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Abstract
Bioaerosols are potential sources of pathogenic microorganisms that can cause devastating outbreaks of global crop diseases. 
Various microorganisms, insects and viroids are known to cause severe crop diseases impeding global agro-economy. Such 
losses threaten global food security, as it is estimated that almost 821 million people are underfed due to global crisis in food 
production. It is estimated that global population would reach 10 billion by 2050. Hence, it is imperative to substantially 
increase global food production to about 60% more than the existing levels. To meet the increasing demand, it is essential to 
control crop diseases and increase yield. Better understanding of the dispersive nature of bioaerosols, seasonal variations, 
regional diversity and load would enable in formulating improved strategies to control disease severity, onset and spread. 
Further, insights on regional and global bioaerosol composition and dissemination would help in predicting and preventing 
endemic and epidemic outbreaks of crop diseases. Advanced knowledge of the factors influencing disease onset and pro-
gress, mechanism of pathogen attachment and penetration, dispersal of pathogens, life cycle and the mode of infection, aid 
the development and implementation of species-specific and region-specific preventive strategies to control crop diseases. 
Intriguingly, development of R gene-mediated resistant varieties has shown promising results in controlling crop diseases. 
Forthcoming studies on the development of an appropriately stacked R gene with a wide range of resistance to crop diseases 
would enable proper management and yield. The article reviews various aspects of pathogenic bioaerosols, pathogen inva-
sion and infestation, crop diseases and yield.
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Introduction and relevance of bioaerosols 
in crop diseases

Bioaerosols are the subset of atmospheric aerosol parti-
cles that are of biological origin and vary from a few nm 
to 100 µm in size [182]. They are ubiquitous in the lower 
parts of the atmosphere i.e., the planetary boundary layer 
(PBL) as they are majorly released from the Earth’s surface 
due to various natural and anthropogenic activities [304]. 
They use PBL as a medium to enable and enhance their 
transportation and dissemination, spread and distribution, 

evolution, mutation, emergence of new variant, adaptation, 
improved pathogenicity, development of wide host specific-
ity, and drug resistance [112, 180, 181, 400, 479, 610]. Their 
unique nature to carry the particles to longer distances with 
the air currents makes them a key factor in the dispersal of 
reproductive and other units of plants, animals, and patho-
genic microbes across the geographical barrier [124, 182]. 
Bioaerosols are well known for their beneficial role in the 
climate system [180] and are equally hazardous to ecosystem 
health including crop health when they harbor pathogenic 
microbes in them [124, 610]. They act as agents of spread 
and dispersal of the human and crop pathogenic microbes 
that could have deleterious effect on the public and agricul-
tural health of a country [4, 65, 66, 124, 137, 167, 183, 206, 
286, 624]. Notably, the pristine atmospheric air present in 
the vegetated regions play a vital role in the dissemination 
of the beneficial as well as the crop pathogenic microbes to 
various ecological niches enhancing their colonization on 
various substrates [120, 251, 462, 466].
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Till date, a significant proportion of the particulate mat-
ters in the atmospheric air are said to be composed of bio-
aerosols which could harbor various pathogenic microbes 
that could hamper the agricultural sector and economy. 
Accordingly, bioaerosols were found to contribute to about 
24% of the total particulate matters and about 5–10% of 
the suspended particulate matters in the atmospheric air 
[4, 373]. Further, various researchers worldwide like [26, 
66, 82, 345], Burt [73, 194], and [388] have discussed var-
ious crop and plant pathogenic diseases namely rust, smut, 
powdery mildew, downy mildew, etc. that are generally 
transmitted by the bioaerosols. Hence, it is highly essential 
and relevant to study the crop pathogenic bioaerosols and 
their diversity as they could impact the agricultural sector 
in the local and the global scale [124]. Furthermore, the 
uncertainties prevailing in the current understanding of the 
climate change, the role of bioaerosols in the terrestrial 
interactions, and anthropogenic influence posed by human 
activities hampering the agricultural production empha-
sizes the need to have better insight on the crop pathogenic 
bioaerosols [529, 533, 541]. Manmade activities like land 
use pattern and thus liberated bioaerosols have always had 
a negative implication on the climate and precipitation 
[402]. Such altered precipitation cycle and climate change 
would affect the vegetation and agricultural sector thus 
negatively influencing the economy of a country where 
agriculture plays a vital role in the gross domestic prod-
uct (GDP). In this perspective, this article will attempt 
to summarize and highlight the role of bioaerosols in the 
spread of crop diseases, various microbial pathogens, 
mechanism of infection, and the possible preventive meas-
ures that need to be followed. Moreover, the manuscript 
will emphasize on the following objectives: (i) in general 
the role of bioaerosols in crop diseases and yield loss is 
understudied, therefore the manuscript elaborates their 
role and importance in crop disease leading to heavy yield 
losses; (ii) it also ventures the vital role of meteorologi-
cal and atmospheric factors in the spread and aerosoliza-
tion of bioaerosols which would help us in understanding 
the basic information and knowledge on the influence of 
changing climatic factors over the increased crop dis-
eases worldwide; (iii) it gives the readers an insight on 
the diverse pathogenic microbes, source and mode of 
spread of pathogenic bioaerosols and their route of entry 
in crops which could help farmers and officials in pre-
paring the crop protection strategies. In order to achieve 
all these objectives, the manuscript carefully attempts to 
cover most of the details related to the disease caused by 
biotic and meso-biotic factors using stringent and specific 
methodologies in data collection especially the literatures 
based on the generalized and specific search strings like 
“bioaerosols and crop diseases, sources of bioaerosols, 
factors influencing aerosolization and dissemination of 

bioaerosols, fungal crop diseases, bacterial crop diseases, 
meso-biotic factors, viral crop diseases, invasion of crop 
pathogens, etc.” excluding the details and data related to 
the crop diseases caused by abiotic factors like spoilage 
due to extreme temperature or rainfall and other implica-
tions of bioaerosols in ecosystem.

Source of bioaerosols‑ factors influencing 
their release and dissemination

As already discussed, bioaerosols are the aerosol particles 
that contain a biological unit in them which could either be 
a living cell or a dead material [22, 83, 103, 124, 182, 209, 
564, 610, 630]. First study on bioaerosols was reported 
in the early nineteenth century and many other studies 
addressing various aspects of the bioaerosols were carried 
out since then [413]. As addressed by various researchers 
worldwide, they play an imperative role in the dissemina-
tion of various biological units, dissemination of disease 
and infection, helping in the genetic exchange and develop-
ment of new variants, and in the development and evolution 
dynamics of the ecosystem [66, 120, 148, 216, 217, 224, 
354, 378, 460, 463, 469, 516, 527, 598]. Though bioaero-
sols transport the microbes to longer distances, their verti-
cal spread across the troposphere or PBL has not yet been 
addressed properly [124].

Natural activities as source of bioaerosols

Natural activities observed on the land surfaces and the 
water surfaces act as an important source of bioaero-
sols emission and spread [227, 337, 401, 551, 552, 623] 
(Fig. 1). Further, wind movement over the land surface, 
water surface, and vegetated regions including the cryp-
togamic covers contribute to large numbers of bioaero-
sols from the biosphere [29, 62, 65, 149] as leaf surface 
area contributes to four times the area as compared to 
the terrestrial ground surface area [604]. Also, [140] has 
reported that the dry air and strong wind would favor the 
dissemination of bioaerosols to longer distances. Move-
ment and activities observed in trees, plants, and crops 
including the leaf movement were also found to contribute 
tremendous quantities of bioaerosols to the atmospheric 
air especially the ice nucleating (IN) microbes which are 
pathogenic to crops and plants [124, 393, 458, 470, 596]. 
Furthermore, cryptogamic covers that comprise the region 
blanketed with the growth of fungi, bacteria, cyanobacte-
ria, lichens, algae, and bryophytes play an imperative role 
in the release and spread of bioaerosols [37, 61, 67, 120, 
122, 124, 164, 183, 366, 511, 526]. Bioaerosols liberation 
is further enhanced when these cryptogamic covers (which 
approximately covers almost 1/3rd of the ground surface 
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area) are disturbed by the wind, rainfall, and natural activi-
ties of human and animals [149, 182]. Such bioaerosols 
emitted from the vegetated region and cryptogamic covers 
would mainly comprise of pollen grains, bacterial cells, 
small seeds, cyanobacteria, fungal spores and segments, 
plant debris and segments, dead animal units and cells, 
algae, insects and their segments, etc. [22, 67, 81, 83, 103, 
124, 209, 351, 373, 482, 564, 610].

Likewise, virus particles, viroids, cyanobacteria, and 
bacteria dominate the bioaerosols liberated from the water-
bodies and the ocean surfaces along with very sparse pres-
ence of archaea, fungi, protozoa, and algae [92, 302, 361, 
425, 553]. Splashing, bubble bursting, rain droplets, wave 
breaking, collapsing of bubble cavity, spume droplets, river 
water movement and flow are the various activities that are 
responsible for the release of bioaerosols from the water-
bodies (Fig. 1) [12, 16, 92, 120, 124, 160, 254, 280, 323, 
463, 493, 593, 608]. Also, Mayol et al. [376] has stated 
that ocean surfaces can exchange millions of microbes with 
atmospheric air i.e., millions of microorganisms/square 
meters of air every day and about 10% of which could 
thrive in the atmospheric air for longer time of even four 
days. This shows that meteorological conditions prevailing 
over ocean surfaces favor the survival of bioaerosols for 
longer periods compared to terrestrial surfaces.

Role of anthropogenic activities on bioaerosols 
emission and dissemination

On the other hand, anthropogenic activities, or manmade 
activities (Fig. 1) like agriculture, solid waste management, 
wastewater treatment, waste transportation, biomass burn-
ing, reuse of solid waste, landfills, road dust, industrial activ-
ities, and waste discharge [14, 143, 171, 228, 283, 353, 355, 
439] contribute immensely to the release of anthropogenic 
bioaerosols into the atmospheric air. Human, birds, and ani-
mals are said to expel and excrete pathogenic microbes and 
lots of dead cell debris in the bioaerosols that are released 
from them [47, 48, 83, 625]. Chen et al. [89] has stated that 
bacterial bioaerosols dominated the human populated region 
compared to fungal bioaerosols. Similarly, waste treatment 
plays an imperative role in the dispersal and dissemination 
of pathogenic microbes in the bioaerosols, which includes 
municipal wastewater/sewage treatment, composting, waste 
dumping yards, landfills, etc. [99, 142, 304]. Further, [99] 
has stated that actinomycetes and fungal bioaerosols are the 
majorly released bioaerosols from the composting site as 
most of bacterial species are killed due to the high tem-
peratures prevailing in the compost. Also, [219] reported 
the predominance of mesophilic bacteria, psychrophilic 
bacteria, and microfungi in the bioaerosols collected from 
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Fig. 1  Schematic representation of the natural and anthropogenic 
bioaerosols sources, their release from the biosphere along with their 
role in the ice nuclei formation influencing the climate change, and 

their role in affecting crop health and ecosystem health through wet 
and dry deposition
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a facility containing both wastewater treatment plant and 
a composting site. This is mainly due to the organic dust 
released from the composting facility which enables the spe-
cific growth of mesophilic and thermophilic species [274, 
499]. Hence, wastewater treatment plants, composting facili-
ties, and landfill sites are considered as potential anthropo-
genic source of pathogenic and non-pathogenic bioaerosols 
[70, 90, 176, 219, 407, 434]. However, [143] have identified 
that the animal-feeding operations and animal husbandry 
release high quantities of pathogenic bioaerosols that could 
have lethal effects on animals and human. Further, bioaero-
sols released in the indoor environment are also considered 
as anthropogenic bioaerosols as they are majorly released 
from human activities like day-to-day activities and also due 
to coughing, sneezing, talking, and breathing which could 
expel human respiratory and oral microbiota[221, 275, 417, 
616], the skin microbes as a result of skin aberrations and 
shedding activities [175, 348, 421], and floor dusts rich in 
pathogenic microbes [243, 562]. On the other note, [99, 284, 
430, 535] and [255] have reported the abundance of bacte-
rial species like Staphylococcus aureus, Pseudomonas aer-
uginosa, and Escherichia coli in the bioaerosols collected 
from the industrial sites. Whereas E. coli was the predomi-
nant species reported in the bioaerosols released from the 
wastewater and waste treatment site [255]. Study reported 
by [455] stated that bacterial bioaerosols were the major 
bioaerosols released during the activity of land spreading 
of the semi-solid sewage sludge. Also, a study conducted 
by [138] and [80] explained the presence of bacterial and 
viral bioaerosols downwind the sewage sludge disposal site. 
Furthermore, agricultural practices were said to release con-
siderable quantities of bioaerosols to the atmospheric air 
[333]. Though the bioaerosols released due to anthropogenic 
activities affect agricultural sector and various aspects of 
ecosystem, many studies till date elucidate and character-
ize the diversity and pathogenic properties of human and 
animal pathogenic bioaerosols. Crop pathogenic bioaerosols 
and their implication on the crop/agricultural health are less 
investigated till date.

Influence of meteorological factors 
and aerodynamic particle size on bioaerosols 
aerosolization

Globally, many researchers have stated the significant role 
of meteorological factors and aerodynamic diameter in the 
prolonged persistence of bioaerosols in the atmospheric air 
[191, 287, 490, 558, 611]. Concurrently, the concentration 
of bioaerosols in the atmospheric air decides the transpor-
tation capacity of bioaerosols across continents and plays a 
pivotal role in microbial migration and colonization [124, 
182]. Further, [276] have reported that meteorological 
factors greatly influence the aerosolization properties of 

bioaerosols. In specific, meteorological factors like relative 
humidity (RH), temperature, wind direction and speed, and 
precipitation are said to have major impact on the bacterial 
bioaerosols release and concentration in the atmospheric air 
and are reported to vary with seasons [124, 134, 140, 192, 
193, 222, 304]. Accordingly, Miquel [391] has stated that 
fungal spore concentration and emission in the atmospheric 
air was also guided by seasonal variations and wind direc-
tion. Furthermore, it was observed that the movement of 
bioaerosols and their dispersal is majorly governed by the 
particle size (aerodynamic diameter) and the flux density 
[611]. These factors decide the dry and wet deposition prop-
erties of bioaerosol particles and influence their spread and 
transport over longer distances. It is also reported that the 
particles of high aerodynamic diameter settle down rapidly 
compared to a smaller particle [124]. Researchers worldwide 
have estimated that the aerodynamic particle size diameter 
of pollen grains could range between 17 and 58 µm [312, 
539], fungal spores could range from 1 to 30 µm in diameter 
[213], bacteria could range from 1.25 to 8 µm [512, 567], 
viruses ranges ≤ 0.3 µm [563] and all other biological parti-
cles like fungal segments, bacterial clusters, plant and ani-
mal segments could be present in varying size ranges [276].

The other two major factors influencing aerosolization 
of particles are bonding force and removal effect [276]. The 
balance maintained between these two forces acts as the 
driving force for the efficient aerosolization of any particle 
from the surface. Bonding force can be further defined as 
the electrostatic force created especially when the surface 
and the particles are differently charged which are mainly 
dependent on or influenced by the factors like temperature, 
moisture content, and the radiation balance [544]. On the 
other hand, it is the removal effect which is mainly guided 
by the aerodynamic force or drag developed due to the air 
movement, electric charge, particle impaction, inertia, and 
movement of surface away from the particles which are 
influenced by wind force, raindrop impaction, and physical 
agitations [542]. Further, the shape and structure of organ-
isms present in the bioaerosols also decide the sedimenta-
tion, settlement, and dispersion rate of the bioaerosols [124, 
125]. All these uncertainties like the seasonality, type of 
biological particles in the bioaerosols, life cycle of the bio-
logical particle, seasonal variations, aging, chemistry, and 
microphysics of the particles govern the dispersal and dis-
semination of bioaerosols in the atmospheric air [72].

Microbe specific aerosolization and dissemination 
properties

Microbiota comprises of a variety of diverse microbial com-
munities categorized into different taxonomic groups namely 
the algae, protozoa, slime molds, fungi, bacteria, archaea, 
and viruses with the major taxonomic levels classified being 
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Kingdom, Division, Class, Order, Family, Genus, and Spe-
cies [457]. Each group of which has their own characteristic 
physical, chemical, and genomic properties that differentiate 
them from each other [32, 457]. Aerosolization efficiency 
of these organisms are further dependent on and decided 
by their physical properties like shape, size, velocity in air 
etc. [124, 126, 130, 152, 285, 410, 414]. Bioaerosols con-
taining these microorganisms and the number of microbes 
present in the bioaerosols are dependent on the surround-
ing environment and the meteorological factors and could 
even contribute to huge concentration per unit of surface 
area measured [337, 401, 622]. Archaea, being primitive 
organisms known till date are reported to be less observed 
in the bioaerosols as they are majorly present in extreme 
environments [501]. Nevertheless, the fact that they play a 
pivotal role in the Earth’s biogeochemical cycles, their aero-
solization properties are understudied due to the limitations 
existing in the efficient characterization of archaea. The only 
report available till date is their presence in the bioaerosols 
collected from composting sites as stated by [29, 395], and 
[568]. Similarly, algae and cyanobacteria were reported to 
get aerosolized from both the terrestrial and marine environ-
ments [124, 374, 375], but studies on their airborne quan-
titative measurements show that they are present in very 
low concentrations of ~ 300–500 cells/m3 of the sampled air 
[478]. Globally, various researchers like [320, 468], Dubovik 
[141], Reisser [478, 514], and [416] have stated that Chloro-
phycean and Xanthophycean are the major species of algae 
that were observed in the bioaerosols and have also stated 
that their aerodynamic diameter ranged ≤ 10 µm which favor 
their rapid aerosolization. Cyanobacteria being one of the 
successful groups of the microorganisms in the terrestrial 
habitat, are abundantly available in the marine surface con-
tributing to the global carbon and nitrogen availability and 
exchange [124, 540]. Chroococcus limenticus, Lyngbya 
lagerheimii, and Schizothrix purpurascens are the well know 
species of cyanobacteria that were reported to be airborne 
[147]. Similarly, Phormidium fragile and Nostoc muscorum 
were reported in the Cairo, Egypt [147, 197].

Bacteria being one of the most abundant microorganisms 
present in the bioaerosols were reported to be emitted at the 
rate of 0.7–2.58 Tg  yr−1 [71, 242, 264]. The characteristic 
size range of the bacterial cells enable their easy aerosoli-
zation and they are often found as single cell as well as in 
agglomerates and clusters in association with other particles 
like soil, plant segments, dust, and other debris [59, 334]. 
Bacterial bioaerosols contain many bacterial pathogens that 
are lethal to human, plants, and animals and in addition to 
that they can act as biomarkers indicating the atmospheric, 
climatic, and environmental changes and anthropogenic influ-
ences [218, 356, 403, 404]. Further, [304, 309, 448, 610], 
and [356] have stated that meteorological factors, type of 
anthropogenic activities observed, seasonality, and the source 

materials present could highly influence the aerosolization 
properties, concentration, and diversity of bacterial species 
observed in the bioaerosols of the atmospheric air. [127], 
reported that bacterial concentration in the atmospheric air 
were found to increase with the increased temperature and 
wind speed. Release and aerosolization of bacterial particles 
can occur due to various activities like wind aerosolizing the 
bacterial particles from the substrates, sedimentation and set-
tlement of particles from different layers of atmospheric air 
with higher concentration, aerosolization from plant surfaces, 
and sunlight shifting the electrostatic charge of the particles 
[276, 334, 570]. Firmicutes, proteobacteria (including alpha, 
beta, gamma, delta, and epsilonproteobacteria), Verrucomi-
crobia, Cyanobacteria, Acidobacteria, Planctomycetes and 
Chloroflexi are the major bacterial phyla reported till date 
in the atmospheric bioaerosols [163, 230, 304, 512]. Also, 
[125, 163], and [159] observed that the concentration and 
diversity of bacterial bioaerosols varied among the urban and 
rural regions with high concentrations of bacterial bioaero-
sols in the urban region. Further, [63], have reported that 
different land-use activities like agricultural fields, suburban 
areas, and forests release very high concentrations of bacte-
rial bioaerosols of up to  105 to  106 cells/m3 of air. Among the 
waterbodies, bubble bursting and sea sprays are the activities 
that liberate the bacterial bioaerosols from the marine envi-
ronment to the atmospheric air [12, 324, 364] and it is also 
reported that bacterial bioaerosols liberated from the ocean 
surface has shorter life span compared to the one liberated 
from the land surface [71].

Likewise, the most predominant microorganism of all 
in the bioaerosols are the fungi, fungal spores, and the fun-
gal segments which contribute to a load of about 8–186 Tg 
 yr−1 [148, 235, 242, 264, 511]. Fungal concentration in the 
atmospheric air and their aerosolization are highly dependent 
on meteorological conditions and maximum aerosolization 
of fungal particles are favored by temperature of 25–30 ºC, 
relative humidity of 60–70%, and wind speed ≤ 1 m/second. 
Further, it was observed that fungal concentration in the 
atmospheric air reduces with increased wind speed of ≥ 5 m/
second [335]. [75] has reported that the maximum release 
of fungal spores in atmospheric air is high during the dry 
conditions i.e., during afternoon time when the temperature 
and wind speed are favorable for the spore release from the 
conidial chains. Similarly, some wet air spora like Nigrospora 
sp. are reported to release spores favorably during high humid 
conditions like mid-morning [557] and it was also reported 
that their spore concentration reduces with increased alti-
tude. Further, [260, 313], and [467] have reported that the 
spore releasing mechanism of fungi is highly dependent on 
the surface tension and osmotic pressure. [351], stated that 
the plant pathogens like Cladosporium, Alternaria, Penicil-
lium, Aspergillus, and Epicoccum sp. that could cause smut 
and rust disease of plants are the major species found in the 
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atmospheric bioaerosols. Similarly, Ascomycota and Basidi-
omycota were found to be the dominant phyla observed in the 
bioaerosols and Basidiomycota to dominate marine environ-
ments [180, 183, 610]. Consecutively, viruses are the tiny air-
borne microbes in the bioaerosols that are as small as ~ 20 nm 
in size and are reported to be always attached to other sus-
pended particles in the atmospheric air [135, 627]. Only lim-
ited studies are available on the virus bioaerosols persistence 
and existence in the atmospheric air. It was observed that 
the environmental factors like altered temperature, humidity, 
solar radiation, and UV index inactivate the virus particles 
present in the bioaerosols [124, 461]. Further, Hugh-Jones 
and Wright in 1970 [252], have stated that wind speed and 
humidity (over 60%) play a pivotal role in the dispersion and 
spread of foot and mouth viral disease. Similarly, spread of 
Aujeszky’s disease (a rabies like disease of pigs) was found 
to be high during winter especially when the temperatures 
were 2–3 ºC higher than the normally recorded temperature 
[96, 97]. Further, it has been reported that sprays from water-
bodies acted as source of virus containing bioaerosols, their 
liberation, and dissemination [38–40]. Moreover, virus bio-
aerosols were also liberated from infected animals, humans, 
and birds [276, 634]. Likewise, high concentrations of virus 
bioaerosols were found to aerosolize from sewage treatment 
plant, sludge dumping site or treatment plants, and marine 
environment [79, 124, 182, 319, 517, 543]. However, the 
virus bioaerosols mass concentration in the particulate matter 
(PM) was always found to be in negligible quantities, though 
the concentration of virus bioaerosols were found to be high 
in certain conditions and activities as mentioned above.

Major crop pathogenic bioaerosols and their 
implications in crop health and yield

Bioaerosols transmits several plant and crop pathogens causing 
various crop diseases hampering the agricultural production 
and yield creating significant economic losses worldwide [66, 
73, 194]. Pathogenic bioaerosols gets sedimented and depos-
ited as wet and dry deposition on the plants and crop surfaces 
during various stages of crop growth causing severe diseases 
and infections. Further, pathogenic bioaerosols settled and 
colonized on the soil acts as a vital source of seedling and 
crop infections. Fungi being the predominant crop pathogens 
by nature were reported to cause severe infections to a variety 
of crops worldwide. Bacteria being the second predominant 
microbial community causing various crop infection are fol-
lowed by viruses, nematodes, etc. Phyllosphere of plants acts 
as an important niche for microbial colonization with a diverse 
lifestyle as epiphytes, saprophytes, and pathogens [41, 337]. 
Epiphytes are generally found to be present in the leaf surface 
and the pathogens like the foliar pathogens tend to ingress into 
the leaf tissues i.e., the intercellular space causing infections.

Fungal crop pathogens‑ their mechanism 
of invasion and disease onset

About 19,000 fungal species have been identified till date 
to cause various crop diseases like leaf spot, rust, anthrac-
nose, blight, wilt, scab, galls, coils, damping-off, mildew, 
cankers, rots, die-back, smut, warts, etc. [182, 265]. Spore 
dispersal in the environment is dependent on two major dis-
persal mechanisms like active [574] and passive dispersal 
[259] where active dispersal is enabled by forcible disper-
sion of the spores by fungi itself as a part of their life cycle 
and passive dispersal is through the bioaerosols, animals, 
insects, etc. As illustrated in Fig. 2a, the fungal spores settle 
on the leaf or plant surface by the dry and wet deposition 
of the fungal bioaerosols and starts invading the plants and 
crops causing various diseases. Fungal spores are gener-
ally categorized into two types i.e., non-motile and motile 
spores. Where in non-motile spores like the ascospores 
(sexual spores), urediniospores of rust fungi, sclerotia, con-
idiospores, oospores, and sporangiospores proliferate at the 
settlement site whereas the motile spores like the zoospores 
of chytrid fungi with flagella tend to move to a favourable 
location after sedimentation on to the leaf surface [215].

Survival of a plant pathogenic microbe is majorly depend-
ent upon the proliferation, growth, and reproductive strate-
gies adopted to exploit nutrient and environmental condition 
available in the host [20]. Fungal spore invasion into the plant 
tissue is facilitated by a sequence of proliferation stages that 
guides the process of germination and formation of appres-
sorium which enables the development of the penetration 
hyphae that penetrates across the cuticle into the epidermis 
layer (Fig. 2a) [385]. After sedimentation on the leaf surface, 
the spores adhere to the plant surface with the help of the 
adhesion molecules present on the spore surface [7]. Appar-
ently, a germination tube emerges from the spore utilizing the 
polyols like glycogens, trehalose, and sugar alcohols that are 
present in the fungal spores as energy source [328, 371]. Fur-
ther the formation of the melanized appressoria enables the 
penetration of the appressorium peg into the cuticle with the 
turgor pressure developed in the appressorium [94, 214, 225, 
229, 556, 585]. Penetrated hyphae grow between the epi-
thelial cells (intracellular hyphae) in the intercellular space 
causing the infection utilizing the host nutrients [453] with 
the formation of various infective structures like hyphopodia 
[139, 432, 545], haustorium in the epithelial cells [384, 605] 
and infection cushions [123, 385] severing the infection.

Similarly, the notorious necrotrophic fungi which follows 
various phytopathogenic strategies for infecting and killing 
the crops by absorbing the nutrients available in the plant 
cells with the production of various cell wall toxins and deg-
radation enzymes leading to various diseases like root rots, 
hypersensitive reactions, and alteration of the plant metabo-
lism [226, 380]. They also suppress the host plant defence 
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mechanisms by manipulating the machinery, altering the 
plant gene regulating the membrane permeability, and by 
utilizing the amino acid present in the plant cell [549] aiding 
the fungal infection and disease progression.

Mechanism of bacterial invasion into plant tissues

Numerous bacterial pathogens causing various plant diseases 
have been discussed by various researchers worldwide [360]. 
They are mostly passive invaders and enter the plant tissues 
through all the possible opening on the plant surface like 
the stomata, rhizoplane (expanding root points), base of tri-
chomes, grooves along the veins, hydathodes, nectarthodes, 
lenticles in stem and roots, and through cut wounds and scars 
[34, 247, 322, 336, 337]. Among all the discussed passive 
openings in the plants, bacterial phytopathogens use stomata 
as their common entry point as stomata provides access to 
substomatal chamber and into the mesophyll [371] (Fig. 2b).

Stomatal movement (opening and closing) in the plants 
are majorly controlled by the plant’s immune system by 
developing a turgor pressure in the guard cells [441]. Fur-
ther, environmental factors like draught, stress, light inten-
sity, UV intensity, relative humidity, and the concentra-
tion of carbon dioxide in the atmospheric air influence the 

activity of guard cells affecting the stomatal movement [161, 
405, 502]. In order to overcome all these barriers, bacterial 
pathogens alter the plant immune system with the secre-
tion of hormones like jasmonic acid, coronatine (secreted 
by Pseudomonas syringae) promoting the stomatal opening 
favouring bacterial entry and colonization in the intercellular 
region [172, 202, 383]. Apparently, they develop various 
mechanisms to adopt to the relatively unfavourable condi-
tions prevailing in the leaf surface and intercellular spaces 
with the development of a microenvironment favouring their 
survival in the area of colonization [69, 257]. Additionally, 
bacterial pathogens exist in aggregates and biofilms to resist 
and overcome the unfavourable conditions prevailing during 
their colonization in the leaf surface and intercellular space 
as well [110, 396, 397]. They also secrete various enzymes 
and proteins to adsorb the nutrients available in the plant 
tissues causing infections [121].

Invasion of viral phytopathogens

Unlike other phytopathogens, viral phytopathogens spread 
through insect vectors, nematodes, and also through bioaero-
sols especially the pollen grains play a vital role in carrying 
the viruses [195, 372]. Insect bite, bioaerosols transmitting 
the infected plant sap and debris, carry over from generation 

Opened stomata Bacterial invasion

Epidermis

Leaf surface

Fungal spore

Germination tube

Penetration Peg

Appressorium

Cuticle Hyphal growth

Haustorium Epidermis

(a) (b)

Insect’s stylets (mouth 

part)- inject saliva and 

pathogenic viruses 

Virus particles
Nucleus

ds RNA

Sg RNA

Synthesis of 

proteins required 

for structural 

assembly 
replication

Assembly 

Release of new virions 

Infected plant cell

(c)

Leaf surface

Fig. 2  Illustration of the various modes of invasion by the disease-causing crop pathogens: a fungal invasion of the leaf tissues; b bacterial inva-
sion of the leaves; c viral invasion of the leaf tissues
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to generation, and the invasion of nematodes carrying the 
virions are the major entry routes of virus into plant tissues 
[68, 78, 253, 497]. Similarly, contaminated seeds and soil 
are also among the potential sources of phytopathogenic 
viral transmission and infection [371]. Generally, viruses 
alter the host mechanisms by upregulating or downregulat-
ing the host proteins in order to select the host cells in the 
plant tissues which favours their infection, replication, and 
pathogenicity [509]. Viruses use the plants cells as their rep-
lication factories by further altering the inner membrane and 
mechanisms of the host cell. Figure 2c elaborates the viral 
invasion and replication inside the plant cells. The infected 
cells generate multiple copies of viruses by promoting the 
replication of sub-genomic viral RNAs, and the replication 
of the whole genomic viral RNAs which are then packed 
into the capsid synthesized by the expression of the sub-
genomic RNAs [272, 301]. Generally, viral infection spread 
form cell to cell transmission of the viruses, and also by the 
transmission of the infected sap and debris by the insects 
and bioaerosols. Further, infected soil and the invasion of 
nematodes carrying the viruses from the infected soil also 
play a vital role in spreading the viral infection.

Further, the evolutionary factors like the genetic drift, 
gene flow, natural selection, mutation, and recombination 
enabling the evolution of resistant and virulent variants 
makes it a vital pathogen hampering the crop yield and 
growth [187, 190, 300]. Henceforth, the disease manage-
ment strategies are majorly focused on the prevention of 
phytopathogenic viral infections by restricting the entry of 
viruses into plants and development of resistant varieties 
rather than its post-infection cure [488].

Pests and vectors using air as a medium to infect 
crops

Nematodes as pest of crops

Nematodes are the microscopic organisms that can spread 
through air and water, especially their eggs have the ten-
dency to get aerosolized in air. They are the most devastating 
pests of crops causing a global loss in agricultural sectors to 
about 80 billion USD [278, 419]. Researchers have identi-
fied about 4100 different species of plant pathogenic nema-
todes worldwide [118]. These nematodes also act as carriers 
of various crop pathogenic microorganisms especially the 
viruses and help in spreading the infections to crops [371].

Nematodes are categorized into three types namely 
ectoparasites, semi-endoparasites, and endoparasites. Gener-
ally, ectoparasitic nematodes dwell outside the host and ben-
efit from the host with the long feeding style inserted into the 
plants which enables their nutrient absorption. Whereas the 
semi-endoparasitic nematodes partially enter the roots of the 
crops for feeding and the posterior end of their body is kept 

intact in the soil. Endoparasitic nematodes completely dwell 
inside the roots and other parts of the crops feeding on the 
internal tissues following a migratory or sedentary lifestyle. 
Migratory endoparasites feed on the root cells immediately 
after entering the roots and migrate to other parts of the crops 
causing a severe damage to the plant tissues and cell death 
[154, 531, 566]. Similarly, sedentary endoparasites enter the 
vascular cylinder of the plants and causes redifferentiation of 
the host cells into multinucleate cells for reproduction and the 
hypertrophic feeding cells [119, 278, 440, 525]. Researchers 
like [113, 199, 207, 236, 525], and [381] have reported that 
endoparasitic infections are initiated with the entry of juve-
niles near the root tips. Further, they migrate intercellularly 
to the vascular cylinder to enable the formation of feeding 
cells by the degradation of the cell walls of the plant cells, 
inhibiting the anti-nematode enzymes secreted by the plants, 
suppressing the immune system, and enhancing the secre-
tion of the proteins required for the formation of the feeding 
cells. They also induce the formation of the multinucleate 
giant cells by the repeated nuclear division at the favourable 
locations where the cytoplasmic division is almost absent 
[1, 157]. However, many parasitic nematodes are reported to 
have complex interaction with their host plants to receive a 
rich and continuous food source [584]. Root nematodes feed 
exclusively on the root tissues whereas, the aerial nematodes 
migrate aerially to the stem and leaves and feed on the bulbs, 
foliage and the stem [314, 579]. Sedentary root nematodes 
are known to cause devastating infection compared to the 
migratory nematodes and this is mainly enabled by the spe-
cific exploitation of the host immune responses altering the 
host defence mechanism [53, 278, 314].

Insect as pests and vectors

Insects are the six-legged small invertebrates of the Arthrop-
oda phyla that mostly feed on plants and crops for their 
nutrition. For example, bees feed on nectar and pollen from 
plants, larvae of many insects like beetles, moths, and flies 
live on plants and crops feeding on leaves and plant parts, 
and bugs thrive on plants saps as their major source of nutri-
ents. Almost all the four stages of metamorphosis of insects 
are known to involve plants as their habitat. Among which, 
caterpillars are the most important stage of the insect’s life 
cycle which causes significant damage to the crops and 
plants. Similarly, they act as vectors transmitting various 
fungal, bacterial, and majorly virus pathogens that could 
cause severe infections to crop impeding the crop yield.

General plant injuries caused by the plant feeding insects 
include (i) consumption of the infested parts (leaves, stems, 
roots, and flowers) of the plants by chewing, (ii) pit feed-
ing of leaves by caterpillars, beetles, and flea beetles, (iii) 
edge notch of leaves caused by weevils, grasshoppers, large 
caterpillars, and katydids, (iv) semi-circular cut causes by 



595Brazilian Journal of Microbiology (2024) 55:587–628 

1 3

cutter bees, (v) leaf mining by beetles, flies, sawflies, and 
moths, (vi) stem boring by long-horned beetles, and (vii) 
metallic wood boring beetles, engraver beetles, clearwing 
moth, American plum borer, and moths. Similarly, root chew-
ing insects like weevils and root maggots, and sap feeding 
insects like aphids, leafhoppers, thrips and scales also cause 
major damage to plants. Oviposition damage is also a serious 
problem caused by insects when the insects lay their eggs 
in deep tissues of plants especially in the stems [105, 449].

Transmission of vector-borne pathogens like bacteria 
and viruses are enabled by the colonization of the patho-
gens through insects in the plants. Plants vascular systems 
help in the transportation and colonization of the pathogens 
to various parts of the plants. Further, phloem favours the 
transportation and nutrient supply required for the pathogens 
with the help of the nutrient rich sap and the sieve elements 
available in them [60, 343, 346, 606]. Despite the low nutri-
ent contents available in the xylem some pathogens have also 
been observed to colonize the xylem [28, 454, 473]. Along 
with the pathogens many insect pests like whiteflies, aphids, 
psyllids, and leafhoppers were also reported to acquire their 
nutrients from the xylem and phloem of the plants [454]. 
Purcell [472] has stated that the specialized mouth parts of 
these insects enable their penetration to the epidermis to 
reach the preferred locations like the mesophyll and vascular 
system involving phloem and xylem. This activity favours 
the transportation of the pathogens present in the phloem 
and xylem of the infected plants through their body parts 
making them a potential vector for transmitting diseases to 
healthy plants [411, 433].

Major crop diseases and their global 
implications

Generally, crop/plant diseases are majorly caused by biotic 
factors supported by the abiotic factors. The factors influenc-
ing the crop diseases are classified into three major catego-
ries as the abiotic, biotic, and the meso-biotic factors [588].

Disease caused by abiotic factors

Abiotic factors are the reason for the general deficiencies of 
the crops and the associated diseases. They are caused by 
malnutrition including minerals and ions, impaired soil con-
ditions like type and fertility, relative humidity, temperature, 
reduced or excess light source, reduced and excess water 
availability, wind or aeration conditions, concentration of the 
 CO2 available, effect of impurities carried by the aerosols, 
and by the presence of toxic compounds in the soil and air 
[136, 246, 305, 588]. The major diseases caused by abiotic 
factors include chlorosis, stunted growth, interveinal chlo-
rosis, purplish-red colouring, necrosis, black tip of mango 

due to  SO2 toxicity, whiptail of cauliflower crops caused 
due to molybdenum deficiency, khaira disease of rice caused 
by zinc deficiency, hollow and black heart of potato caused 
by excessive usage of  CO2 during postharvest storage, and 
apple bitter pit caused due to calcium deficiency [459].

Disease caused by biotic factors

Crop diseases caused by biotic factors are the diseases 
caused by various crop pathogenic species belonging to 
the kingdom Fungi, Chromista, Monera, Animalia, etc. 
Bioaerosols are considered as the key factor in the spread 
and dissemination of the disease-causing pathogens to the 
crops worldwide [124, 183]. Along with bioaerosols, vari-
ous environmental factors are also involved in influencing 
the sedimentation, survival, and penetration or ingress of the 
pathogens into the crop tissues [484, 550, 588]. Moreover, 
these factors influence the onset of disease symptoms and 
progression of disease in the crops. Table 1 describes the 
details of the specific/optimum temperature, relative humid-
ity, water activity, light intensity, and nutritional require-
ment of various pathogens causing major crop diseases. 
Temperature being an important meteorological parameter 
which plays a pivotal role in deciding the weather condi-
tions especially the four different seasons, directly influences 
the susceptibility of the crops to infections, influences the 
pathogen survival, transport, germination on the host as well 
as source, and also alters the visual disease symptoms in the 
crops [201, 248, 459].Similarly, relative humidity observed 
and the water activity of the soil like the dry and wet con-
ditions alters and triggers the disease onset, progression, 
severity, and dissemination [101]. It is reported that dry soil 
and a high relative humidity (almost > 85%) substantially 
enhances the disease onset, severity, and spread compared 
to the wet soil and low relative humidity levels [108]. Also, 
pathogen invasion, survival, and onset of disease symptoms 
were reported to be dependent on the  CO2 concentration in 
the atmospheric air and the light availability. It is also esti-
mated by the researchers worldwide that the elevated  CO2 
concentration and increased light availability including the 
long day-length period helps in promoting as well as control-
ling the infections [145, 296, 341, 524, 587]. Further, soil 
conditions like the pH of the soil and the nutrients available 
(nitrogen, calcium, potassium, phosphorus, zinc, manganese, 
molybdenum, and microelements) influences the pathogen 
entry into the plants through the roots [7, 465]. Table 2 
elaborates the symptoms, details of the susceptible crops, 
and the pathogen responsible for the various crop diseases 
reported worldwide.

It is well evident from numerous studies worldwide that 
leaves are the main organs of interest for the crop patho-
gens as it provides the required space for its settlement and 
entry into the plant’s inner tissues [371]. Powdery mildew, 
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Table 1  Details of the specific and optimum range of abiotic factors required for the crop pathogenic infections

Disease caused Pathogen Optimum tem-
perature, ºC

Optimum rela-
tive humidity, %

Water activity Light intensity CO2 concentration Reference

Onion smut 
disease

Urocystis cepule 10 -12 - Dry soil - - [17]

Yellow dwarf 
virus disease of 
barley

Yellow dwarf 
virus

16 - - - Low  CO2 con-
centration

[238]

Cyst nematode of 
potato

Globodera pal-
lida 

15 - - - - [377]

Bunchy top of 
bananas disease

Banana bunchy 
top virus 
(BBTV)

25 - - - - [111, 327]

Seedling death of 
cereals disease

Fusarium nivale - - Dry soil - - [101]

Downey mildew 
of rose plants

Peronospora 
sparsa

15-20 85-100 Low moisture 
in soil

- - [491]

Early blight of 
potato

Alternaria solani 28-30 - - - - [597]

Late blight of 
potato

Phytophthora 
infestans

12-20 and above - Low moisture 
in soil

High light 
intensity

- [7]

Bacterial leaf 
blight of rice

Xanthomonas 
oryzae

27 - - - - [204]

False smut of 
rice

Ustilaginoidea 
virens

20 - - - - [162]

Papaya ring spot Papaya Ring 
Spot Virus 
(PRSV)

26-31 - - - - [575]

Black rust of 
wheat

Puccinia 
graminis

25-30 >85 High leaf wet-
ness

Darkness Elevated  CO2 
concentration

[248]

Stripped rust of 
wheat

Puccinia stri-
formis

18-30 >85 High leaf wet-
ness

Low light inten-
sity

Low  CO2 con-
centration

[248]

Loose smut of 
wheat

Ustilago nuda 
var, tritici

16-22 - - - - [613]

Brown spot of 
rice

Hel-
minthosporium 
oryzae

28-30 - - - - [31]

Sheath blight of 
rice

Rhizoctonia 
solani

28-32 - - - - [519]

Damping off Pythium sp., 
Phytophthora 
sp., Rhizoc-
tonia sp., 
Fusarium sp., 
Sclerotia sp.

< 24 - Low moisture 
in soil

- - [7]

Club root of cab-
bage

Plasmodiophora 
brassicae

18-25 - Wet acidic soil 
with 70-80% 
moisture

- - [50]

Leaf spot of cole 
crops

Alternaria bras-
sicicola

28 - High leaf wet-
ness

- - [248]

Downy mildew 
of cole crops

Peronospora 
parasitica

12-27 - Low moisture 
in soil

- - [7]

Downy mildew/
crazy top of 
maize

Peronoscleros-
pora sorghiis

21-33 - Low moisture 
in soil

- - [7]

Anthracnose of 
citrus

Colletotrichum 
acutatum

High tempera-
tures

- - - - [290]
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downy mildew, and leaf spots are the prominent leaf dis-
eases of the crops, and the causative agents include fungi, 
bacteria, and nematodes causing characteristic sympto-
matic disease which on progression leads to altered crop 
growth and reduced yield. Powdery mildew is the fungal 
pathogenic infection of crops caused by various fungal 
species affecting a wide range of crops like fruits, vegeta-
bles, cereals, and other common and ornamental plants 
(Table 2). These fungi invade the epidermis layer of the 
leaves immediately after the sedimentation of the spores 
on the leaf surface by supressing the host immune response 
[211]. This causes the green island effect on the infected 
leaves i.e., the leaf area of the fungal colonization remains 
green whilst the surrounding area has chlorosis leading to 
the systematic cell death and formation of nutrient sinks 

promoting monosaccharide transport at the site of infec-
tion [174]. Which enables the utilization of the monosac-
charide by the fungi favouring the fungal colonization 
with the formation of the characteristic symptomatic white 
powdery growth on the leaves surface that leads to about 
30% loss in the crop yield [249, 548]. Downy mildew is 
caused by Oomycetes [104] that hampers the crop quality 
and yield worldwide and have caused severe losses during 
1970s of about 7.5 billion USD in USA as stated by USDA 
[580, 582]. They have a broader host range compared to 
the powdery mildew, almost infecting all the crops with 
the characteristic yellow lesions on the leaves (Table 2) 
[491]. Xu and Pettitt [620] has reported that the symp-
tomatic lesions formed on the leaves, stem, peduncles, 
calyxes, and petals by downy mildew are very difficult 

Table 1  (continued)

Disease caused Pathogen Optimum tem-
perature, ºC

Optimum rela-
tive humidity, %

Water activity Light intensity CO2 concentration Reference

Bunt of wheat Tilletia contro-
versa

High tempera-
tures

- - - - [55]

Root knot of 
coffee

Meloidogyne 
incognita

High tempera-
tures

- - - - [200]

Wilt of tomato Ralstonia solan-
acearum

- >75 High moisture 
in soil

- - [262, 306]

Rice blight Pyricularia 
oryzae

- >85 - - - [24]

Wheat blotch Septoria tritici - - - High light 
intensity of 
8000 lux

- [572]

Bean rust Uromyces pha-
seoli

17-22 >95 - Both high and 
low intensity

- [392]

Downy mildew 
of grapes

Plasmopora 
viticola

12-30 >85 Low moisture 
in soil

Long day light - [321]

Turnip mosaic 
infection

Turnip mosaic 
virus

High tempera-
tures

Less humidity Less moisture - - [465]

Bunch rot of 
grapes

Botrytis cineria 20-25 100 - - - [98]

Crown rot of 
wheat

Fusarium pseu-
dogramine-
arum

- - - - Elevated  CO2 
concentration

[382]

Smut of barley Ustilago hordei - - - - Elevated  CO2 
concentration

[359]

Downey mildew 
of barley 

Blumeria 
graminis

- - - - Low  CO2 con-
centration

[237]

Leaf spots 
caused by foliar 
nematodes

Aphelenchoides 
ritzemabosi

22 High humidity High moisture - - [84]

Early blight of 
tomatoes and 
potatoes 

Alternaria solani 28-30 Humid envi-
ronment is 
required

Alternate dry and 
moist condi-
tions

Day light is 
essential for 
development

- [86]

Smut disease of 
sugarcane 

Sporisorium 
scitamineum

25-30 65-70 - - - [475]

Wart disease of 
potato

Synchytrium 
endobioticum

10-27 - Moist soil with 
rainfall exceed-
ing 70 cm

- - [426]
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to differentiate from the lesions formed due to nutritional 
deficiencies, spray injury, and black spots [85]. Further, 
researchers have stated that the yellowing and abscise for-
mation on the leaves are the severe symptoms observed 
on the leaves surface followed by enlargement of abscise, 
appearance of black spots, lesions on the petals, leaf fall in 
about one month period of infection, arrest of root forma-
tion, and collapsing of buds [6, 85, 186, 620]. Similarly, 
leaf spots affecting almost all the crops and plants are 
caused by various species of fungi, bacteria, and nem-
atodes as describe in Table 2. Fungal leaf spot disease 
occurs when the fungal spore settles on a wet leaf surface 
on a warm weather which enables the immediate sporu-
lation and formation of characteristic irregularly edged 
spots measuring about 0.5–1.5 cm demarcated with black 
edges, brown to reddish spot, and yellow halo. Brown leaf 
spot disease caused by the fungal pathogens such as Cer-
cospora henningsii, Cercospora manihotis, and Cercos-
pora vicosae were reported to cause a yield loss of about 
20–30% in a wide range of crops [555]. While the white 
spot causing fungal species like Cercospora caribaea, 
that are found mostly in lower temperatures are known 
to cause considerable defoliation in casava plants [614]. 
Consequently, bacterial leaf spots appear as water-soaked 
lesions of 0.6 cm in diameter with characteristic black 
colour. They develop only during cool and wet conditions 
especially during rainy seasons or as sprinkler effect in 
the fields using sprinkler irrigation methods. Xanthomonas 
sp. and Pseudomonas sp. are the predominant pathogens 
found to cause bacterial leaf spots in many economically 
important crops hampering their quality and yield [518]. 
Unlike the common root nematodes, the foliar nematodes 
like Aphelenchoides ritzemabosi, Aphelenchoides besseyi, 
and Aphelenchoides fragariae have distinguishing proper-
ties of feeding on the leaves. Infection generally occurs 
when the nematode crawls up to the leaves from the soil or 
carried by wind and water film to the leaf surface, where 
they enter the leaf surfaces through stomata and cause pro-
gressive diseases as they feed on the parenchymal cells. 
The major symptoms include the formation of 0.25–1 cm 
necrotic lesions on the leaf surface near the vein especially 
occurrence of stripe necrotic lesions on the leaves with 
parallel veins and angular necrotic lesions on the leaves 
with netted veins. With time the stripe lesions spread to 
most of the leaves causing leaf blotches and the angular 
lesions progress to fan shaped pattern with the charac-
teristic yellow–brown-grey colour. Severe diseases cause 
chlorosis of the crops with stunted growth [84, 350].

However, blight, anthracnose, wilt, blast, rust, and smut 
are also some of the major crop/plant diseases caused by the 
pathogens that target the leaves as their mode of colonization 
and entry into the plant’s inner tissues. Blight and anthrac-
nose disease of crops are caused by both bacterial and fungal 

pathogens (Table 2) which leads to the sudden spotting, dry-
ing, and withering of leaves, flowers, twigs, sheath, stem, 
and the whole plant affecting the yield with progressive crop 
loss [628]. There are many pathogens that belong to a wide-
spread genera like Phytophthora, Alternaria, Cochliobolus, 
Bipolaris, Cryphonectria, Tubakia, Colletotrichum, Gloe-
osporium etc. (Table 2). Of which, Phytophthora genus was 
reported to have 120 crop/plant pathogenic species and the 
most prominent species being the Phytophthora infestans 
causing devastating disease i.e., late blight of potato and 
tomato [281]. The other prominently known fungal blight 
disease is the sheath blight caused by Rhizoctonia solani 
on paddy crops causing around 50% loss in the crop yield 
worldwide during favourable conditions [46, 220]. It is a 
soilborne Basidiomycete containing 100 different crop path-
ogenic species affecting various crops with sheath blight, 
banded leaf, aerial blight, and brown patch [9, 635]. Simi-
larly, the bacterial pathogen Xanthomonas oryzae are the 
causative agent of bacterial blight and leaf streak disease in 
paddy crops which leads to about 16–50% yield loss world-
wide depending on the paddy variety grown [267, 427]. Ou 
in 1985 [436] have stated that bacterial blight especially the 
kresek syndrome under favourable conditions could cause 
even 75% loss in the crop yield worldwide. Analogously, 
[340] have observed that bacterial leaf streak under favour-
able conditions could cause severe to very severe damage in 
the paddy crops leading to about 8–32% loss in yield. The 
major symptoms of the bacterial blight include the appear-
ance of water-soaked lesions on the tips and the margins of 
leaves which may progress to chlorosis and necrosis [325] 
and the symptoms of bacterial leaf streaks are the formation 
of water-soaked lesions anywhere on the leaf surface result-
ing in translucent and yellowish streaks which on time turns 
greyish-white, die, and wither [267, 420].

The causative agents of the wilt disease in crops are the 
fungi, bacteria, and nematodes and are generally caused 
due to the moisture stress created by the pathogens while 
attacking the vascular system of the crops [308, 554]. The 
common symptoms include the water loss in the leaves and 
stem leading to dryness and death of the plant. Fungal patho-
gens like Ophiostoma ulmi, Fusarium oxysporum, Bretziella 
fagacearum, Acromonium diospyri, Verticillium sp. etc. are 
well known for their ability to cause wilt disease in various 
economically important crops like vegetables, flowers, and 
fruits (Table 2) [369]. Affected leaves turn to dull green with 
water-soaked appearance which curl upward and cling to 
the stem, and the margins are often observed to turn yellow 
to bronze in colour [270, 271, 342]. Verticillium sp. are the 
prominent species among the wilt causing fungal pathogens 
that affects a variety of crops and plants like trees, shrubs, 
vines, flowers, ornamental plants, vegetables, fruits, and 
economically important crops [49, 177, 450, 528]. There are 
about ten reported species of Verticillium namely Verticillium 
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dahliae, Verticillium albo-atrum, Verticillium alfalfae, Ver-
ticillium longisporum, Verticillium nonalfalfae, Verticil-
lium tricorpus, Verticillium zaregamsianum, Verticillium 
isaacii, Verticillium nubilum, and Verticillium klebahnii, 
among which Verticillium dahliae is the potential pathogen 
with economically importance [146, 258, 288, 295, 450, 528].
The specific symptoms include the early drop of green leaves 
from the twigs and branches leading to complete defoliation, 
necrosis, and death [288]. Bacterial wilt caused by the genera 
Corynebacterium, Erwinia, Pseudomonas, Ralstonia, Pan-
toea, and Xanthomonas species (Table 2) induces the forma-
tion of the discoloured water-soaked lesions resulting in stunt-
ing, wilting, and withering of leaves which on progression to 
stems lead to the formation of the lesions in the stem with 
characteristic bacterial ooze from the infected stems [153]. 
Nematode, Bursaphelenchus xylophilus a causative agent of 
pinewood wilt disease leads to a severe economic loss in vari-
ous countries causing dramatic irreparable changes to the pine 
wood available in their native forest [8, 518].

Apparently, blast is a crop disease caused by the fun-
gal and bacterial pathogens that majorly infects the cereals 
including the economically important varieties affecting the 
grains, leaves, leaf collars, nodes, panicles, and seedlings 
with the characteristic symptoms like elliptical leaf spots 
with grey, white centre and red to brown margins (Table 2) 
[292]. Fungal pathogens like Magnaporthe oryzae, Hel-
minthosporium sativum, Cochliobolus miyabeanus, and 
Magnaporthe grisea are known for their pathogenic effects 
on crops among which Magnaporthe oryzae and Magna-
porthe grisea are the potential pathogen affecting the paddy 
crops at various growth stages leading to severe losses to 
about 10–30% worldwide [523]. The necrotrophic fungi 
Cochliobolus miyabeanus causing rice brown spots and the 
hemibiotrophic bacteria Xanthomonas oryzae causing rice 
blight are generally found in association with the blast fungal 
species in the paddy crops leading to the improved crop and 
yield loss [279]. The bacterial blast also known as the citrus 
blast is caused by Pseudomonas syringae especially during 
the winter seasons with the formation of black lesions which 
leads to the curling and withering of leaves [263]. Also, it 
is well known for its blossom blast disease on apple with 
the characteristic disease symptoms including the necrosis 
of the lateral flower buds which on disease progression gets 
wilted and drooped [196]. Furthermore, rust and smut dis-
eases are the significant fungal diseases that affect a wide 
range of crops and plants hampering their growth, yield, and 
quality substantially. About 7000 species of Basidiomycetes 
are known to cause yellow, black powdery, brown, orange, 
and red rust to various crops and plant worldwide [42, 66, 
117]. Among these the most important genera includes the 
Puccinia, Phakopsora, Melampsora, Cronartium, Gymno-
sporangium, Hemileia, and Uromyces sp. (Table 2). These 
fungi are the biotrophic organisms that depend on their host 

for the nutrients, growth, and reproduction [11, 106, 144]. 
Wheat being the mostly affected crops by the rust fungi are 
susceptible to the infection caused by three potential spe-
cies namely Puccinia striiformis causing yellow stripe rust 
[339], Puccinia triticina causing leaf brown rust [56, 208], 
and Puccinia graminis f. sp. tritici causing brown rust of 
stem [45, 326, 521] which leads to about 15–20% annual 
yield loss [166]. Yellow stripe rust is a devastating dis-
ease that causes an annual loss of about 5.5 million tons of 
wheat worldwide [42]. More than 88% of the wheat varieties 
worldwide are known to be vulnerable to the yellow stripe 
rust resulting in almost 100% yield loss with the character-
istic stunted growth of the crops and immature kernels [42, 
88, 166, 602]. Prank et al. [464] have estimated that the 
Puccinia graminis f. sp. tritici causing brown stem rust of 
wheat crops could cause as close to 100% loss in the yield 
of the crops with the formation of characteristic sympto-
matic brick red to brown lesions containing urediniospores 
on the leaves, sheath, stem, awns, and glumes. Around 90% 
of the wheat crop varieties worldwide are susceptible to the 
brown rust associated with reduced grain size and lodging 
of the crops [326, 521]. Wheat leaf rust is a common and 
widely distributed disease [56, 250], and the yield losses are 
attributed by the reduction in the kernel size and the number 
of grains in the head [250, 299]. Similarly, crown rust of 
cereals and the coffee rust are the other two imperative rust 
disease leading to severe economic loss caused by the patho-
gens Puccinia coronata and Hemileia vastatrix respectively. 
Former affects the crops with the formation of light orangish 
pustules on the leaf sheath, peduncles, and awn leading to 
stunted growth and reduced yield [166, 412]. Whereas the 
later forms yellow-orange powdery lesions with pale yel-
low chlorotic spots leading to leaf fall with a reduction in 
the quality and quantity of the flowers and fruits produced 
[571]. Smut is the other disease caused by Basidiomycete 
fungal pathogens which leads to great economic losses and 
are characterized by the formation of a dirt like structures 
or soot-like spores called as “sori” on the leaves, grains, 
and the ears of the affected crops. It mostly affects cereals, 
spices, vegetables like potato, and some cash crops like sug-
arcane by the fungal species belonging to the genera Usti-
lago, Sporisorium, and Thecaphora (Table 2). Sporisorium 
scitamineum is the causative agent of whip smut disease of 
sugarcane crops in about 120 countries worldwide [475]. It 
is generally characterized by the emergence of the smut whip 
in sugarcane crops which usually causes stunted growth, thin 
and slender canes with broad spaced nodes, appearance of 
whip like sorus at the top of the stalk or at either side of the 
canes with narrow leaves, profuse tillers, and spindlier shoot 
with an average yield loss of up to 12–75% [100, 424, 475, 
489]. The common smut (boil or blister smut) of cereals 
especially maize is caused Ustilago maydis with the forma-
tion of thick and fleshy galls filled with spores impeding the 
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yield of the crops [477]. Similarly, Ustilago nuda, Ustilago 
nigra, Ustilago hordei, Ustilago avenae, Ustilago kolleri, 
and Ustilago tritici are the other potential species that causes 
smut of other cereals like wheat, oats, barley, etc. [386]. 
Thecaphora solani is responsible for the destructive disease 
caused to potato crops with high yield loss of about > 90% 
worldwide [18].

Canker is the disease affecting various parts of the crops 
like leaves, stem, woody trunk, fruits etc. with characteris-
tic symptoms like lesions with irregular sunken appearance, 
swollen, flattened, cracked, discoloured, and dead areas 
caused by both bacteria and fungi. Valsa mali, Neonectria 
galligena, Sirococcus clavigignenti-juglandacearum, Seirid-
ium cardinale, Geosmithia putterillii, Discula destructiva, 
Eutypa lata, Thyronectria austro-americana, Lachnellula 
willkommii, Gibberella baccata, Diplodia quercina, Fusar-
ium circinatum, Apiognomonia veneta, Leptosphaeria macu-
lans, Leptosphaeria coniothyrium, Cryptosporella umbrina, 
and Gremmeniella abietina are some of the fungal species 
and the species like Pseudomonas syringae, Clavibacter 
michiganensis, Xanthomonas campestris, Xanthomonas 
citri, Xanthomonas axonopodis, Pseudomonas savastanoi, 
and Xanthomonas populi are some of the bacterial species 
causing cankers to various crops [64, 74, 165, 168, 178, 
179, 212, 316, 331, 481, 505, 506, 599, 609]. Symptoms of 
fungal stem or branch cankers are associated with dieback 
syndrome and are caused by almost 150 different species 
of fungi infecting about 130 species of woody hosts [3, 10, 
162, 294, 537]. Besides, bacterial cankers of citrus fruits are 
characterized by the lesions on the twigs, leaves, and fruits 
which leads to defoliation and fruit drop causing severe eco-
nomic loss [267, 503].

Neoplastic plant disease like crown galls (tumours) of 
the herbaceous plants are caused by bacterial species such 
as Agrobacterium tumefaciens, Agrobacterium rubi, and 
Agrobacterium vitis on the stems, branches, leaves, roots, 
canes, and veins with a characteristic wound appearing 
like cauliflower head leading to severe damage with weak-
ened appearance, stunted growth, and death of the plants 
[33, 205]. However, potato warts caused by the fungi Syn-
chytrium endobioticum are said to result in substantial eco-
nomic losses worldwide as it is a social disease observed 
in almost all the countries with severe damage to the tubers 
[426]. Nevertheless, scab disease of potatoes caused by the 
bacterial pathogens Streptomyces scabies, Streptomyces 
bottropensis, Streptomyces stelliscabiei, and Streptomy-
ces aureofaciens are known to cause severe loss of the 
tubers with the formation of crustaceous lesions on the 
leaves, stem, fruits, and tubers [495]. Furthermore, apple 
scabs caused by the Ascomycetous fungi Venturia inae-
qualis leads to considerable yield loss worldwide affect-
ing the quality and quantity of the fruits produced [203]. 
Likewise, damping-off is a soilborne infection caused by 

fungal pathogens like Rhizoctonia solani, Aphanomyces 
cochlioides, Pythium sp., Phytophthora sp., Botrytis sp., 
Fusarium sp., Cylindrocladium sp., Diplodia sp., Phoma 
sp., and Alternaria sp. affecting almost all agricultural and 
forestry crops causing severe damage to the yield and leads 
to death of crops worldwide [315].

Parasites like nematodes are also known to cause various 
diseases to crop globally, namely the root-knot disease, cyst 
disease, leaf spots, sting, wilt, and lesion disease. Root-knot 
disease is caused by the nematodes of the genus Meloido-
gyne with the formation of the root-knot galls containing 
the nematodes in roots of the crops [576, 615]. The major 
species of the root-knot nematodes include Meloidogyne 
javanica, Meloidogyne arenaria, Meloidogyne incognita, 
and Meloidogyne hapla [173]. It is estimated by researchers 
like [268, 496, 632], and [429] that these nematodes cause 
severe damage to economically important crops especially 
the varieties like tomato, watermelon, pepper, eggplant, 
potato, carrot, and cucumber leading to a yield loss of about 
15–25% and sometimes as high as 75% with an estimated 
loss of about 100 billion USD per year worldwide. Nema-
tode cyst disease is caused by the nematodes like Heterodera 
schachtii, Heterodera goettingiana, Heterodera glycines, and 
Globodera pallida affecting various crops like soya beans, 
peas, sugar beet, and potatoes causing a yield loss of about 
10–30% and estimated loss of about 1 billion USD [245, 
377]. Lesion nematode disease is also a devastating disease 
of root tissues that are majorly soilborne and are caused by 
Pratylenchus pratensis, Pratylenchus brachyurus, Pratylen-
chus coffeae, Pratylenchus penetrans, Pratylenchus scrib-
neri, Pratylenchus vulnus, Pratylenchus zeae, Pratylenchus 
crenatus, and Pratylenchus thornei affecting various crops 
including cereals, peanuts, potatoes, fruits, and all monocots 
leading to a yield loss of about 50–85% and estimated loss 
of about 216 billion USD worldwide [394, 418, 423]. Simi-
larly, Pratylenchus penetrans causes about 30–50% yield 
loss of potatoes with the characteristic early dying disease 
associated with premature vein senescence [317, 486, 487]. 
Sting nematode Belonolaimus longicaudatus is a soilborne 
ectoparasitic nematode that generally affects all agricultural 
crops especially the peanuts with the characteristic chronic 
wilting leading to great economic losses [310].

Disease caused by meso‑biotic factors

Disease caused by the meso-biotic factors are the disease 
caused by parasites like viruses and viroids that are capable 
of existing in dormant stage for a relatively longer periods, 
gets activated once after entering a favourable host cell, and 
requires a host for their survival [302, 379]. Virus pathogens 
are transmitted to healthy plants through sap contamination, 
vectors, nematodes, soilborne, seedborne, and pollen borne 
transmissions [508]. Of which, insects (vectors) play a vital 
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role with the existence of 200 known species of aphids that 
transmit the mosaic viruses, > 100 species of leafhoppers 
known to transmit viruses causing yellow discoloration in 
crops, and other insects like whiteflies, thrips, mealybug, 
planthoppers, grasshoppers, scales, and some beetle which 
help in transmitting a wide range of viruses affecting agri-
cultural crops [189]. Nematodes feeding on roots are also 
responsible for the virus transmission in the host plants from 
the soil for e.g., grape fanleaf virus, tobacco and tomato 
ringspot virus, and many strawberry viruses are known to be 
transmitted by nematodes [19, 185]. Similarly, many stud-
ies worldwide report that viruses like big vein of lettuce, 
soilborne wheat mosaic, and tobacco necrosis viruses are 
transmitted by the swimming spores of the soil inhabiting 
fungal pathogens [129, 589].

Viruses cause various damages to the host crops like the 
mosaic damage, yellowish discoloration, chlorosis, stunted 
growth, and necrosis which significantly hampers the growth 
and yield of the crops to about 40–100% [357, 508]. Mosaic 
viruses affects the foliage of the crops with the formation 
of yellowish to dark green patches, mottled appearance, 
curled leaves, and appearance of light-coloured veins [87]. 
Many mosaic viruses are known till date to affect a vast 
range of crops. Wherefrom, the most potential viruses are 
the tobacco mosaic virus, rice stripe mosaic virus, cauli-
flower mosaic virus, sugarcane mosaic virus, lettuce mosaic 
virus, and maize mosaic virus infecting tobacco, paddy, pep-
per, potato, tomato, eggplant, cucumber, petunia, melons, 
squash, spinach, celery, beet, cereals, wheat, sugarcane, let-
tuce, maize, and other economically important agricultural 
crops [633]. Among these, the rice stripe mosaic viruses 
affecting paddy crops, transmitted by flies were reported to 
have a field incidence of about 70% with severe loss in the 
grain production [87, 601]. Tobacco mosaic virus is of pro-
found economic significance as it causes mottled browning 
of tobacco leaves and stunted growth hampering the quality 
and market value of the leaves [338]. The virus has also 
been reported to infect various solanaceous crops affecting 
their yield and quality [446]. Sugarcane mosaic virus being 
the next potential pathogen belonging to the genera Potyvi-
rus and family Potyviridae are transmitted by aphids [344] 
and causes severe damage to the economically significant 
sugar and energy producing crops sugarcane by reducing 
their yield to about 10–50% and sometime as high as about 
60–80% worldwide [595, 612].

Similarly, the leaf roll viruses affecting the fruits (grapes) 
and vegetable (potato) crops are transmitted by aphids with 
the characteristic symptoms like stunted growth with erected 
appearance and leaves roll upwards with leathery and chloro-
tic texture and appearance [363]. Grapevine leafroll disease 
caused by grapevine leafroll virus have been known since 
1936 for their symptomatic downward leaf rolling, chlorosis, 
and delayed ripening of fruits reducing the fruit quality and 

yield to about 40% [13, 367]. It is also estimated by [25] 
that the virus results in a loss of about 25,000–40,000 USD 
per hectare of vineyard. Potato leafroll virus being the most 
devastating virus of the leafroll viruses which belongs to the 
genus Polerovirus and family Luteoviridae leads to a global 
yield loss of 20 million tons i.e., 90% loss worldwide [303]. 
[307] has observed the latent infection caused by the virus in 
the planting tubers directly affects the rate of tuber germina-
tion, crop strength, and the yield of potatoes. Likewise, the 
leaf curl viruses belonging to the Geminiviridae family are 
generally transmitted through whiteflies and are known to 
affect a variety of crops with stunted growth, chlorosis, curl-
ing of leaves, and considerable reduction in the fruit yield 
globally [107, 198, 399, 442, 586]. Among the know leaf 
curl viruses, tomato yellow leaf curl virus is a potential path-
ogen causing devastating disease of many crops and toma-
toes with severe effects on the fruits especially the depletion 
in the fruit taste, reduced size, un-uniform ripening of fruits, 
and severe yield losses worldwide [362, 438, 538]. Further, 
peanut stunt virus of the family Bromoviridae are known for 
their stunt disease of peanut crops and soyabean with severe 
dwarfing or stunting of peanut crops with an annual yield 
loss of about 10–50% [408, 443].

Likewise, the viroid, which are also called as mini-viruses 
lacking capsid are the low molecular weight single stranded 
RNA (usually the size ranges between 246–399 nucleotides), 
covalently closed, circular, highly structured non-coding 
RNAs that replicate autonomously affecting a vast range 
of economically important crops [302]. Further, they can 
cause non-symptomatic latent infections in their host which 
on transmission to susceptible hosts causes devastating 
infections. Table 3 lists the available information of various 
viroids known to affect the crops and their lineage. Viroid 
belongs to the two major families namely Pospiviroidae and 
Avsunviroidae with the common genera Pospiviroid, Hostu-
viroid, Cocadviroid, Apscaviroid, and Coleviroid of Pospivi-
roidae family and Avsunviroid, Pelamoviroid, and Elaviroid 
of Avsunviroidae family (Table 3) [128, 437]. Pospiviroids 
are majorly known to affect tomato crops with the charac-
teristic diseases like chloric dwarf disease, citrus exocortis 
disease, columnea latent disease, tomato apical stunt dis-
ease, and tomato planta macho disease (Table 2) leading to 
chlorosis, bronzing, leaf distortion, and growth reduction 
with an estimated yield loss of about 39–82% worldwide 
[591, 592]. Similarly, potato spindle tuber disease caused by 
Pospiviroid are known to affect tomatoes and potatoes with a 
field infection rate of about 25–50% affecting the tuber and 
fruit quality resulting in a yield loss of about 80% [520]. 
Nonetheless, the economically important hop stunt disease 
caused by hop stunt viroid of Hostuviroid has shown a field 
infection rate of about 10–20% [365] to multiple crops like 
mulberry, almond, apple, apricot, cherry, peach, pear, plum, 
pistachio, citrus fruits, and the flower Hibiscus rosa-sinensis 
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with severe loss in quality and yield [15, 347, 349, 619]. Fur-
ther, fruit crinkle disease caused by the fruit crinkle viroid 
of the genus Apscaviroid is known to have a narrow host 
range affecting apple fruits with a significant loss in yield 
and quality of the fruits [329]. Similarly, Avsunviroid, Pela-
moviroid, and Elaviroid of Avsunviroidae family are known 
to cause severe yield loss of fruits and vegetable especially 
the crops like avocado, chrysanthemum, peach, and eggplant 
hampering the fruit quality and yield worldwide [77, 93, 
158, 510].

Devastating crop diseases of Southeast 
Asian nations

The ten member states association forming the Southeast 
Asian nations include the countries like the Brunei Darus-
salam, Cambodia, Indonesia, Laos, Malaysia, Myanmar, 
Philippines, Singapore, Thailand, and Vietnam [244]. 
A wide variety of crops are cultivated in these countries 
namely cotton, millets, peanuts, paddy, sunflower, maize, 
palm, soybean, and sugarcane that are affected by major 
crop diseases impeding the crop yield and causing severe to 
heavy economic losses. Paddy crops with profound signifi-
cance in the Southeast Asian nations are majorly affected by 
the devastating and destructive biotrophic fungal pathogen 
Rhizoctonai solani with a yield loss of about 6 million tons 
of rice grains annually [635]. Similarly, Naqvi [409] has 
reported the prevalence of bacterial blight of paddy caused 
by Xanthomonas oryzae in the countries like Philippines and 
Indonesia leading to severe loss in the grain yield. Oña et al. 
[431] has reported the epidemic developed by the bacterial 
leaf streak disease of paddy causing severe loss in the yield 
of the crops especially in the variety IR1695 compared to 
IR24. Another study on the devastating pathogen, Fusarium 
oxysporum (soilborne fungi) causing the Fusarium wilt of 
banana was reported by [398] in Philippines outlines the 
severity of infection and loss caused by the TR4 strain. 
Further, [57] has documented the major pathogenic disease 
affecting the vegetables in Philippines and has reported that 
the bacterial wilt caused by Ralstonia solanacearum has led 
to severe damage and yield loss of the crops like tomato, 
pepper, eggplant, bitter gourd, and lettuce. Further, the study 
has also stated the prevalence of the devastating diseases 
like downy mildew affecting bitter gourd and Chinese cab-
bage, Cercospora disease affecting pepper, eggplant, bitter 
gourd, and tomato, Phytophthora disease of tomato, egg-
plant, pepper, and Chinese cabbage, Fusarium wilt of tomato 
and pepper, disease of tomato crops caused by Phytoplasma 
sp. and Corynespora cassiicola, and various other diseases 
caused to tomato which includes bacterial canker, bacte-
rial speck, target spot, Septoria leaf spot, and pith necrosis. 
Similarly, it is reported that the popular fruit trees Durian is 

highly vulnerable to the stem canker or patch canker disease 
caused by Phytophthora palmivora impeding the fruit yield 
and fruit quality in Sungai Liang, Brunei Darussalam [522]. 
Furthermore, Pearce et al. [447] and Bigirimana et al. [52] 
has reviewed the destructive rice sheath disease caused by 
Sarocladium oryzae causing considerable reduction in the 
crop yield in the countries like Brunei Darussalam, Indone-
sia, Philippines, Vietnam, and Thailand. Pyricularia oryzae 
causing destructive rice blast, leaf blast, and neck blast of 
paddy crops in Cambodia [95] is reported to cause elliptical 
lesions on the leaves during the vegetative and the repro-
ductive phases of the crops, grain sterility, reduced grain 
size, loss in yield, and reduced grain quality [35, 289]. Also, 
[311] has reported an annual yield loss of about 55 million 
UDS in Southeast Asian countries due to the devastating 
infection of paddy cause by Pyricularia oryzae. Accord-
ing to the study reported by [102], bacterial sheath brown 
rot of rice caused by Pseudomonas fuscovaginae was found 
to be prevalent in Cambodia leading to sever loss in the 
grain yield with the appearance of the characteristic brown 
lesions on the sheath. It was also reported that the coinfec-
tion caused by several bacterial pathogens like Acidovorax 
avenae, Burkholderia gladioli, Burkholderia cepacian, and 
Pantoea ananatis resulted in the severing of the disease 
along with the formation of sheath lesions and grain discol-
oration [27, 534].

Casava being the most importantly cultivated food crops 
of the Southeast Asian countries has been majorly affected 
by a variety of disease-causing pathogens [569]. The most 
prevalent disease of casava is the casava mosaic disease 
caused by the cassava mosaic begomoviruses of the genus 
Begomovirus and Geminiviridae family resulting in the poor 
leaf development with reduced photosynthesis leading to the 
poor tuber quality with improved yield loss [581]. Shallots 
are one among the crops with high economic value world-
wide and are largely cultivated in the South Kalimantan of 
Indonesia are reported to be infected by the Moler disease 
by Fusarium oxysporum and anthracnose by Colletotrichum 
sp. causing a severe damage to crop with a resulting yield 
loss ranging from 24 to 100%. Likewise, Adiyoga et al. [5], 
Bambang and Khusnul [30], and[188] have reported that 
Fusarium wilt disease, anthracnose, and porch blotch of 
onions could lead to a sever yield loss of about 27–27%, 
21–100%, and 30% respectively in Southeast Asian coun-
tries and Indonesia. Further, bacterial stalk rot of corn a 
devastating disease caused by the bacterial species Dickeya 
zeae is reported to cause severe yield loss of corn in Indo-
nesia [547]. Similarly, [546] has reported the vulnerability 
of the corn crops to various insects like grasshopper, katy-
did, sweet potato bug, derbid plant hopper, cotton stainer, 
largid bug, corn leaf hopper, corn rootworms, green chafer 
beetle, tussock moth, Asian lady beetles, transverse lady 
beetle, and assassin bug along with two fungal pathogenic 
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Table 3  Details of various viroid known to affect crops and their yield (classification as given in [170])

Disease Viroid Size of the viroid 
RNA, nucleotides

Family Genera Host plant Variants known New host infected Reference

Chloric dwarf 
disease

Chloric dwarf 
viroid

360 Pospiviroidae Pospiviroid Tomato 2 - [591, 592]

Citrus exocortis 
disease

Citrus exocortis 
viroid

366-475 Tomato, citrus 86 - [600]

Columnea latent 
disease

Columnea latent 
viroid

359-456 Columnea con-
sanguinea, 
Nematanthus 
sp., Brunfel-
sia pauciflora

17 Tomato [560]

Tomato apical 
stunt disease

Tomato apical 
stunt viroid

360-363 Tomato 5 - [21]

Tomato planta 
macho disease

Tomato planta 
macho viroid

360 Tomato 2 - [372]

Potato spindle 
tuber disease

Potato spindle 
tuber viroid

341-364 Potato 109 Tomato, avocado [520]

Chrysanthemum 
stunt disease

Chrysanthemum 
stunt viroid

348-356 Chrysanthemum 19 - [406]

Iresine disease Iresine viroid 370 Iresine herbstii 3 - [590]
Mexican papita 

disease
Mexican papita 

viroid
359-360 Solanum cardio-

phyllum
6 - [370]

Hop stunt disease Hop stunt viroid 294-303 Hostuviroid Citrus, grape-
vine, Prunus sp.

144 Hop, cucumber [282]

Coconut cadang-
cadang disease

Coconut cadang-
cadang viroid

246-301 Cocadviroid Coconut palm 8 Monocots and 
African oil 
palm

[231, 476]

Coconut tinangaja 
disease

Coconut tinangaja 
viroid

254 Coconut palm 2 - [240]

Citrus bark crack-
ing disease

Citrus bark crack-
ing viroid

284-286 Citrus 6 - [507]

Hop latent disease Hop latent viroid 255-256 Hop 10 - [445]
Apple scar skin 

disease
Apple scar skin 

viroid
329-333 Apscaviroid Apple, pear 8 - [515]

Apple dimple fruit 
disease

Apple dimple fruit 
viroid

306 Apple 2 - [485]

Apple fruit crin-
kle disease

Apple fruit crin-
kle viroid

368-372 Apple 29 - [329]

Australian grape-
vine disease

Australian grape-
vine viroid

369 Grapes 1 - [150]

Citrus bent leaf 
disease

Citrus bent leaf 
viroid

315-329 Citrus 24 - [76]

Citrus dwarfing 
disease

Citrus dwarfing 
viroid

291-297 Citrus 53 - [109]

Grapevine yel-
low speckle 1 
disease

Grapevine yellow 
speckle 1 viroid

365-368 Grapes 49 - [617]

Grapevine yel-
low speckle 2 
disease

Grapevine yellow 
speckle 2 viroid

363 Grapes 1 - [561]

Pear blister canker 
disease

Pear blister canker 
viroid

314-316 Pear, quince 18 - [169]

Coleus blumei -1 
disease

Coleus blumei -1 
viroid

248-251 Coleviroid Coleus blumei, 
Mentha sp.

9 - [578]

Coleus blumei -2 
disease

Coleus blumei -2 
viroid

295-301 Coleus blumei 1 - [184]

Coleus blumei -3 
disease

Coleus blumei -3 
viroid

361-364 Ocimum basili-
cum, Melissa 
officinalis

3 - [536]

Coleus blumei -5 
disease

Coleus blumei -5 
disease

NA Plectranthus 
scutellarioides

NA Aurora black 
cherry

[577]
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infections caused by Fusarium sp. and Puccinia sp. affect-
ing the crop yield in Malaysia. Myanmar being the second 
largest producer of sesame seeds globally experiences an 
annual yield loss of about 5–50% by phyllody, 10–75% by 
charcoal rot caused by Macrophomina phaseolina, 5–50% by 
Cercospora leaf spot, and 5% by bacterial leaf spot caused 
by Xanthomonas campestris [389].

Furthermore, [54] have reported the prevalence of various 
pathogens infecting a variety of crops like paddy disease of 
sheath and bakanae caused by Gibberella fujikurol, paddy 
sheath blight by Rhizoctonia sp., sheath rot by Sarocladium 
attenuatum, rice blast by Pyricularia oryzae, paddy false 
smut by Ustilaginoidea virens, downy mildew of soya bean 
by Peronospora manshurica, anthracnose of soya bean by 
Colletotrichum lindemuthianum, late blight of vegetables by 
Phytophthora infestans, fruit leaf anthracnose by Glomerella 
cingulate, and coffee leaf rust by Hemileia vastatrix imped-
ing the crop yield. Similarly, Phytoplasma sp., a destructive 
pathogen infecting sugar cane in Vietnam are reported to 
reduces the sucrose content of the crops to about 60–80% 
[239].

Measures to control crop diseases‑ overview 
of the resistant varieties

Globally, around 16–30% of the crops grown are estimated 
to be lost to the devastating infections caused by pathogens 
[427, 428, 498]. To control the crop and yield losses, sev-
eral practices have been followed by the farmers worldwide 
like the usage of healthy seeds for sowing, seed and soil 
treatment, crop rotation, usage of biological and chemi-
cal pesticides, etc., but development of host resistance 
have attracted researchers worldwide as it is considered 
as a comparatively reliable method ever [415, 583]. Gen-
erally, plant’s innate immune system provides protection 
against the ingression of pathogens, but the species speci-
ficity expressed by the immune system makes it difficult 
to manage the infections caused by multiple pathogens 

[261]. Hence, deployment of the gene conferred resistant 
varieties of crops are considered as a potential measure to 
control crop diseases in an effective, eco-friendly, robust, 
and economic means [267]. Ji et al. [266] have reported 
the identification of about 40 different resistant R genes 
of paddy crops which could confer resistance against the 
major paddy crop infections especially the bacterial blight 
caused by Xanthomonas oryzae. Among which, the most 
frequently used R genes as rice breeders are xa5, Xa7, 
xa13, Xa21, and Xa23 due to their wider resistance spec-
trum compared to the other known genes. Xu et al. [618] 
have reported the multiple pathogenic resistance conferred 
by the transformation of the specific R genes namely Xa7 
and Xa21 to Yihui 1577 rice variety. Similarly, Pathi et al. 
[444] have stated that the generated loss-of-function muta-
tions in the Lox3 gene of maize crops using the Cas endo-
nuclease technology improved the durability in the resist-
ant properties of the crops to various pathogens. The Pto 
gene of the tomato crops were found to confer resistance 
against the pathogen Pseudomonas syringae which are well 
known for their devastating vegetable and fruit crop dis-
eases [293, 368, 456, 504, 559]. Further, identification of 
the NLR gene [352, 493] in various Arabidopsis crops led 
to a significant progress in the genetic resistance to crop 
diseases as these genes conferred resistance to wide range 
of pathogens which include fungi [132, 277], bacteria [44, 
210, 390], oomycetes [58], and viruses [298, 603]. Further-
more, discovery of R gene stacking or pyramiding helped in 
the deployment of multiple NLR gene into a single potato 
cultivar improving the resistance of the crops to multiple 
diseases [273, 291]. Identification of the quantitative trait 
locus (QTLs) of various pathogens (cucumber mosaic 
virus, zucchini yellow mosaic virus, whitefly-transmitted 
begomoviruses, melon chlorotic mosaic virus, tomato leaf 
curl virus, watermelon chlorotic stunt virus, Fusarium wilt, 
downy mildew, and powdery mildew) and insects (aphids 
and whitefly) that are co-localized in the Vat gene were 
found to confer resistance in fruit trees and crops improv-
ing the fruit yield and quality [483, 492, 532, 594, 629]. 

NA, Not available

Table 3  (continued)

Disease Viroid Size of the viroid 
RNA, nucleotides

Family Genera Host plant Variants known New host infected Reference

Avocado sun 
blotch disease

Avocado sun 
blotch viroid

239-251 Avsunviroidae Avsunviroid Avocado 83 - [77]

Chrysanthemum 
chlorotic mottle 
disease

Chrysanthemum 
chlorotic mottle 
viroid

397-401 Pelamoviroid Chrysanthemum 21 - [93]

Peach latent 
mosaic disease

Peach latent 
mosaic viroid

335-351 Peach, nectarine 168 - [510]

Eggplant latent 
disease

Eggplant latent 
viroid

332-335 Elaviroid Eggplant 9 - [158]
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Likewise, several researchers worldwide are actively work-
ing in identifying and improving the resistance gene that 
could confer resistance to a vast range of pathogens that 
could be used to protect a wide range of crops from the 
pathogenic infections.

Conclusion

Bioaerosols act as potential source of crop pathogens and 
enable their dissemination across geographical barriers. 
Their dispersal in the atmospheric air is largely dependent 
upon several intrinsic and extrinsic factors like the avail-
ability of source, meteorological factors, aerosolization 
behaviour, properties of the microorganisms, etc. Once 
dispersed, they can cause severe to very severe diseases 
in crops. Crop pathogenic bioaerosols are generated due 
to various natural and anthropogenic activities such as 
rain, splashing of water, usage of sprayers in crop field, 
mechanical activities observed in the canopy, especially the 
movement of leaves, ooze of infected crops, infected plant 
sap etc. Leaves and external tissues of crops play a pivotal 
role in the ingress of pathogens from the surface to the 
inner parenchymal tissues of the crops. Also, it is reported 
that about 30% of the global crop production is lost to the 
devastating diseases caused by the crop pathogens known 
till date. Hence, it is imperative to have a better understand-
ing of the crop pathogen dissemination through bioaero-
sols, sedimentation, invasion, and the onset of symptomatic 
disease of the region-specific crop cultivated. To achieve 
this, a detailed study on the season-specific regional diver-
sity and community composition of bioaerosols and their 
implications on the crops must be conducted globally. 
Global modelling of the data obtained would give us a bet-
ter insight on the dispersion and spread of crop pathogens 
on a global scale. Based on the knowledge and information 
obtained on the season-specific regional diversity, bioaero-
sol composition, and global modelling, proper measures 
required to control various crop diseases like crop rotation 
practises, usage of resistant varieties, fumigation of soil, 
seed selection, etc. must be developed and implemented. 
Moreover, advanced research on the resistant varieties 
have shown promising results in controlling multiple crop 
pathogens. Though many studies have explained the iden-
tification and existence of various R genes responsible for 
gene conferred resistance in crops, good understanding on 
the mechanism of the gene conferred plant response and 
resistance could give a better insight in the development 
of an appropriate and potential gene for the crop resist-
ance. Further, forthcoming studies on the identification and 
development of a crop specific gene mediated resistance 
to multiple pathogens would enable the development of 
potential resistant varieties of crops in the future era.

Future need and measures to be adopted

Crop diseases and pests are critical problems in farming since 
earlier days. Although there have been many advancements 
in the understanding and eradication of various crop diseases 
worldwide, further measures need to be taken to improve 
the crop yield and crop resistance to diseases to overcome 
the yield loss caused by pathogens. Following are the future 
needs that need to be adopted and implemented by the farm-
ers and officials to control the pathogenic crop diseases.

• Proper insight on the regional climatic conditions and the 
bioaerosols seasonal community composition

• Implementation of various farm practises like seed selec-
tion, season-specific crop growth, crop rotation, soil 
fumigation, soil treatment, seed treatment, etc.

• Breeding and adaptation of the resistant crop varieties
• Elimination of the source of bioaerosols
• Early prediction of spread of crop pathogenic bioaerosols 

and onset of disease
• Thorough knowledge of the disease cycle followed by 

each pathogen would help in improving the disease man-
agement strategies

• Proper understanding of the regional bioaerosols compo-
sition and implementation of appropriate methods e.g., 
growing appropriate resistant crop varieties

• Dissemination of knowledge to officials and farmers regard-
ing the region-specific disease management strategies
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