culture, they form a network 
of filaments on the surface and inside the medium, called 
aerial and vegetative mycelium, respectively [14, 15]. The 
vegetative mycelium is linked to the nutrition of the bacteria 
and is the first structure formed after the germination of the 
spores. When developed, it emerges to the surface giving 
rise to the aerial mycelium, responsible for spore dispersal 
and bacterial reproduction [16].

Some genera of actinobacteria, such as Streptomyces, 
stand out for their ability to produce pigments in the medium 
[17]. The main ones are the melanoids, which have a dark 
brown coloration and are produced in response to environ-
mental stress, and the carotenoids, which are produced under 
different conditions and range from light yellow to reddish 
orange [18]. The importance of producing pigments from 
actinobacteria is due to their easy and low-cost growth, their 
high stability, and their broad biotechnological applicability, 
encompassing the sectors of agronomy, pharmaceutical, and 
food industry [19, 20].

Considering the great metabolic and morphological 
diversity present in actinobacteria, besides their wide 

industrial and biotechnological applicability, it is essential 
to explore the properties of this group of bacteria under 
different conditions in ecosystems little explored. Thus, 
the objective of this work was to isolate and biochemically 
and morphologically characterize strains of actinobacteria 
isolated from industrial oil palm (Elaeis guineensis) com-
posting soils from an oil palm producing company, located 
in the municipality of Igarapé-Açu, in the interior of Pará.

Material and methods

Study type and location

This is an experimental study, with a quantitative and 
descriptive approach, using dry compost soil samples of 
oil palm (Elaeis guineensis) provided by the Agroindus-
trial Palmasa S/A, a company specialized in extracting and 
refining palm and palm kernel oil, located in the munici-
pality of Igarapé-Açu, in the interior of the state of Pará 
(Fig. 1).

Fig. 1  Location of the municipality of Igarapé-Açu, PA
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Sample collection

Ten samples of compost soil were collected in ten different 
points with the aid of spatulas and sterile bags and iden-
tified with the number of the collection point, date, time, 
temperature, latitude, longitude, and composting time. The 
samples were then transported in an isothermal box to the 
LABMICRO (CCBS/UEPA) for further analysis. The coor-
dinates (latitude and longitude) of the collection sites are 
listed below:

a. Point 1: 1.13587°S; 47.67354°W
b. Point 2: 1.13592°S; 47.67363°W
c. Point 3: 1.13532°S; 47.67352°W
d. Point 4: 1.13546°S; 47.67360°W
e. Point 5: 1.13771°S; 47.66943°W
f. Point 6: 1.13767°S; 47.6693°W
g. Point 7: 1.1365°S; 47.64734°W
h. Point 8: 1.13713°S; 47.64719°W
i. Point 9: 1.14473°S; 47.65520°W
j. Point 10: 1.14457°S; 47.65518°W

After prospecting the bacteria, points 3, 5, and 7 were 
discarded, since no strain collected from these locations was 
selected. Thus, Fig. 2 shows the spatial distribution of the 
collection points according to the strains used in this study.

Sample preparation

For the sample preparation, the method of Silva [21] and 
Magron [22] was adapted. In previously sterilized contain-
ers, 10 g of each soil sample was diluted in 90 mL of dis-
tilled water. This solution was homogenized and left to spon-
taneously sediment for 30 min. Then, 1 mL of this sample 

was transferred to another test tube containing 9 mL of dis-
tilled water, obtaining a final sample concentration of  10−2 
(1:10 dilution). From this first tube, 1 mL of the sample was 
transferred to a new test tube containing 9 mL of distilled 
water to obtain a concentration of  10−3 (1:100), and from 
this, 1 mL was transferred to a third tube containing 9 mL 
of distilled water, to obtain samples of  10−3 (1:100) and  10−4 
(1:1000), respectively.

Actinobacteria isolation

After pre-treatment, the samples were sowed, with the aid 
of a sterile calibrated loop, in tubes containing Reasoner’s 
2A agar, Columbia agar, and soy tryptone agar, all enriched 
with 5% nystatin to avoid fungal contamination. All dilu-
tions were seeded on the three culture media, totaling nine 
tubes per sample, in order to obtain isolated colonies and 
capture as much bacterial diversity as possible. The seeding 
technique used was depletion and streaking. After seeding, 
the tubes were incubated in a BOD incubator at 30 °C, in a 
humid chamber for 10 days (Fig. 3).

The tubes that presented bacterial growth with character-
istics of actinobacteria were reisolated in plates containing 
the culture medium that obtained the highest diversity of 
colonies in the primary isolation. The following inclusion 
criteria were considered: Gram-positive bacilli in chains 
and pigment-producing, spore-forming, aerial and vegeta-
tive mycelium. Gram-negative bacteria, bacteria with cocci 
or cocoid morphology, and bacteria that did not form aerial 
mycelium were excluded from the study.

The macroscopic characterization of the colonies was 
performed according to the size, shape, color, density, and 
consistency of the colonies growing on the culture media 
used [23–25].

Fig. 2  Spatial distribution of the 
collection points of the selected 
strains
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Morphological characterization

Gram staining

Morphological characterization of the isolates will be 
performed using the Gram staining technique. The Gram 
staining kit (Kasvi©) was used to perform the technique. 
The methodology applied will be in accordance with the 
standard established by the Agência Nacional de Vigilância 
Sanitária (ANVISA) [26]. The bacteria were characterized 
based on the morphological classification performed by 
Barka et al. [10].

Microculture

In order to observe the reproductive structures and carry out 
a possible identification at the genus level of the bacteria, 
the microculture technique was employed and performed 
according to the methodology adapted from Shirling and 
Gottlieb [27]. A bacterial suspension of concentration simi-
lar to the second tube of the MacFarland (3.0 ×  108), of each 
selected colony, was prepared in 0.9% saline solution [28].

From this inoculum, a volume of 50 μL was used to per-
form the seeding in Petri plates containing the Sabouraud 
dextrose culture medium, and, with the help of a Drigalski 
loop, a mat seeding was performed on the medium. Next, 
three coverslips were inserted in a 45° on the seeding site, 
and the plates were incubated at 37 °C for 10 days.

Each coverslip was read at intervals of 2, 6, and 10 days, 
respectively, to visualize the organization of the hyphae and 
reproductive structures of the bacteria to characterize them 
at the genus level. To visualize the structures, the removed 
coverslip was stained with methylene blue dye diluted in 
distilled water at a 1:1 ratio. The structures were observed 
under an optical microscope with a 1000 × objective [29].

Biochemical characterization

The biochemical characterization was performed accord-
ing to Table 1, adapted from Bergey’s Manual of Systematic 
Bacteriology: Volume 5: The Actinobacteria [30].

Results and discussion

Isolation of actinobacteria

In 10 days of incubation, there was growth in all the seeded 
tubes, regardless of inoculum concentration, which dem-
onstrated that the increase in dilution does not interfere in 
bacterial growth. The most expressive growth of the sam-
ples was observed in the TSA medium, although the R2A 
medium showed greater diversity in morphology and colora-
tion of the colonies, which was expected due to the differ-
ence in composition of the media.

It was observed that the dilution concentration with the 
highest growth was 1:1000 in relation to the others. Santos 
et al. [31] also used the serial dilution method to isolate 
actinobacteria from composted organic manure, where the 
highest growth was also in the dilution of lower concentra-
tion  (10−5). The authors related this result to the nutritional 
differences for each culture medium and the dilution used.

R2A is a culture medium developed by Reasoner and Gel-
dreich [32] for the purpose of isolating oligotrophic bacteria 
from treated water sources. It is a low-nutrient agar formu-
lated to simulate the conditions of the environment from 
which the bacteria were taken. Corroborating the authors 
Almodovar, Pereira, and Bugno [33] and Raad et al. [34], 
R2A is considered ideal for the cultivation of soil bacteria 
because it has a small number of substrates as a source of 

Fig. 3  Primary isolation using 
the serial dilution technique
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nutrients for certain groups of bacteria, as was the case of 
the actinobacteria isolated for this study.

In Hilinski [35]’s work, R2A was used as a substitute 
for TSA and plate count agar (PCA), as it proved more effi-
cient for the recovery of slow-growing bacteria incubated 
for periods longer than 7 days. This characteristic is associ-
ated with physical changes and metabolic decline in lower 
nutrient environments, making it ideal for the cultivation of 
actinobacteria, whose growth is slower compared to other 
groups of bacteria.

This characteristic was also observed in the work of Park 
et al. [36], in which a comparative analysis was performed 
between the use of R2A and TSA media to isolate bacteria 
from hemodialysis water. In their study, R2A was more sen-
sitive to microbial growth, performing better in detecting 
pathogens in the material studied.

Nishioka et al. [37] also reported better bacterial growth 
in R2A compared to TSA. Another characteristic observed 
by the authors was the production of pigments that, accord-
ing to Reasoner and Geldreich [32], is higher compared 
to other media when evaluated over a period of 14 days. 
These results demonstrate that the lack of nutrients added 

to the long incubation period leads the bacteria to express 
their secondary metabolism, which includes the produc-
tion of pigments in the medium, as was observed among 
the strains isolated from composting.

In addition, seeding in test tubes allowed the production 
of gas by the bacteria to be observed, as well as the forma-
tion of aerial mycelia on the sides of the tube (Fig. 4). On 
the other hand, the use of the tubes caused the colonies to 
grow overlapping, which made it difficult to isolate some 
strains.

No other studies were found in which the primary iso-
lation of soil bacteria was performed in test tubes using a 
solid culture medium. This method was developed in the 
laboratory and proved to be a good alternative for cultivat-
ing actinobacteria.

The colonies of actinobacteria are classified according to 
their morphology, which can vary between radial with fur-
rows, velvety, concentric, umbonate, and convex. They are 
also classified according to their texture, which can range 
between powdery, velvety, and cottony. In addition, the colo-
nies can be regular, irregular, or wavy in the medium [23, 24, 
38]. These characteristics correspond to the morphologies 

Table 1  Biochemical tests for 
characterization of the isolated 
actinobacteria

Characteristic Test principle

Structural
  Motility Detection of the presence of flagella in a semisolid medium

Carbohydrate metabolism
  Triple sugar iron Fermentation of glucose, lactose, sucrose, production of 

gas (CO2) and H2S
  Simmons citrate Use of citrate as the sole carbon source
  Maltose Fermentation of maltose

Enzyme activity
  Phenylalanine Production of the enzyme phenylalanine deaminase
  Catalase Production of the enzyme catalase
  DNAse Production of the enzyme DNAse

Fig. 4  Culture of actinobacteria in a tube, presence of aerial mycelium on the inner wall of the tube (A and B) indicated by the black arrow and 
gas formation, observed by fragmentation of the medium (C) indicated by the red arrow
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found in the isolated bacteria, although strains with mucoid 
and dry texture were also found.

Among the isolated bacteria, 15 strains were selected. 
Regarding colony morphology, there was a predominance 
of irregular colonies (26.6%, n = 4), followed by wavy (20%, 
n = 3), concentric (20%, n = 3), and convex (13.3%, n = 2) 
morphology. Only one colony showed radial morphology 
with grooves (6%), and one colony showed regular mor-
phology (6%). There was no growth of any colony with 
umbonate characteristics. The macroscopic characterization 
was recorded in Table 2.

In the collected material, the highest temperature found 
was 49.2 °C in the material of 1 year of decomposition and 
the lowest was 29 °C, recorded in the material of 4 years of 
decomposition. According to Feng et al. [39], the increase in 
soil temperature is due to the increase in microbial metabo-
lism at the site. Therefore, it is evident that microbial activity 
is higher in materials with less time of decomposition.

As for the colonial diversity of the isolated strains, there 
was a predominance of the colors: white, gray, and brown 
(Fig. 5). These colors were also predominant among the 
bacteria in the work of Silva et al. [24] with soil samples 
from the Brazilian semiarid region. In the work conducted 
by Silva et al. [40], on the other hand, there was a predomi-
nance of the colors gray, white, and cream among the iso-
lated strains. These results imply that, although collected 
from different soils, the local microbial population may have 
similar characteristics.

Due to the large number of bacteria and fungi in com-
post, actinobacteria may produce the pigments in response 
to competition for nutrients. Chadni et al. [41]; Panwar, 
Molpa, and Joshi [42]; and Seipke [43] reported that pig-
ment production is tied to the secondary metabolism of 

actinobacteria. In situations of competition with other 
microorganisms in the environment, bacteria tend to 
release products that can act both as chemical signals and 
defense of their own habitat, as well as possessing antimi-
crobial, antioxidant, and anticancer action. Such informa-
tion, added to the findings in this work, demonstrates the 
biotechnological potential of compost soil bacteria.

According to Salim et al. [44] and Selim, Abdelhamid, 
and Mohamed [45], pigments can range from blue, violet, 
pink, red, yellow, green, brown, and black. There is also 
the presence of pigments in the vegetative mycelium that 
can be pale yellow, olive green, and brown. These pig-
ments can be diffused in the medium or retained in the 
mycelium. This information was consistent with the results 
of the experiment, since the bacteria showed white, gray, 
yellow, and light brown pigmentation, both present in the 
mycelium and diffused in the medium.

Another characteristic observed was the presence of 
distinct colorations between the aerial mycelium and veg-
etative mycelium of strain IGA-11. This result was also 
reported by Charousová et al. [46], whose most of the 
isolated actinobacteria strains showed gray-colored aer-
ial mycelium with yellow-colored vegetative mycelium, 
they were also absent of melanoid pigmentation, which is 
indicative of the genus Streptomyces.

According to De Oliveira [47] and Tiwari et al. [48], 
some actinobacteria can have the same characteristics on 
the surface, although they present different coloration in 
their vegetative mycelium. This is probably due to the 
physiological differences between the hyphae present in 
the substrate and in the aerial mycelium, a fact that deter-
mines the presence of two colorations in the same isolated 
strain.

Table 2  Macroscopic 
characterization of 
actinobacteria colonies isolated 
from compost soil

*PIG pigment; RM reverse mycelium; + presence;—absence

Strain Medium Color Morphology Texture PIG RM

IGA-1 R2A White Irregular Mucoid -  + 
IGA-2 R2A White Velvety Cottony - -
IGA-3 TSA White Irregular Mucoid -  + 
IGA-4 TSA White Wavy Drought -  + 
IGA-5 COL White Convex Mucoid -  + 
IGA-6 COL White Wavy Mucoid - -
IGA-7 TSA White Irregular Mucoid -  + 
IGA-8 R2A Gray Concentric Powdery Brown  + 
IGA-9 R2A White Irregular Mucoid - -
IGA-10 R2A Gray Concentric Velvety -  + 
IGA-11 R2A Gray Radial with grooves Powdery Yellow -
IGA-12 R2A Gray Concentric Velvety -  + 
IGA-13 TSA White Wavy Drought -  + 
IGA-14 R2A White Convex Drought - -
IGA-15 TSA White Regular Mucoid -  + 
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Fig. 5  Colonial diversity of the 
isolated bacteria. *A top view 
of the colony; B bottom view of 
the colony
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Morphological characterization

Gram staining

The actinobacteria present themselves in the morphol-
ogy of Gram-positive bacilli with elongated rods, forming 
hyphae or filamentous structures and spores. Besides these 
characteristics, the following can also be observed: spore 
germination pattern, structure and surface, branching of the 
mycelium, and formation of aerial and vegetative mycelium 
[49, 50]. These characteristics were used to select the strains 
based on bacterial morphology.

Among the isolated strains, most presented Gram-posi-
tive bacilli morphology, forming short chains, long chains, 
pseudohyphae, and spore chains. Gram-negative colonies 
were also isolated, with isolated bacillary morphology or in 
chains, as well as bacteria with coccoid morphology, sug-
gestive of Gram-negative cocci, which were excluded from 
this study.

Microculture

Three consecutive readings of each one of the microcultures 
were taken in order to observe if there would be a change 
in the reproductive structures of the bacteria. The first read-
ing was after 2 days of growth, the second was after 6 days, 
and the last one was after 10 days of growth. In the test, 
the formation of filaments, hyphae, and pseudohyphae was 

evaluated, as well as the production of spores, their organiza-
tion in chains, and reproductive structures (Fig. 6).

The realization of readings in different periods of time 
proved to be relevant for the observation of the reproduc-
tive structures of bacteria. Some strains, in the first days of 
incubation, presented only spores and bacillary structures in 
the microculture, which, as the days passed, acquired fila-
mentous forms with the presence of spore vesicles.

Other strains showed the opposite, presenting pseudohy-
phae and highly branched structures in the first days of incu-
bation, while in longer incubation periods, they developed 
the form of bacilli with spore production. Therefore, daily 
observation of the microculture plates is very important to 
evaluate the growth of the aerial mycelium and the modifi-
cations in the reproductive structures of the bacteria as the 
days go by.

According to Kurtböke [51], the morphological analysis 
of the structures of the actinobacteria on consecutive days is 
fundamental, because younger colonies may present a less-
developed characteristic compared to older cultures. This 
characteristic could be observed in this work, as different 
morphologies were obtained among the microcultures of 
the isolated actinobacteria in different incubation periods 
(Fig. 7).

The organization of reproductive structures is a relevant 
criterion to be used in the taxonomy of actinobacteria. These 
structures can be highly branched with spores or spore vesi-
cles, as well as can form short or long chains of spores or 

Fig. 6  Reproductive structures of actinobacteria isolated in micro-
culture. *A Monoverticillate without spirals; B biverticillate without 
spirals; C flexed; D flexed and straight with spore sacs (arrow); E 

isolated oval; F isolated oval and spherical; G spore sacs (arrow); H 
straight spores and pseudohyphae
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Fig. 7  Macroscopic and microscopic characterization and microculture of the isolated actinobacterial strains
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vesicles. As for the classification of hyphae and spores, they 
can be straight, flexed, fasciculated, verticillate, and open 
and closed spirals [30, 52, 53].

In this study, the predominant spore morphology was 
isolated oval, followed by spherical, straight, and flexed. 
Only one strain demonstrated a characteristic of mono-
verticillate spores and only one strain had biverticillate 

spores. There were no strains with spiral morphology 
(Table 3). The findings were different from the work of 
Dornelas et al. [54] with actinobacteria from tropical soils, 
whose predominant morphologies were straight, flexible, 
spiral, and retinaculum.

The results were also different from those obtained by 
Sukmawaty, Sari, and Masri [55] with actinobacteria from 

Fig. 7  (continued)
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pine forests, whose predominant morphologies were flexed 
and open spirals. From these results, it can be inferred that 
the spore arrangements for different genera and species 
of actinobacteria is variable. In addition, the environment 
in which the bacteria are found may also influence their 
diversity.

Biochemical characterization

The biochemical characterization was evaluated in three 
parameters, being structural (presence of flagella), meta-
bolic (utilization of certain nutrient sources), and enzymatic 
(production of enzymes in the substrate). All tests were read 
within 24 h, and the results were recorded in Table 4.

Regarding the fermentation of sugars, 93.3% of the 
strains (n = 14) were able to metabolize glucose alone, while 
only 26% (n = 4) fermented all three carbohydrates in the 
medium. In addition, only one of the strains was unable to 
ferment any of the carbohydrates provided by the medium. 
There was no production of hydrogen sulfide (H2S) or gas 
by any of the bacteria.

According to Nurkanto and Agusta [56], the carbon 
source used by actinobacteria can be from different types 

of carbohydrates. Fitri et al. [57] pointed out that glucose 
is the best carbon source for the growth of actinobacteria 
compared to starch, lactose, sucrose, and fructose. This can 
be reaffirmed in the present work, since most of the strains 
tested used glucose as a substrate for growth.

As for the maltose test, 60% of the strains (n = 9) were 
able to ferment the carbohydrate. The result resembled that 
of Yun, Roh, and Kim [58], in which 61% of the bacteria 
fermented maltose. The work of Janardhan et al. [59], on 
the other hand, demonstrated that among the actinobacte-
ria isolates, glucose and maltose are more favorable carbon 
sources for the development of the mycelium of actinobac-
teria compared to sucrose and fructose, as was noticeable in 
the present work.

As for the citrate test, only 13.3% of the strains (n = 2) 
were able to use it as a sole carbon source. Similar to the 
work of Yanti, Setyawati, and Kurniatuhadi [60], in which 
16% of the strains were positive for the test. The results were 
opposed to that obtained by Chaudhary et al. [61], in which 
100% of the strains were able to utilize citrate, which may 
be related to the different types of soils used in their work. 
The differences between the results are probably related to 
the different types of soil used in their work.

Table 3  Morphological characterization of actinobacteria strains isolated from compost soil

*GPB Gram-positive bacilli

Strain Gram Microculture (spore arrangements) Suggestive gender

2 days 6 days 10 days

IGA-1 GPB in chains with spores Isolated ovals Oval and spherical Isolated ovals Bacillus sp.
IGA-2 GPB isolates with spore 

chains
Monoverticillates without 

spirals
Monoverticillates without 

spirals
Isolated ovals Streptomyces sp.

IGA-3 GPB in long chains Isolated sphericals Isolated sphericals Straights Streptomyces sp.
IGA-4 GPB in long chains Isolated ovals - Isolated ovals Inconclusive
IGA-5 GPB in chains with spores Isolated ovals Isolated ovals Isolated ovals Inconclusive
IGA-6 GPB isolates with spore 

chains
Straights Isolated ovals Spore Bags Bacillus sp.

IGA-7 GPB in short chains Isolated ovals Isolated ovals Straights Streptomyces sp.
IGA-8 GPB in short chains with 

spores
Flexed Flexed Flexed with spore bags Streptomyces sp.

IGA-9 GPB in short chains - Isolated ovals and straight Isolated ovals Bacillus sp.
IGA-10 GPB filamentous with 

spore chains
Straights Straights Straight and flexed with 

spore bags
Streptomyces sp.

IGA-11 GPB filamentous with 
spore chains

Biverticullates without 
spirals

Straight with spore bags Isolated ovals Streptomyces sp.

IGA-12 GPB filamentous with 
spore chains

Straights Straight and Flexed Flexed Streptomyces sp.

IGA-13 GPB in short chains Isolated spherical Isolated spherical Isolated ovals and spheri-
cal

Inconclusive

IGA-14 GPB in long chains and 
pseudohyphae

Spherical isolated and in 
spore bags

Isolated ovals Isolated spherical Streptomyces sp.

IGA-15 GPB isolates with spores Oval spore bags Isolated spherical and 
ovals

Isolated spherical and 
ovals

Bacillus sp.
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None of the strains tested presented motility in the 
medium, indicating the absence of flagella. Most actinobac-
teria are immobile; generally, when they present motility, it 
is related to the spores. The motility of spores is associated 
with their ability to disperse in the environment. Some gen-
era, such as Streptomyces, have immobile spores that make 
use of the machinery of other soil microorganisms to diffuse 
in the medium [14, 62, 63].

There was no production of phenylalanine deaminases 
by any of the strains tested. This result was also obtained by 
Pathalam et al. [64], Kalyani et al. [65], and Lima et al. [66], 
in which none of the isolated actinobacteria produced the 
enzyme. These results suggest that the production of deami-
nases is not a common feature of this group of bacteria.

Regarding enzyme activity, 46.6% (n = 7) of the strains 
produced the enzyme catalase. In the work of Díaz-Díaz 
et al. [67] and Yanti et al. [60], the production of catalase 
was the majority among bacteria, since the enzyme was 
produced by 100% of the tested strains. In the research of 
Almuhayawi et al. [68], the results were similar to those 
obtained in this study, with 44.4% of the bacteria being posi-
tive for the test.

Catalase is an enzyme produced by bacteria in response to 
oxidative stress produced by reactive oxygen species (ROS), 
mainly hydrogen peroxide (H2O2). They also act in the 
development of bacteria and in the production of their sec-
ondary metabolites. In environments where there is a large 
amount of oxygen and nutrients, the production of catalases 
is very high. In composting, oxygen is essential to obtain a 
quality compost; therefore, the production of catalases in 

the strains isolated in this study can be associated with the 
material used [69–72].

As for DNAse, only three strains (20%) produced the 
enzyme, different from what was obtained in the work of 
Kizhakedathil and Subathra [73], in which 80% of the strains 
produced the enzyme. DNAses contribute to soil functions 
and are associated with nutrient breakdown, as well as pro-
viding an advantage in the survival of bacteria because it 
makes the environment more favorable within the condi-
tions in which the enzyme acts [74, 75]. Therefore, it is 
understandable that, for different soil types, the production 
of DNAses is variable.

Conclusion

The amount of organic material in composting soils favors 
the proliferation of a great diversity of microorganisms, 
especially actinobacteria, which effectively participate in 
the decomposition process. Their growth in this type of 
soil is favored due to their high metabolic flexibility and 
the development of survival mechanisms to the variations 
of the environment, from the production of pigments and 
secondary metabolites.

The palm compost is a promising source for the bio-
prospecting of a great diversity of actinobacteria, although 
it is a little explored material for bacterial prospection 
studies. The microculture technique allowed, through 
the observation of the reproduction structures, to pre-
sumptively determine the bacterial genus. The analyses 

Table 4  Biochemical 
characterization of 
actinobacterial strains isolated 
from compost soil

*TSI triple sugar iron agar; AC/AC acid base and acid apex; AC/AL acid base and alkaline apex; AL/AL 
alkaline base and alkaline apex; CIT Simmons citrate; MALT maltose; MOT motility; PHE phenylalanine; 
CAT  catalase; + positive result;—negative result

Strain TSI CIT MALT MOT PHE CAT DNASE

IGA-1 AC/AL  + - - -  + -
IGA-2 AC/AC -  + - - - -
IGA-3 AC/AL -  + - - - -
IGA-4 AC/AL -  + - -  + -
IGA-5 AC/AL -  + - -  + -
IGA-6 AC/AL -  + - - -  + 
IGA-7 AC/AC -  + - - - -
IGA-8 AC/AC -  + - - - -
IGA-9 AC/AL  + - - - -  + 
IGA-10 AC/AL - - - - -  + 
IGA-11 AC/AL - - - -  + -
IGA-12 AC/AC -  + - -  + -
IGA-13 AC/AL - - - -  + -
IGA-14 AL/AL -  + - -  + -
IGA-15 AC/AL - - - - - -
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at different incubation periods allowed us to evaluate the 
morphology of the bacteria at different stages of maturity.

There are few studies in the literature that deal with the 
diversity of actinobacteria in this type of material. There-
fore, the potential of poorly explored environments for the 
prospecting of new species of actinobacteria is evident. 
With new studies and through the application of more 
specific and advanced techniques in the characterization 
of actinobacteria, it is likely that species will continue to 
be discovered.
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