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Abstract
There are approximately 250 million people chronically infected with hepatitis B virus 
(HBV) worldwide. Although HBV is often integrated into the host genome and pro-
motes hepatocarcinogenesis, vulnerability of HBV integration in liver cancer cells has 
not been clarified. The aim of our study is to identify vulnerability factors for HBV-
associated hepatocarcinoma. Loss-of-function screening was undertaken in HepG2 
and HBV-integrated HepG2.2.15 cells expressing SpCas9 using a pooled genome-
wide clustered regularly interspaced short palindromic repeats (CRISPR) library. Genes 
whose guide RNA (gRNA) abundance significantly decreased in HepG2.2.15 cells but 
not in HepG2 cells were extracted using the MAGeCK algorithm. We identified four 
genes (BCL2L1, VPS37A, INSIG2, and CFLAR) that showed significant reductions of 
gRNA abundance and thus potentially involved in the vulnerability of HBV-integrated 
cancer cells. Among them, siRNA-mediated mRNA inhibition or CRISPR-mediated ge-
netic deletion of INSIG2 significantly impaired cell proliferation in HepG2.2.15 cells 
but not in HepG2 cells. Its inhibitory effect was alleviated by cotransfection of siR-
NAs targeting HBV. INSIG2 inhibition suppressed the pathways related to cell cycle 
and DNA replication, downregulated cyclin-dependent kinase 2 (CDK2) levels, and 
delayed the G1-to-S transition in HepG2.2.15 cells. CDK2 inhibitor suppressed cell 
cycle progression in HepG2.2.15 cells and INSIG2 inhibition did not suppress cell pro-
liferation in the presence of CDK2 inhibitor. In conclusion, INSIG2 inhibition induced 
cell cycle arrest in HBV-integrated hepatoma cells in a CDK2-dependent manner, and 
thus INSIG2 might be a vulnerability factor for HBV-associated liver cancer.
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1  |  INTRODUC TION

It is estimated that 250 million people are infected with HBV, of which 
more than 30 million have developed chronic hepatitis.1,2 Once HBV 
infects the human body, it remains in hepatocytes in the form of 
cccDNA, and the mechanisms of cccDNA formation and degradation 
are currently largely unknown, making complete elimination from 
the body difficult with current treatment. In addition, it is often clin-
ically experienced that HCC develops from the noncirrhotic liver in 
HBV-infected patients, while HCC mostly occurs from the cirrhotic 
liver in HCV-infected patients. This is thought to be due to the fact 
that HBV promotes hepatocarcinogenesis not only through chronic 
liver inflammation and subsequent liver fibrosis but also through 
its genome integration into the host.3 Indeed, extensive studies re-
vealed a variety of oncogenic roles of HBV integration into the host 
genome such as TERT activation and chromosomal rearrangements 
in HCC patients.4 Meanwhile, although several molecular-targeted 
therapies, including immunotherapies, have become available for 
advanced HCC patients,5 no specific treatment for HBV-associated 
liver cancer has been investigated to date.

The CRISPR/Cas9 system was reported in 2012,6 facilitating 
various genetic modifications. The CRISPR/Cas9 system, which 
consists of the Cas9 enzyme and a gRNA, is able to knock out any 
gene of interest in eukaryotic cells by precisely cutting DNA, based 
on a gRNA-defined target sequence, and inducing double-strand 
breaks. We have recently reported the utility of this technology 
as a potential novel therapy against HBV by directly cleaving and 
degrading cccDNA.7 In addition, the CRISPR/Cas system has been 
recently used as a powerful tool of large-scale loss-of-function ge-
netic screening, named as pooled CRISPR library screen.8 By de-
signing gRNAs for entire human genes and introducing a pooled 
gRNA library into any Cas9-expressing human cells with selective 
phenotypic pressure, it is possible to identify genes involved in any 
biological process of interest such as cell proliferation, survival, and 
drug resistance in a high-throughput manner. We have previously 
undertaken multiple pooled CRISPR library screens and discovered 
genes involved in various biological phenotypes including the vul-
nerability of acute myeloid leukemia cells, intraperitoneal metasta-
sis of ovarian cancer, and regorafenib-resistance of HCC cells.9–11 In 
particular, the discovery of cancer-specific vulnerabilities is useful 
for the development of less-toxic therapeutics targeting the Achilles' 
heel of cancer cells.

In this study, to identify the vulnerability of HBV-integrated 
liver cancer, we undertook a whole-genome pooled CRISPR library 
screen in liver cancer cell lines with or without HBV integration. We 
have identified and validated INSIG2 as the vulnerability of HBV-
integrated liver cancer cells. Our study could shed light on new ther-
apies targeting the vulnerability of HBV-associated liver cancer.

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture

HepG2 cells were purchased from the Japanese Cancer Resources 
Bank and grown in DMEM supplemented with 10% FBS (26140; 
Gibco). HepG2.2.15 cells (provided by Professor Matsuura at 
Osaka University) are a derivative of HepG2 cells and carry HBV 
DNA integrated into the host chromosome. This cell line produces 
a variety of HBV (genotype D)-specific mRNAs and secrete HBsAg, 
HBeAg, and Dane particles.12 HepG2.2.15 cells were grown in 
DMEM with 10% FBS and 250 μg/mL G418 (Nacalai Tesque Inc.). 
These cell lines were confirmed to be free from mycoplasma 
contamination.

2.2  |  Lentivirus production

The whole genome CRISPR/Cas library contained 113,526 gRNAs 
targeting 18,731 genes (approximately 7 gRNAs per gene) and was 
propagated by electroporation. Cas9-blast vector was purchased 
from Addgene (#52962). To produce lentivirus, the library or Cas9-
blast vector, psPAX2 (Addgene) and pVSVg (Addgene) in OptiMEM 
(Thermo Fisher Scientific) were mixed with Lipofectamine 2000 
(Thermo Fisher Scientific). The mixture was added to HEK293 
cells. Three days later, the supernatant was collected and stored 
at −80°C.

2.3  |  Generation of Cas9-positive HepG2 and 
HepG2.2.15 cells

HepG2 cells and HepG2.2.15 cells were plated 1 day before the len-
tivirus infection. Next day, we changed the medium to serum-free 
medium containing 8 μg/mL polybrene (Merck Millipore) with len-
tivirus containing LentiCas9-blast. From the next day, HepG2 and 
HepG2.2.15 cells were cultured in medium containing 5 and 3 μg/mL 
blasticidin (Fujifilm Wako Pure Chemical Corporation), respectively. 
Subsequently, multiple single clones were obtained by limiting the 
dilution method, and the expression of Cas9 in these cells was de-
termined by WB analysis.

2.4  |  In vitro whole-genome pooled CRISPR 
library screen

To insert one gRNA into one cell, we determined the MOI for 20% 
infection efficiency in HepG2 and HepG2.2.15 cells, which were 
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0.2 and 0.3, respectively. A total of 250 million Cas9-expressing 
HepG2 or HepG2.2.15 cells were transduced with CRISPR library 
at 0.2 or 0.3 MOI, respectively. DNA was collected soon after the 
completion of puromycin selection (D2) and after 2 weeks culture 
(D14). We maintained the cell number more than 500-fold of li-
brary size over the experimental course to maintain the library 
complexity in the transduced cells. Genomic DNA was extracted 
using the Blood & Cell Culture DNA Maxi Kit (Qiagen) according 
to the manufacturer's protocol with RNase treatment. Guide RNA 
sequences integrated into the gDNA were amplified by Illumina-
adapted forward and reverse indexed PCR primers following the 
protocol from the Broad Institute13 and purified using a PCR pu-
rification kit (Qiagen). The purified amplicons were multiplexed 
and sequenced in Illumina HiSeq. The frequency of each gRNA 
in HepG2 and HepG2.2.15 at D2 and D14 was calculated. The 
MAGeCK algorithm was used to identify genes (false discovery 
rate < 0.05) whose abundance changed significantly between two 
groups.14

2.5  |  siRNA transfection

We designed siRNAs targeting the HBV genome but not the human 
genome based on the previous report (Table S1).15,16 All other siRNA 
oligonucleotides were purchased from Thermo Fisher Scientific 
(Table  S2). According to the manufacturer's protocol, the siRNAs 
were transfected using Lipofectamine RNAiMAX reagent (Thermo 
Fisher Scientific). Three to four days after transfection, knockdown 
efficiency was assessed by quantitative RT-PCR.

2.6  |  RNA isolation and real-time PCR

The RNA was extracted from cells using the RNeasy Mini Kit 
(Qiagen) according to the manufacturer's protocol. For the analy-
sis of pgRNA, DNase (RNase-Free DNase Set; Qiagen) was used 
to remove genomic DNA from the isolated RNA. The isolated RNA 
was reverse transcribed using ReverTra Ace qPCR RT Master Mix 
(Toyobo). Quantitative PCR was carried out using the QuantStudio 
6 Flex Standard RT-PCR system with TaqMan Gene Expression 
Assay probes (Thermo Fisher Scientific). The probe list is shown 
in Table S3, and the following primer set was used for detection of 
pgRNA: forward, 5′-TGTCC​TAC​TGT​TCA​AGC​CTCCAA-3′ and re-
verse, 5′-GAGAG​TAA​CTC​CAC​AGT​AGC​TCCAA-3′.

2.7  |  Cell proliferation assay

Cell proliferation was assessed using WST-1 reagent (Takara Bio). 
WST-1 reagent was added to each well and incubated for 1 h at 37°C. 
The absorbance was measured at 450 and 650 nm (reference) using a 
microplate reader SH-9000Lab (Corona).

2.8  |  Generation of CRISPR-mediated KO cell lines

The gRNAs targeting BCL2L1 and INSIG2 (Table  S4) were cloned 
into a lentiviral gRNA expression vector (lentiGuide-Puro; #52963, 
Addgene). Lentivirus containing lentiGuide-Puro expressing 
NC/BCL2L1 gRNA or INSIG2 gRNA was generated and transduced 
into HepG2-Cas9 cells or HepG2.2.15-Cas9 cells.

2.9  |  Western blot analysis

The western blot procedure has been described previously.17 We 
used lysis buffer with a phosphatase inhibitor (Nacalai Tesque, Inc.) 
and a protease inhibitor (Nacalai Tesque, Inc.) to isolate protein. We 
used anti-HBc Ab clone 7B218 and the following Abs to immunode-
tect each band (Table S5). Each band level was measured by using 
ImageJ software (version 1.52) and normalized to β-actin band levels.

2.10  |  Cell cycle assay

Cells were collected with 0.05% trypsin, and cell cycle was evaluated 
according to the manufacturer's protocol using the Cycletest Plus 
DNA Reagent Kit (Becton Dickinson). The number of cells in each 
phase was assessed by using a FACSCanto flow cytometer.

2.11  |  Plasmid DNA transfection

FLAG-HBx plasmid DNA was provided by Professor Motoyuki 
Otsuka (Okayama University). Myc-INSIG2 plasmid DNA was de-
signed by Vector Builder. According to the manufacturer's protocol, 
the plasmids were transfected using Lipofectamine 2000 reagent 
(Thermo Fisher Scientific). Protein expression was confirmed by WB 
analysis.

2.12  |  Immunoprecipitation

Primary Ab was mixed with cell lysate and slowly rotated at 4°C for 
90 min. Protein G Sepharose (Abcam) was added and rotated at 4°C 
for an additional 60 min, then the beads were washed five times with 
lysis buffer. Immunoprecipitates were extracted by adding SDS sam-
ple buffer and heating at 95°C for 5 min.

2.13  |  Statistical analysis

All data are presented as the means ± SEM. Comparisons between 
two groups were carried out by unpaired Student's t-test or one-way 
ANOVA in GraphPad Prism 6 software. A value of p < 0.05 was con-
sidered statistically significant.
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3  |  RESULTS

3.1  |  Pooled CRISPR library screen identified 
four gene candidates related to vulnerability of 
HBV-integrated liver cancer cells

To search for the vulnerability of HBV-integrated liver cancer cells, 
we decided to perform CRISPR dropout screens using the HepG2 
cells and their HBV-integrated derivative cells (HepG2.2.15). We 
lentivirally transduced a Cas9 expression vector into these cells 
and generated stable single clones that express Cas9 (HepG2-
Cas9 cells and HepG2.2.15-Cas9 cells) (Figure  1A). They were 
transduced with the pooled lentiviral CRISPR library containing 
113,526 gRNAs targeting 18,731 human genes. In transduction, 
the concentration of lentivirus was adjusted to introduce one 
gRNA per cell in each of the HepG2-Cas9 and HepG2.2.15-Cas9 
cells. Transduced cells were collected soon after 2-day puromycin 
selection (D2) and after subsequent 2-week culture (D14). Isolated 
DNAs from these cells were analyzed by NGS to determine gRNA 
abundance. There were 533 and 131 genes whose gRNA levels 
significantly decreased in HepG2-Cas9 cells and HepG2.2.15-
Cas9 cells, respectively, at D14 compared to at D2 (Figure  1B). 
Among 93 dropout genes common in both cell lines, 15 genes 
were essential for cell survival, which were statistically signifi-
cant enriched (p < 0.05 by χ2-test), suggesting the reliability of the 
dropout screen. Based on three criteria: (1) gRNA abundance in 
HepG2.15 cells at D14 was more than two times lower than that at 
D2, (2) gRNA abundance in HepG2 cells at D14 was less than a 2-
fold difference compared to that at D2, and (3) gRNA abundance in 
HepG2.15 cells at D14 was significantly lower than that in HepG2 
cells at D14 (p < 0.05), we selected four genes (BCL2L1, INSIG2, 
CFLAR, and VPS37A) as candidates for the vulnerability of HBV-
integrated cells among 38 genes only dropout in HepG2.2.15-Cas9 
cells (Figure 1C). The abundance of most of the gRNAs targeting 
these four genes was reduced in HepG2.2.15 cells compared to 
HepG2 cells (Figure 1D).

3.2  |  Deletion of BCL2L1 and INSIG2 specifically 
reduces cell proliferation in HBV-integrated liver 
cancer cells

To validate the results of our CRISPR screen, we first examined the 
effect of KD of four candidate genes by siRNA on cell proliferation 
in HepG2 and HepG2.2.15 cells. For each gene, two siRNAs were 
used, and KD efficiency was confirmed (Figure S1). Among the four 
genes, KD of BCL2L1 and INSIG2 did not affect the cell prolifera-
tion in HepG2 cells but significantly suppressed the cell proliferation 
in HepG2.2.15 cells (Figure 2A). We also deleted either BCL2L1 or 
INSIG2 by CRISPR and established three KO lines of each gene in 
HepG2 and HepG2.2.15 cells (Figure 2B,C). Following KO of BCL2L1 
and INSIG2, the cell proliferation was not affected in HepG2 cells 

but was significantly suppressed in HepG2.2.15 cells (Figure 2D,E). 
These data suggested that BCL2L1 and INSIG2 might be involved in 
the vulnerability of HBV-integrated cells.

3.3  |  Vulnerability induced by INSIG2 inhibition in 
HBV-integrated liver cancer cells partly dependent on 
presence of HBV

Next, we evaluated whether the vulnerability mediated by BCL2L1 
and INSIG2 was dependent on the presence of HBV in HepG2.2.15 
cells. To this end, we designed siRNA that inhibit all HBV transcripts 
including 3.5 kb (HBc, pgRNA), 2.4 kb (Large S), 2.1 kb (Small S), and 
0.9 kb (HBx). We first confirmed that HBV siRNA significantly sup-
pressed HBsAg, HBeAg, HBc proteins, and intracellular pgRNA 
levels in HepG2.2.15 cells (Figure 3A). While the reduction of cell 
proliferation by BCL2L1 siRNA was not affected by the presence 
of HBV siRNA in HepG2.2.15 cells (Figure  3B), HBV siRNA par-
tially rescued the reduction of cell proliferation by INSIG2 siRNA 
(Figure 3C), suggesting that the vulnerability induced by INSIG2 in-
hibition in HepG2.2.15 cells was, at least in part, dependent on the 
presence of HBV.

3.4  |  INSIG2 inhibition delays cell cycle, leading 
to decrease in HBV-integrated liver cancer cell 
proliferation

Next, we undertook RNA sequencing to further study the mecha-
nism of the vulnerability caused by INSIG2 inhibition in HepG2.2.15 
cells. Kyoto Encyclopedia of Genes and Genomes pathway analysis 
revealed that the cholesterol biosynthesis pathway was activated 
following INSIG2 inhibition (Figure 4A), which was consistent with 
the previous report.19 Meanwhile, INSIG2 inhibition induced signifi-
cant downregulation of the pathways involved in the cell cycle and 
DNA replication in HepG2.2.15 cells (Figure 4A). We thus evaluated 
the effect of INSIG2 inhibition on the cell cycle. We used nocodazole 
(inhibitor of microtubule polymerization) to induce mitotic arrest. 
Twenty-four hours after nocodazole treatment, the majority of the 
HepG2 cells had clustered at G2/M phase regardless of the pres-
ence or absence of INSIG2 siRNA (Figure 4B). In contrast, the num-
ber of cells at G2/M phase was different between NC and INSIG2 
siRNA groups in HepG2.2.15 cells, and most of the cells treated 
with INSIG2 siRNA had remained at G1/S phase (Figure 4C). These 
results suggested that INSIG2 inhibition delayed G1/S transition only 
in HBV-integrated cells. Next, we undertook G1/S phase synchroni-
zation by double thymidine block. After this treatment, most cells 
had clustered at G1/S phase regardless of the presence or absence 
of INSIG2 siRNA in both HepG2 and HepG2.2.15 cells. After the 
removal of thymidine, cell cycle progressed in most of the cells in 
HepG2 cells regardless of the presence or absence of INSIG2 siRNA 
(Figure 4D). In contrast, in HepG2.2.15 cells, cell cycle progressed in 
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most of the cells treated with NC siRNA but did not in cells treated 
with INSIG2 siRNA (Figure 4E). Collectively, the number of cells at S 
and G2/M phase was lower in HepG2.2.15 cells with INSIG2 siRNA 

than those with NC siRNA (Figure  4E,F). These data further sug-
gested that INSIG2 inhibition delayed cell cycle at G1/S phase, lead-
ing to the decrease in cell proliferation in HepG2.2.15 cells.

F I G U R E  1  Pooled clustered regularly interspaced short palindromic repeat (CRISPR) library screen Identifies four gene candidates related 
to the vulnerability of hepatitis B virus (HBV)-integrated liver cancer cells. (A) Western blot (WB) analysis of Cas9 protein levels in the 
HepG2 and HepG2.2.15 cell lines. Clone, Cas9-transduced monoclonal cells; Mock, Cas9-nontransduced cells. (B) MAGeCK analysis showed 
significantly depleted (false discover rate <0.05) genes compared to the beginning of the culture both in HepG2 cells and HepG2.2.15 cells. 
(C) Negative log10 p value for each gene. Horizontal axis shows depletion in HepG2.2.15 cells compared to HepG2 cells at day 14. Vertical 
axis shows depletion in HepG2.2.15 cells at day 14 compared to day 2. (D) Log2 fold change values of each guide RNA (gRNA) targeting gene 
(BCL2L1, INSIG2, VPS37A, and CFLAR) in HepG2.2.15 cells compared to those in HepG2 cells. Note that the fold change of gRNA6 in BCL2L1, 
INSIG2, and VPS37A were not calculated. Abbreviations: ACTB, β-actin.
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3.5  |  CDK2 involved in vulnerability caused by 
INSIG2 inhibition in HBV-integrated liver cancer cells

To explore the molecules involved in the vulnerability caused by 
INSIG2 inhibition in HepG2.2.15 cells, we examined the proteins 

known to be involved in the cell cycle and found that INSIG2 inhibi-
tion significantly reduced protein levels of CDK2, known to be in-
volved in G1/S phase progression,20 in HepG2.2.15 cells but not in 
HepG2 cells (Figure 5A). Indeed, CDK2 inhibition using CVT-313, a 
specific inhibitor of CDK2, inhibited G1/S transition in HepG2.2.15 

F I G U R E  2  Deletion of BCL2L1 and INSIG2 specifically reduces cell proliferation in hepatitis B virus-integrated liver cancer cells. (A) Cell 
viability was measured by WST-1 assays 4 days after knockdown with siRNA (ratio to negative control [NC], *p < 0.05). (B) Western blot (WB) 
analysis of BCL2L1 in HepG2-Cas9 cells and HepG2.2.15 cells after transfection with gBCL2L1. (C) WB analysis of INSIG2 in HepG2-Cas9 
cells and HepG2.2.15 cells after transfection with gINSIG2. (D) Cell viability in HepG2/HepG2.2.15-gBCL2L1-Knock Out (KO) cells at 6 days 
after seeding (ratio to NC, *p < 0.05). (E) Cell viability in HepG2/HepG2.2.15-gINSIG2-KO cells at 6 days after seeding (ratio to NC, *p < 0.05). 
Abbreviations: ACTB, β-actin; g1/g2/g3, gRNA-1/gRNA-2/gRNA-3.
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cells and cell proliferation was suppressed (Figure 5B–D). In addition, 
in the presence of CDK2 inhibitor, INSIG2 inhibition did not suppress 
cell proliferation in HepG2.2.15 cells (Figure 5E). These findings sug-
gested that CDK2 might be involved in the vulnerability caused by 
INSIG2 inhibition only in HepG2.2.15 cells.

3.6  |  INSIG2 binds to HBx

Finally, we investigated the molecular mechanisms of the depend-
ency of CDK2 levels on INSIG2 in HepG2.2.15. we sought the inter-
action between INSIG2 and HBx, one of the HBV coding proteins 
shown to regulate the cell cycle in G1/S phase21 and bind to CDK2.22 

We introduced the expression plasmids of Myc-tagged INSIG2 and 
FLAG-tagged HBx proteins in the cells (Figure  6A). Western blot 
analysis using samples precipitated with FLAG Ab showed the bind-
ing of INSIG2 to HBx (Figure 6B). Collectively, our findings suggested 
that the INSIG2 and HBx proteins might make a complex with CDK2, 
which drives the cell cycle progression in HBV-integrated liver can-
cer cells (Figure 6C).

4  |  DISCUSSION

Synthetic lethality is a phenomenon in which a single manipulation 
allows cell survival, but two or more simultaneous manipulations 

F I G U R E  3  Vulnerability induced by 
INSIG2 inhibition in hepatitis B virus 
(HBV)-integrated liver cancer cells is 
partly dependent on the presence of 
HBV. (A) Supernatant hepatitis B surface 
antigen (HBsAg) and hepatitis B e antigen 
(HBeAg) levels, HBV core (HBc) protein 
levels, and intracellular pregenomic RNA 
(pgRNA) levels in HepG2.2.15 cells 6 days 
after transfection with HBV siRNA. 
(*p < 0.05). (B) Cell viability was measured 
by WST-1 assays 4 days after transfection 
with siBCL2L1 and/or HBV siRNA (ratio to 
negative control [NC], *p < 0.05). (C) Cell 
viability was measured by WST-1 assays 
4 days after transfection with siINSIG2 
and/or HBV siRNA (ratio to NC, *p < 0.05). 
Abbreviations: ACTB, β-actin; ns, not 
significant.
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F I G U R E  4  INSIG2 inhibition delays cell cycle, leading to a decrease in cell proliferation in hepatitis B virus-integrated liver cancer cells. 
(A) Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis results. Horizontal axis indicates the negative log10 p value 
for each term. (B) To synchronize G2/M, cells were treated with nocodazole (400 ng/mL) after knockdown (KD) with control siRNA (siNC)/
INSIG2. Then, HepG2/HepG2.2.15 cells were assessed by flow cytometry. (C-F) To synchronize G1/S, cells were treated by double thymidine 
block (2 mM). Then, cells were assessed by flow cytometry immediately and 8 h after release. (C) HepG2 cells after KD with siNC/INSIG2. (D) 
HepG2 cell population ratio at each stage of cell cycle. (E) HepG2.2.15 cells after KD with siNC/INSIG2. (F) HepG2.2.15 cell population ratio 
at each stage of cell cycle. Abbreviations: PI, propidium iodide; PPAR, peroxisome proliferator-activated receptor.
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leads to cell death. This approach has been applied to cancer 
therapy and exploits the specific vulnerability of cancer cells, 
which can be drug targets that selectively affect cancer cells.23 
The first successful treatment based on this approach was the 
use of poly ADP-ribose polymerase (PARP) inhibitors for patients 
deficient in the homologous recombination pathway.24 This dis-
covery has further driven the search for other synthetic lethal tar-
gets in a variety of cancer types and large-scale genetic screens 
using CRISPR/Cas9 or RNAi have been recently performed to 
this end.25 Regarding liver cancer, while several CRISPR/Cas9 li-
brary screens have been reported, most of them including ours 
aimed to identify the targets that synergized with chemotherapy 
including sorafenib, regorafenib, and lenvatinib.11,26–28 Only a few 
specific cancer cell vulnerabilities, including ATRX-mutated cells, 

and under the hypoxic or glutamine-depleted states, have been 
reported29–31 and the vulnerability in HBV-integrated cancer cells 
has not been reported to date. Hepatitis B virus is an oncogenic 
DNA virus and is often integrated into the host genome of the 
infected cells, which induces genomic instability and abnormal ex-
pression of oncogenes and tumor suppressor genes, thereby pro-
moting hepatocarcinogenesis.3 In addition, integrated viral DNA 
produces mutated and/or truncated HBx, HBsAg, and HBcAg 
proteins, high expression of which induces endoplasmic reticulum 
and mitochondrial stress responses and promotes the occurrence 
of HCC. In the present study, we hypothesized that HBV inte-
gration promotes malignant transformation, but HBV-integrated 
cancer cells also require the fitness to high cellular stress for the 
cells to survive, which can be the vulnerability of HBV-integrated 

F I G U R E  5  Cyclin-dependent kinase 
2 (CDK2) is involved in the vulnerability 
caused by INSIG2 inhibition in hepatitis 
B virus-integrated liver cancer cells. 
(A) Western blot analysis of G1/S cell 
cycle factors in HepG2-Cas9 cells and 
HepG2.2.15 cells after transfection 
with control siRNA (siNC)/siINSIG2. 
(B) Alteration of cell cycle by CVT-313 
treatment. After 24 h of treatment (left) 
with no CVT-313 or (right) with CVT-
313 (5 μM), CDK2 inhibition by CVT-313 
resulted in cell cycle arrest at the G1/S 
transition. (C) Cell population ratio at 
each stage of cell cycle is shown. (D) Cell 
viability was measured by WST-1 assays 
4 days after CVT-313 (5uM) treatment in 
HepG2.2.15 cells (ratio to no treatment 
[no treat], *p < 0.05). (E) Cell viability was 
measured by WST-1 assays 4 days after 
CVT-313 treatment and transfection 
with siNC/siINSIG2 (ratio to no treat). 
Abbreviations: ACTB, β-actin; cycA/D/E, 
cyclinA/D/E; ns, not significant; PI, 
propidium iodide.



868  |    FUKUOKA et al.

cancer cells. We thus undertook the genome-wide CRISPR KO 
screen to identify the specific vulnerability of the HBV-integrated 
HepG2.2.15 cells compared to its parental HepG2 cells.12

In our screen, we identified INSIG2 as involved in the vulnera-
bility in HBV-associated liver cancer. INSIG2 has been reported to 
bind to the SREBP and SCAP complexes, thereby inhibiting SREBP 
transport to the Golgi apparatus and suppressing sterol synthesis.32 
Recently, the involvement of INSIG2 in de novo lipogenesis, steato-
sis, and nonalcoholic steatohepatitis, has been reported.19,33 In the 
study of HBV integration sites in HCC patients, one such site was 
shown to be the intergenic region of INSIG2.34

In the present study, inhibition of INSIG2 specifically reduced cell 
proliferation in HBV-integrated cells but not in non-HBV-associated 
cells. In addition, INSIG2-mediated inhibition of cell proliferation was 
partly canceled by suppression of HBV transcription. These find-
ings suggested that the vulnerability induced by INSIG2 inhibition 

in HBV-integrated liver cancer cells is partly dependent on the pres-
ence of HBV.

Further analysis revealed that INSIG2 inhibition induced cell 
cycle arrest at G1/S phase in HBV-integrated cells. Mechanistically, 
we found that INSIG2 inhibition suppressed CDK2 in HBV-
integrated cells. CDK2 is a member of the cyclin-dependent ki-
nase family, which forms a complex with cyclin E and is known 
to be essential for the transition from G1 to S phase.35,36 Indeed, 
we showed that CDK2 inhibition suppressed cell proliferation and 
INSIG2 inhibition did not suppress cell proliferation in the pres-
ence of CDK2 inhibitor. These findings suggested that CDK2 could 
be involved in the vulnerability caused by INSIG2 inhibition in 
HBV-integrated cells.

Hepatitis B virus-related proteins are known to be involved 
in the cell cycle.37–39 For example, expression of HBx protein has 
been shown to promote progression to S phase in vitro,24 and HBx 

F I G U R E  6  INSIG2 affects cyclin-
dependent kinase 2 (CDK2) through 
hepatitis B X protein (HBx). (A) Western 
blot (WB) analysis of extracts from cells 
transfected with Myc-INSIG2 and/or 
FLAG-HBx, using MYC and FLAG tag 
Abs. (B) After cells were transfected 
with MYC-INSIG2 and/or FLAG-HBx, 
immunoprecipitation with FLAG tag 
Ab was carried out. WB analysis using 
Myc Tag Ab. (C) Schematic diagram 
of this study. INSIG2 and CDK2 may 
be molecularly bound through HBx in 
hepatitis B virus (HBV)-integrated cancer 
cells, creating the dependency of INSIG2 
on their cell proliferation. Abbreviations: 
ACTB, β-actin; HCC, hepatocellular 
carcinoma.
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protein has been reported to be involved in cancer progression 
by binding with p53, preventing nuclear entry and promoting the 
transition to S phase.40 Furthermore, HBx was known to bind to 
CDK2 proteins.22 We found that INSIG2 also bound to HBx pro-
tein, suggesting the complex formation among CDK2, INSIG2, 
and HBx protein. Although we are not able to show the further 
detailed molecular mechanisms of how this complex affects the 
CDK2 stability in HBV-integrated cells, this might explain, in part, 
the dependency of HBV-integrated cells on CDK2 for their cell 
proliferation.

In conclusion, our CRISPR loss-of-function screen identified 
INSIG2 as a candidate for the vulnerability in HBV-integrated liver 
cancer cells.
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