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MOTIVATION Alternative polyadenylation (APA) is a pivotal post-transcriptional mechanism that produces
multiple mRNA isoforms with diverse 30 UTR lengths, impacting gene expression. This diversity in mRNA
isoforms is not only crucial in cellular processes but also has implications in a range of human diseases,
including neurodegeneration and cancer. Understanding and leveraging APA dynamics could unlock
new therapeutic avenues. However, current computational methods for detecting cleavage and polyadeny-
lation sites (C/PASs) and analyzing 30 UTR length variations in bulk RNA-seq data face major hurdles, such
as inadequate C/PAS annotations, challenges in disentangling overlapping C/PASs, and difficulties in pin-
pointing specific APA site changes. These challenges become more pronounced in large-scale cohort
studies, such as ROSMAP, TCGA, and Answer ALS, which lack dedicated 30 UTR sequencing data. This
study introduces PolyAMiner-Bulk, a robust bioinformatics tool, to address these limitations. Utilizing an
advanced deep learning model, C/PAS-BERT, PolyAMiner-Bulk aims for precise C/PAS identification and
comprehensive APA analysis, bridging the gap in APA research using bulk RNA-seq data.
SUMMARY
Alternative polyadenylation (APA) is a key post-transcriptional regulatory mechanism; yet, its regulation and
impact on human diseases remain understudied. Existing bulk RNA sequencing (RNA-seq)-based APA
methods predominantly rely on predefined annotations, severely impacting their ability to decode novel tis-
sue- and disease-specific APA changes. Furthermore, they only account for the most proximal and distal
cleavage and polyadenylation sites (C/PASs). Deconvoluting overlapping C/PASs and the inherent noisy 30

UTR coverage in bulk RNA-seq data pose additional challenges. To overcome these limitations, we introduce
PolyAMiner-Bulk, an attention-based deep learning algorithm that accurately recapitulates C/PAS sequence
grammar, resolves overlapping C/PASs, captures non-proximal-to-distal APA changes, and generates visu-
alizations to illustrate APA dynamics. Evaluation onmultiple datasets strongly evinces the performancemerit
of PolyAMiner-Bulk, accurately identifying more APA changes compared with other methods. With the
growing importance of APA and the abundance of bulk RNA-seq data, PolyAMiner-Bulk establishes a robust
paradigm of APA analysis.
INTRODUCTION

Alternative polyadenylation (APA) is a post-transcriptional regu-

latory mechanism that cleaves a pre-mRNA molecule and ap-

pends adenosine residues at one of its potentially several cleav-
Cell Rep
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age and polyadenylation sites (C/PASs), ultimately resulting in

multiple mRNA isoforms with varying 30 UTR lengths. By control-

ling the length of the 30 UTR, APA allows the differential inclusion

of binding sites specific for microRNAs (miRNAs) and RNA-bind-

ing proteins.1 As more than half of human genes contain C/PASs
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and undergo APA, this widespread phenomenon plays critical

roles in development, and its misregulation has been implicated

in several diseases, including neurodegeneration and cancer.2–4

With increasing awareness of its role in human health and dis-

ease, researchers have recognized APA as a more critical

post-transcriptional mechanism than previously realized.

Consequently, the community has developed specialized deep

30 UTR sequencing protocols such as PAC-Seq, PAS-Seq, and

30READS to further study this phenomenon in various disease

models.5–7 These specialized APA-aware datasets represent

only a small fraction of all currently available transcriptomic

data, which are mostly generated using bulk RNA sequencing

protocols.

There is an immediate need for a robust computational model

that can leverage existing bulk RNA-seq datasets to decipher

APA dynamics accurately and precisely. For example, multio-

mics data consortiums like the Religious Orders Study/

Memory and Aging Project (ROSMAP) contain robust bulk RNA

sequencing (RNA-seq of the human frontal cortex for aging

and Alzheimer’s disease.8–10 However, they are notably devoid

of corresponding 30 UTR sequencing datasets required for the

direct study of APA dynamics. Furthermore, resequencing the

more than 800 samples from the ROSMAP data consortium is

cumbersome and impractical. Other data consortiums, like The

Cancer Genome Atlas (TCGA), which contains over 20,000 sam-

ples from control and primary cancer disease populations span-

ning 33 cancer types, and the Answer ALS data portal, which

contains over 1,200 samples from control and neurodegenera-

tive disease populations, can similarly benefit from such a

tool. 11,12

Current computational approaches for identifying C/PASs

and quantifying 30 UTR length changes from bulk RNA-seq

data fail to unravel tissue- and disease-specific APA dynamics

(Figure S1). The current generation of bioinformatics tools pre-

dominantly relies on (1) a priori C/PAS annotations, (2) tran-

script reconstruction, (3) poly(A)-capped reads, and (4) read

density fluctuations near the 30 UTR.13 Databases containing

predefined a priori C/PAS annotations are incomplete, contain

artificial noise, and do not converge with other a priori C/PAS

databases.14–21 Methods that try to infer 30 UTR usage by tran-

script reconstruction from bulk RNA-seq data are hampered by

inherent limitations of transcript assembly. In addition to being

computationally demanding when reconstructing lowly ex-

pressed transcripts, these tools often ignore isoforms with

shorter 30 UTRs, as they inaccurately assign reads when

shorter isoforms are embedded in longer isoforms.22,23 Further-

more, tools that only rely on poly(A)-capped reads or reads that

contain unmapped stretches of adenosines suffer from low

sensitivity, as these softclipped reads are relatively scarce in

standard bulk RNA-seq data due to the inherently reduced

read coverage and noise near transcript ends.24 Last, tools

whose core APA inference engine centers around detecting

read density fluctuations near the 30 UTR require good

coverage of the 30 UTR.25–27 This restriction limits the number

of qualified genes in a sample for APA analysis after discarding

genes with low read coverage. Furthermore, this class of tools

is particularly vulnerable to non-biological variability and read

density heterogeneity.
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In sum, the current generation of bioinformatics tools for iden-

tifying C/PASs and quantifying 30 UTR length changes from bulk

RNA-seq data are limited by poor C/PAS annotations that do not

converge with other C/PAS databases, intrinsic limitations of de

novo C/PAS detection, failure to deconvolute overlapping

C/PASs, and inability to detect intra-distal or intra-proximal

APA changes. Recently, an attention-based deep learning

model, DNABERT, has been used to detect alternative splice

sites from genomic sequences using a directional encoder rep-

resentation (bidirectional encoder representations from trans-

formers [BERT]) to capture a global understanding of genomic

sequences based on neighboring nucleotide contexts.28 This

landmark study showcases the power of attention-based

models, as they do not rely on motifs’ presence; instead, they

model DNA as a language and capture hidden genomic grammar

and the semantic dependency between multiple DNA sequence

features. However, no deep learning model with a similar atten-

tion-based architecture exists to identify C/PASs. The contextual

semantic insights garnered by such a model would overcome

the limitations of current C/PAS databases by filtering sequence

artifacts and retaining true C/PASs. Here, we develop a bioinfor-

matics algorithm and application, PolyAMiner-Bulk, that ad-

dresses not only these concerns but also offers an end-to-end

paradigm for the complete analysis of APA changes from input

bulk RNA-seq data. The methodical flow of PolyAMiner-Bulk is

illustrated in Figure 1. In brief, PolyAMiner-Bulk detects de

novo C/PASs, merges them with a priori C/PAS databases like

PolyA_DB and PolyASite, filters these candidate C/PASs using

the C/PAS-BERT deep learning model to create an accurate

and comprehensive C/PAS collection, deconvolutes overlap-

ping C/PASs, and employs vector projections to examine APA

dynamics throughout the gene body. A detailed description of

the proposed approach is given in the STAR Methods, with its

key merits illustrated in Figures 2, 3, and 4.

RESULTS

The attention-based C/PAS-BERT machine learning
model successfully filters artificial C/PASs and
recapitulates the underlying C/PAS grammar
Filtering artificial C/PASs is highly complex due to the existence

of polysemy and distant semantic relationships. Other re-

searchers have previously published a pre-trained bidirectional

encoder representation, named DNABERT, that forms global

and transferrable understanding of genomic DNA sequences

based on up- and downstream nucleotide contexts. In their

study, they have convincingly demonstrated that their model, af-

ter easy fine-tuning using small task-specific data, can achieve

state-of-the-art performance on many sequence prediction

tasks and can outperform other deep learning-based architec-

tures like convolutional neural networks (CNNs). For our C/PAS

filtering task, we fine-tuned the pre-trained DNABERT model

with task-specific data to create C/PAS-BERT. We chose this

approach for several reasons. First, BERT is a bidirectional

model, allowing it to take the entire context of a genomic

sequence into account, both left and right of the target C/PAS.

This feature is especially useful for detecting C/PAS motifs, as

these signals may appear in different positions within a genomic



Figure 1. Illustration of PolyAMiner-Bulk pipeline

(A) Input data.

(B) K-merized input sequence.

(C) BERT encoder architecture.

(D) Classification layer.

(E) Attention landscape.

(F) Amassed and filtered candidate C/PAS library.

(G) Mapping.

(H) APA quantification.

(I) Beta-binomial statistical testing.

(J) Vector projections. In brief, PolyAMiner-Bulk detects de novo C/PASs, merges them with an a priori C/PAS database like PolyA_DB or PolyASite, filters these

candidate C/PASs using the C/PAS-BERT machine learning model to create an accurate and comprehensive C/PAS collection, and employs vector projections

to examine APA dynamics in all genic regions.
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sequence. Second, DNABERT is pre-trained on large amounts of

genomic data, allowing it to learn a broad range of linguistic pat-

terns. This pre-training makes it easier to fine-tune the model

on a specific task, such as filtering artificial C/PASs. Third,

DNABERT can be fine-tuned on a relatively small amount of

labeled data, making it easier to train on C/PAS datasets that

may not be comparatively as large. Last, at the heart of

C/PAS-BERT is the attention mechanism, which differentially

weighs the importance of different parts of the input. This atten-

tion mechanism has been effective for a wide variety of natural

language processing tasks, and the task of deciphering gene-
regulatory code to filter artificial C/PASs out from the candidate

C/PAS library can similarly be modeled as a natural language

processing task.29–31 Just as one may skim through a text

corpus and focus on the most important sentences to generate

a sense of the main ideas, the attention mechanism in C/PAS-

BERT tries to focus on the most relevant parts (or motifs) of the

genomic input to filter out artificial C/PASs from the candidate

C/PAS library.

Our evaluation showed that C/PAS-BERT performedwell, with

an accuracy of 0.904, area under the curve of 0.960, F1 score of

0.904, precision of 0.904, and recall of 0.904. Unlike other deep
Cell Reports Methods 4, 100707, February 26, 2024 3



Figure 2. C/PAS-BERT successfully filters artificial C/PASs and recapitulates the underlying C/PAS grammar

(A) Venn diagram set analysis of PolyASite and PolyA_DB and comparisons of read density visualizations of in-house human brain-specific 30 UTR-seq data with

PolyASite and PolyA_DB. The limitations of current a priori C/PAS databases are the inclusion of C/PASs that are not present in the tissue of interest (brain in this

example) but present in other tissues, exclusion of novel C/PASs, and inclusion of misprimed C/PAS artifacts.

(B) Overall performance metrics of the C/PAS-BERT machine learning model.

(C) Attention landscapes for (non-)C/PAS-containing sequences.

(D) Genic C/PAS distribution before and after C/PAS-BERT filtering.

(E) Motif enrichment analysis of the high attention regions of C/PAS-containing sequences.
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learning models like CNNs, C/PAS-BERT is not entirely a ‘‘black

box’’ model because it is based on the transformer architecture,

which is a highly interpretable framework. The transformer archi-

tecture is designed to allow easy visualization and interpretation

of the model’s attention mechanism. Attention weights can be

visualized to understand which parts of the input sequence are

important for predicting the output. Within the context of our

task of filtering out artificial C/PASs from the candidate C/PAS li-

brary, we sought to visualize important regions from positively
4 Cell Reports Methods 4, 100707, February 26, 2024
labeled (C/PAS-containing) and negatively labeled (non-C/

PAS-containing) sequences as attention landscapes (STAR

Methods). Using this methodology, we retrieved two attention

landscapes: one for 101-bp non-C/PAS-containing sequences

and another for 101-bp C/PAS-containing sequences (where

the C/PAS was located directly at the center of the sequence)

(Figure 2C). Based on the non-C/PAS-containing sequence

attention landscape, we observed that the model placed consis-

tently high attention at the center of the sequence. Based on the



Figure 3. C/PAS clustering module

(A) Softclipped and a priori clustering mode.

(B) Softclipped-assisted clusteringmode. In thismode, PolyAMiner-Bulk only keeps softclipped-supported clusters, allowing for additional specificity in selecting

C/PASs supported by the dataset.

(C) Representative differential APA gene identified using the softclipped-assisted clustering mode.
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C/PAS-containing sequence attention landscape, we can appre-

ciate that the model learned three important genomic features

previously validated as necessary for C/PAS detection. Estab-

lished APA biology suggests that multiple sequence elements

are necessary for cleavage and polyadenylation.32 These ele-

ments include the C/PAS signal element that is located 15–

30 bp upstream of the cleavage site and downstream sequence

elements that are located around 20 bp downstream of the

cleavage site. Furthermore, the distance between the C/PAS

signal element and downstream sequence elements determines
the 30 end formation. These elements themselves and the dis-

tance between these elements are variable. As expected, we

observed consistently high attention upon (1) the C/PAS, which

is located at the center of the sequence, hereafter denoted as

position 0; (2) the 15- to 30-nt region upstream of the C/PAS;

and (3) the 0- to 20-nt region downstream of the C/PAS.

We performed motif enrichment analysis (STAR Methods) and

further characterized these upstream and downstream high-

attention regions within our C/PAS-containing genomic se-

quences to determine the active motifs of the C/PAS-BERT
Cell Reports Methods 4, 100707, February 26, 2024 5



Figure 4. Vector projection module

(A) Taking read density distribution accounts for all identified APA isoforms, unlike every other methodology that ignores APA changes involving intermediate

C/PASs.

(B) Taking C/PAS distribution accounts for non-equidistant 30 UTR length changes, unlike every other methodology that assumes C/PASs to be uniformly

distributed.

(C) Modified vector projection-based engine that takes into account both the distribution of C/PASs along a gene and the read density underlaying each

C/PAS.
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Figure 5. PolyAMiner-Bulk analysis of the bulk RNA-seq benchmarking dataset of HEK293 cells with and without siRNA-mediated knock-

down of RBM17

(A) Volcano plot of differentially expressed core APA factors.

(B) Volcano plot of differential APA genes.

(C) Representative differential APA gene with a positive PolyAIndex, suggesting 30 UTR elongation.

(D) Representative differential APA gene with a negative PolyAIndex, suggesting 30 UTR shortening.
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model. Based on established APA biology, we would expect up-

stream high-attention regions to contain well-conserved C/PAS

signal motifs like AATAA and downstream high-attention regions

to contain GT- or T-rich sequence elements. The results from our

motif enrichment analysis indicate that C/PAS-BERT recapitu-

lates this underlying APA biology. In the 15- to 30-nt region up-

stream of the C/PAS, we identified AATAAA and its

variants (e.g., AAATAA, ATAAAA, ATTAAA, ATAAAT, ATAAAG,

CAATAA, TAATAA, ATAAAC, AAAATA, AAAAAA, and AAAAAT)

as the upstream C/PAS signal (Figure 2D, left). Moreover, a

similar analysis on the nucleotide region downstream of the
C/PAS yielded GTTTTT and its variants as the downstream

C/PAS signal (Figure 2D, right). Retrieving these well-conserved

signals increases our confidence that C/PAS-BERT is actively

learning biologically important features to identify C/PASs.

Last, we plotted the distribution of C/PAS locations before and

after filtering with C/PAS-BERT (Figure 2E). Before filtering our

candidate C/PAS library with C/PAS-BERT, we found that

most of the candidate C/PASs were in unannotated or intronic

regions (�20,000 C/PASs each). Most surprisingly, the C/PASs

found in either the unannotated or intronic regions outnumber

the C/PASs found in the 30 UTR (�8,000). This suggests that
Cell Reports Methods 4, 100707, February 26, 2024 7
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there may be false-positive C/PASs in these regions and high-

lights the need for an efficient filtering model. After filtering our

candidate C/PAS library with C/PAS-BERT, we observed that

the number of C/PASs in the intronic and unannotated genic re-

gions significantly decreased, while the number of C/PASs in the

30 UTR remained stable. These data suggest that most filtered

C/PASswere from unannotated gene and intronic regions, which

we expected to contain the highest proportion of artificial

C/PASs. This finding further aligns with established APA biology

because the 30 UTR likely contains the lowest proportion of arti-

ficial C/PASs, and most C/PASs in the 30 UTR were preserved.

Figure S2 shows a representative differential APA gene identi-

fied using C/PAS-BERT. These findings not only converge with

established APA biology but also demonstrate the power of

attention-based deep learning models, as they do not rely on

the simple presence or absence of motifs. Rather, they employ

powerful contextual understanding to simultaneously under-

stand multiple semantic features (like element composition and

distance). Taken together, these results support the validity

and power of our C/PAS-BERT model, which contains an atten-

tion-based architecture to understand distinct DNA sequence

semantic relationships around C/PASs.

PolyAMiner-Bulk significantly enhances our ability to
decode APA dynamics from bulk RNA-seq data
We benchmarked PolyAMiner-Bulk against several of the most

common bulk RNA-seq-based APA methods to examine the

APA dynamics in a bulk RNA-seq dataset of immortalized human

embryonic kidney (HEK293) cells with and without small inter-

fering RNA (siRNA)-mediated knockdown of RNA-binding

motif protein 17 (RBM17) (GEO: GSE107648). Previous research

has shown this protein to regulate the expression and splicing

of RNA-processing proteins.33 Moreover, this RBM17 knock-

down and control contrast reveals differential expression of

several protein factors that facilitate APA.34 These differential

core APA factors include NUDT21, CSTF3, FIP1L1, PPP1CB,

CPSF3, PPP1CA, PAPOLA, CSTF2, PABPN1, RBBP6, and

PCF11 (Figure 5A). Previously published studies have shown

that differential expression of even just one core APA factor

like NUDT21 has been shown to substantially perturb APA dy-

namics.35–39 Since all of these core APA factors aid in the regu-

lation, detection, cleavage, and polyadenylation of a C/PAS, the

differential expression of 11 core APA factors strongly suggests

that the knockdown of RBM17 substantially perturbs APA

dynamics.

PolyAMiner-Bulk detected 3,795 significant differential APA

genes (DAGs), of which 1,752 genes exhibited a PolyAIndex

magnitude greater than 0.1 or less than �0.1. Of these DAGs,

1,245 underwent 30 UTR shortening, and 507 underwent 30

UTR lengthening (Figure 5B). These results are in line with expec-

tations and are not surprising.

PolyAMiner-Bulk identified 1,120 genes with 30 UTR short-

ening and 469 genes with 30 UTR lengthening that were not de-
Figure 6. Comparison of PolyAMiner-Bulk against current-generation

(A) UpSet plot analysis.

(B) Representative DAG identified by PolyAMiner-Bulk but not TAPAS, a current

(C) Representative DAG identified by TAPAS but not PolyAMiner-Bulk.
tected by other methods (Figure 6A). To validate these predic-

tions, we categorized the genes based on the number of

C/PASs and examined changes in read densities at individual

C/PASs between the control and RBM17 knockdown conditions

using heatmaps (Figure S3). The heatmaps in Figure S3A show

an increase in read density at the proximal C/PAS 1 and

decreased read density in at the distal C/PAS 2 for 30 UTR short-

ening genes with 2 C/PASs and vice versa for elongating genes.

Similar results were observed for genes with 3 C/PASs (Fig-

ure S3B). The differences in read density observed in these heat-

maps strongly support our predictions of 30 UTR shortening and

elongation.

To further validate the PolyAMiner-Bulk predictions, we visual-

ized the C/PAS read density fluctuations of representative DAGs

for control and RBM17 knockdown groups (Figures 5C and 5D).

For example, TAMM41, involved in mitochondrial translocator

assembly and maintenance, is a representative DAG with a pos-

itive PolyAIndex metric, suggesting that this gene is undergoing

30 UTR lengthening in the RBM17 knockdown condition

compared with the control condition (Figure 5C).40,41 On the

other hand, P3H2, which is involved in collagen chain assembly

and stability, is a representative DAGwith a negative PolyAIndex

metric, suggesting that this gene is undergoing 30 UTR short-

ening in the RBM17 knockdown condition compared with the

control condition (Figure 5D).42,43 We visualized both genes’

read density as bulk RNA-seq and pseudo-30 UTR-seq read

coverage and plotted their corresponding density proportions

as a heatmap. In the control condition, TAMM41 exhibits higher

read proportion density in its proximal 30 UTR C/PAS, whereas

TAMM41 shifts a proportion of its read density toward the distal

30 UTR C/PAS in the RBM17 knockdown condition. By contrast,

in the control condition, P3H2 exhibits higher read proportion

density in its distal 30 UTRC/PAS, whereas P3H2 shifts a propor-

tion of its read density toward the proximal 30 UTR C/PAS in the

RBM17 knockdown condition. These data-driven visualizations

support PolyAMiner-Bulk predictions.

To assess the performance of PolyAMiner-Bulk, we tested Da-

Pars, APAlyzer, and TAPAS, the currently utilized bulk RNA-seq-

based APA methods, on this RBM17 knockdown bulk RNA-seq

dataset.19,25,27 Other computational methods identified sub-

stantially fewer DAGs, which does not align with one’s expecta-

tions of differential APA dynamics in a setting where 11 core APA

factors are differentially expressed. DaPars identified 155 DAGs

(12 undergoing 30 UTR lengthening and 143 undergoing 30 UTR
shortening), APAlyzer identified 157 DAGs (30 undergoing 30

UTR lengthening and 127 undergoing 30 UTR shortening), and

TAPAS identified 546 DAGs (205 undergoing 30 UTR lengthening

and 341 undergoing 30 UTR shortening). After performing an Up-

Set plot set analysis, we observed that PolyAMiner-Bulk not only

identifies the largest number of unique DAGs but also identifies

the highest number of DAGs that were also identified by other

methods (Figure 6A). This increased sensitivity in DAG detection

can be attributed to (1) our tool’s ability to capture a more
tools

-generation tool.

Cell Reports Methods 4, 100707, February 26, 2024 9



(legend on next page)

10 Cell Reports Methods 4, 100707, February 26, 2024

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
comprehensive collection of C/PASs within a feature space and

(2) our vector projection-based approach that helps identify sig-

nificant intra-distal and intra-proximal APA changes that current

generation methods would have otherwise ignored. Capturing

and quantifying these APA dynamics may be biologically rele-

vant, as a loss (or gain) of these intra-distal and intra-proximal

C/PASs can lead to a loss (or gain) of a more significant number

of regulatory binding sites for regulatory molecules like RBPs or

miRNAs.

We further sought to validate PolyAMiner-Bulk predictions by

characterizing the unique genes identified by PolyAMiner-Bulk

and no other method as well as the unique genes identified by

other methods and not PolyAMiner-Bulk. The DAGs uniquely

identified by PolyAMiner-Bulk are well represented by visualiza-

tions of read density fluctuations of genes near their respective

C/PASs for control and RBM17 knockdown groups. DEF8,

involved in cation binding, is a representative gene classified

by PolyAMiner-Bulk but not observed in other methods like

TAPAS (Figure 6B).44 Compared with the control condition,

DEF8 undergoes 30 UTR shortening in the RBM17 knockdown

condition. In the control condition, DEF8 exhibits higher read

proportion density in its distal 30 UTR C/PAS, whereas DEF8

shifts a proportion of its read density toward the proximal 30

UTR C/PAS in the RBM17 knockdown condition. We also visual-

ized genes uniquely identified as undergoing significant APA

changes by methods other than PolyAMiner-Bulk, like TAPAS.

DOT1L, involved in methylating lysine 79 of histone H3 in nucle-

osomes, is one such representative gene (Figure 6C).45

PolyAMiner-Bulk does not classify DOT1L as a DAG since the

three samples do not uniformly undergo changes in read density

among the four C/PASs between each condition. The corre-

sponding read density and heatmap visualizations further

corroborate this result and support the notion that DOT1L was

mispredicted as a DAG by other methods. Comparisons be-

tween PolyAMiner-Bulk and other methods like APAlyzer and

DaPars demonstrate a similar pattern where read density visual-

izations advocate the merit of PolyAMiner-Bulk (Figure S4).

Revisiting published data using PolyAMiner-Bulk
reveals APA dynamics and pathways in scleroderma
pathology
Previously published studies have established that NUDT21

(also known as CFlm25), a core APA factor, directs differential

APA and that its suppression induces a collection of 30

UTR shortening events through loss of stimulation of distal

C/PASs.35,37,46–48 One such study examined the effects of

NUDT21 knockdown in normal skin fibroblasts and noted the

30 UTR shortening of key transforming growth factor b (TGF-b)-

regulated fibrotic genes.38 We used PolyAMiner-Bulk to re-
Figure 7. PolyAMiner-Bulk analysis of the bulk RNA-seq dataset of skin

(A) Volcano plot of differential APA genes.

(B) UpSet plot analysis of PolyAMiner-Bulk results against previously published

(C) NUDT21 motif and biding analysis of the unique 30 UTR shortening genes ide

(D) Representative differential APA gene identified by PolyAMiner-Bulk but not th

(E) Representative differential APA gene identified by the previously published st

(F) Panther Pathway over-representation analysis of the differential APA genes id

(G) Gene Ontology (GO:Biological Process over-representation analysis of the d
analyze this bulk RNA-seq dataset of skin fibroblasts with

and without siRNA-mediated knockdown of NUDT21 (GEO:

GSE137276) and compared the output with previously published

results.

PolyAMiner-Bulk detected 3,731 significant DAGs, of which

2,154 exhibited a PolyAIndex magnitude greater than 0.1. Of

these DAGs, 1,791 underwent 30 UTR shortening, and 363 un-

derwent 30 UTR lengthening (Figure 7A). In contrast, the previ-

ously published study reported only 1,038 DAGs, with 947 un-

dergoing 30 UTR shortening and 91 undergoing 30 UTR

lengthening (Figure 7B). Of note, PolyAMiner-Bulk not only reca-

pitulated more than 50% of the 30 UTR shortening DAGs identi-

fied by the other study but also identified 1,287 unique 30

UTR shortening DAGs. As discussed previously, our improved

C/PAS identification paradigm and vector projection-based

approach underlie PolyAMiner-Bulk’s increased sensitivity.

To substantiate our PolyAMiner-Bulk results, we character-

ized the unique DAGs. NUDT21 loss has been demonstrated

to cause widespread 30 UTR shrinking in many independent

studies, including the original study’s authors. PolyAMiner-Bulk

predicted 1,287 additional genes with 30 UTR shortening and

338 additional genes with 30 UTR elongation compared with

the original report. Despite predicting more genes with APA

changes, these findings are consistent with the previous obser-

vation of predominantly 30 UTR shrinking, indicating that

PolyAMiner-Bulk’s results are biologically and mechanistically

valid.

To validate PolyAMiner-Bulk predictions, we investigated the

distribution of the NUDT21 bindingmotif in the genes undergoing

30 UTR shortening and explored the distribution of the NUDT21

binding motif, UGUA, within their 30 UTR (Figure 7C). Earlier

studies showed that NUDT21 binds to the UGUA motif and re-

ported global 30 UTR shortening with a significant enrichment

of the UGUA motifs near the distal C/PASs compared with the

proximal C/PASs in NUDT21 knockdown models.35 Consistent

with this hallmark signature and in agreement with previous re-

ports, we found a significant enrichment of the UGUA binding

motif frequency upstream of the distal C/PASs compared with

the proximal C/PASs within the 30 UTR of unique DAGs that un-

dergo 30 UTR following siRNA-mediated knockdown of NUDT21

in skin fibroblasts. This observation supports a model whereby

NUDT21 is directed to distal sites to facilitate APA and suggests

that the 1,287 unique 30 UTR shortening DAGs identified by

PolyAMiner-Bulk are indeed targets of NUDT21 and actual

signals.

Furthermore, PolyAMiner-Bulk results are well supported by

the C/PAS read density visualizations of representative DAGs

for control and NUDT21 knockdown conditions. For example,

HECW2, involved in ubiquitin-protein ligase activity, is a
fibroblasts with andwithout siRNA-mediated knockdown of NUDT21

results.

ntified by PolyAMiner-Bulk.

e previously published study.

udy but not PolyAMiner-Bulk.

entified by PolyAMiner-Bulk.

ifferential APA genes identified by PolyAMiner-Bulk.
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representative DAG identified by PolyAMiner-Bulk and not by the

previously published study.49–51 This gene underwent 30 UTR
shortening under the NUDT21 knockdown condition compared

with the control condition, a finding that is corroborated by

read density visualizations (Figure 7D). Under the control condi-

tion, HECW2 exhibits higher read proportion density in its distal

30 UTR C/PAS, whereas HECW2 shifts a proportion of its read

density toward the proximal 30 UTR C/PAS under the NUDT21

knockdown condition. Of significant interest, the authors of

this previously published study themselves have independently

identified HECW2 as being involved in scleroderma pathogen-

esis in a separate study.52 We also visualized genes uniquely

identified by the previously published study. APTX, involved in

single-stranded DNA repair, is one such representative DAG.
53 PolyAMiner-Bulk does not classify APTX as a DAG since the

five samples for each condition do not uniformly undergo

changes in read density across the three C/PASs. The corre-

sponding read density and heatmap visualizations further

corroborate this result and support the merit of PolyAMiner-

Bulk in minimizing false positives (Figure 7E).

Last, we performed functional enrichment analyses to

compare the biological insights from the DAGs identified by

PolyAMiner-Bulk with those identified by the previously pub-

lished study. We first determined whether any subset within

the 30 UTR shortening DAGs identified by PolyAMiner-Bulk

shared more or fewer genes with the ‘‘Panther Pathway’’ data-

base than one would expect by chance. While several path-

ways, like TGF-b signaling and T cell activation, were enriched

by both PolyAMiner-Bulk and the previously published study,

other pathways, like phosphatidylinositol 3-kinase (PI3K), Ras,

Hedgehog, fibroblast growth factor (FGF), and platelet-derived

growth factor (PDGF) signaling pathways were uniquely en-

riched in the PolyAMiner-Bulk 30 UTR shortening DAG set (Fig-

ure 7F). Furthermore, over-representation functional analysis

against the ‘‘Gene Ontology: Biological Processes’’ database

reveals significant enrichment for post-transcriptional regula-

tion of gene expression, protein polyubiquitination, mRNA pro-

cessing, and positive regulation of catabolic processes in the

PolyAMiner-Bulk 30 UTR shortening DAG set (Figure 7G). Taken

together, these results demonstrate that identifying these addi-

tional DAGs increases our understanding of the underlying

biology and reveals previously underappreciated APA dy-

namics in scleroderma.

DISCUSSION

Limitations of the study
We made every effort within our purview to ensure the rigor and

reliability of our computational findings. Although experimental

validations were not feasible at this juncture, we are confident

in the foundational strength of our computational model. It is

important to acknowledge that, as with any methodological

approach, there is a potential for false positives. This is particu-

larly pertinent in the context of bulk RNA-seq data, which can

have challenges with 30 UTR coverage, often resulting in vari-

ability and noise. We address this by focusing on datasets with

high sequencing depth, which significantly mitigates these is-

sues. Nonetheless, we recognize the value of orthogonal ap-
12 Cell Reports Methods 4, 100707, February 26, 2024
proaches to validate the computational predictions of

PolyAMiner-Bulk.

Identifying C/PASs is highly complex due to the existence of

polysemy and distant semantic relationships. It has been

accepted that C/PASs universally contain upstream APA signal

motifs and downstream APA signal motifs. However, the simple

presence of these established APA signal motifs is not sufficient

for C/PAS identification. For example, for a genomic site to be

considered a C/PAS, certain upstream and downstream motifs

may need to be paired together in a particular order and distance

away from the genomic site (much like words in a sentence) for

the APA machinery to classify the genomic site as a C/PAS.

Due to these reasons, deciphering gene-regulatory code to iden-

tify C/PASs can be modeled as a natural language processing

(NLP) task.

BERT is a languagemodel that uses a transformer architecture

to learn contextual relationships between words in a sentence

and has achieved state-of-the-art results on many bench-

marking NLP tasks. DNABERT is a pre-trained BERT model

that can provide a global and transferrable understanding of

genomic DNA sequences based on upstream and downstream

nucleotide contexts. Ji et al.28 have demonstrated that easy

fine-tuning of DNABERT with small task-specific data can

achieve state-of-the-art performance onmany sequence predic-

tion tasks, outperforming other deep learning-based architec-

tures such as CNNs. We realized that the task of identifying

C/PASs, which has long been a challenge in the APA field, can

be addressed by fine-tuning the pre-trained DNABERT model

with task-specific data. Thus, we used a fine-tuned variant of

DNABERT, called C/PAS-BERT, for our analysis. Compared

with other computational approaches, C/PAS-BERT is better

equipped to capture the elasticity of the GU-rich and U-rich ele-

ments that support C/PAS identification, as the relative position

of these elements can vary from one C/PAS to another. Our

attention-based learningmodel can learn and adapt to these var-

iations, as evidenced by the attention heat drawn toward the

U/GU-rich and AATAAA regions (Figures 3C and 3E).

CNN models, on the other hand, are commonly used for com-

puter vision tasks, such as image classification and object

detection, but can also be used for NLP tasks, such as sentiment

analysis and named entity recognition. While both BERT and

CNN architectures are powerful deep learning models that can

be used for a wide range of NLP tasks, including identifying

C/PASs, they are not interchangeable. It is important to choose

the right model architecture for the specific task at hand, based

on factors such as the nature of the data, the size of the dataset,

and the complexity of the task.

We consider BERT to be better suited for our task for several

reasons. (1) Bidirectional modeling: BERT is a bidirectional

model, meaning it can consider the entire context of a sequence

of words, both left and right of the target C/PAS. This is espe-

cially useful for detecting C/PAS signals, as these signals may

appear in different positions within a genomic sequence. (2)

Pre-training: BERT is typically pre-trained on large amounts of

text data, allowing it to learn a broad range of linguistic patterns.

This pre-training makes it easier to fine-tune the model on a spe-

cific task, such as identifying C/PASs. (3) Attention mechanism:

BERT uses an attention mechanism to identify which words in a
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sequence are most important for a given task. This allows it to

focus on the most relevant parts of a genomic sequence when

identifying C/PASs. (5) Transfer learning: BERT can be fine-tuned

on a relatively small amount of labeled data, making it easier to

train on C/PAS datasets that may not be very large. Neverthe-

less, future studies with careful and thorough benchmarking ex-

periments to compare machine learning models with different

underlying architectures should be performed.

Conclusion
PolyAMiner-Bulk significantly advances our ability to decode

APA dynamics from bulk RNA-seq data (summarized in

Table S1). For instance, this is the first tool with an attention-

based machine learning architecture to identify C/PASs. Atten-

tion-based models do not rely on motifs’ presence; instead,

they model DNA as a language and capture the hidden grammar

and the semantic dependency between multiple DNA sequence

features. The contextual semantic insights garnered by such a

model overcome the limitations of current C/PAS databases by

separating sequencing artifacts and other noise from the true

C/PASs. Furthermore, PolyAMiner-Bulk employs a soft-clipped

read filtering module to deconvolute overlapping C/PASs. In

addition, using vector projections, PolyAMiner-Bulk accounts

for all APA changes, including non-proximal to non-distal

changes, and can distinguish the most distal to most proximal

changes from most distal to intermediate site changes irrespec-

tive of absolute change magnitude. This sensitivity is crucial for

estimating the true breadth of 30 UTR shortening and elongation.

In addition, our tool takes raw FASTQ or processed alignment

files as input and offers an end-to-end APA analysis paradigm.

PolyAMiner-Bulk not only identifies DAGs but also generates

(1) read proportion heatmaps and (2) read density visualizations

of the corresponding bulk RNA-seq tracks and pseudo-30 UTR-
seq tracks, allowing users to appreciate the differential APA

dynamics.

Analysis of bulk RNA-seq datasets of HEK cells with

and without siRNA-mediated knockdown of RBM17 and skin fi-

broblasts with and without siRNA-mediated knockdown of

NUDT21 strongly supports the value of PolyAMiner-Bulk, as

we demonstrated a substantial increase in the number of dy-

namic APA events detected. With the emerging importance of

APA in understanding development and disease and large-scale

availability of bulk RNA-seq data consortia like TCGA,

ROSMAP, and the Answer ALS data portal, PolyAMiner-Bulk es-

tablishes a paradigm and facilitates a deeper understanding

of APA dynamics across various diseases, from cancer to

neurodegeneration.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

bulk RNA-seq dataset of immortalized human

embryonic kidney (HEK293) cells with and

without siRNA-mediated knockdown of

RNA-binding motif protein 17 (RBM17)

De Maio et al.33 GSE107648

bulk RNA-seq dataset of skin fibroblasts with

and without siRNA-mediated knockdown of NUDT21

Weng et al.38 GSE137276

Software and algorithms

PolyAMiner-Bulk This paper https://github.com/YalamanchiliLab/PolyAMiner-Bulk.git

https://doi.org/10.5281/zenodo.10372661

DaPars Xia et al.25 https://github.com/ZhengXia/dapars

APAlyzer Wang and Tian19 https://bioconductor.org/packages/release/bioc/

html/APAlyzer.html

TAPAS Arefeen et al.27 https://github.com/arefeen/TAPAS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Hari Krishna Yalaman-

chili (Hari.Yalamanchili@bcm.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This study employed existing datasets that are publicly accessible. The specific accession numbers for these datasets are

detailed in the key resources table.

d All original code developed for this study has been deposited in a GitHub repository and can be freely accessed at https://

github.com/YalamanchiliLab/PolyAMiner-Bulk.git. In addition, we have archived this code in Zenodo, an open-access repos-

itory, available at https://doi.org/10.5281/zenodo.10372661.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

C/PAS-BERT
When we compared two of the field’s most widely used predefined human-specific a priori C/PAS databases, PolyASite and

PolyA_DB, we observed that both databases share 182,608 elements that constitute �30% of PolyASite and �60% of PolyA_DB

(Figure 2A). This finding strongly suggests that, although both databases are based on 30UTR-seq (rather than bulk RNA-seq) tech-

nology, they do not capture all C/PASs and most likely contain false-positive C/PAS artifacts. In addition, our in-house human brain-

specific 30UTR-seq data affirms the limitations of current a priori C/PAS databases (Figure 2B). Taken together, these findings show-

case the limitations of current a priori C/PAS databases: (i) Inclusion of C/PASs that are not present in the tissue-of-interest (brain in

this example) but are present in other tissues, (ii) Exclusion of novel C/PASs, and (iii) Inclusion of misprimed C/PAS artifacts.

To filter false-positive C/PAS artifacts, we extended the pre-trained DNABERT model with task-specific data and developed

C/PAS-BERT, an attention-based deep learning model that understands distinct DNA sequence semantic relationships around

C/PASs. Candidate C/PASs that both PolyASite and PolyA_DB shared were considered positively labeled C/PASs. Intergenic sites

not within 3000 kb upstream and downstream of any annotated gene were considered negatively labeled C/PASs. 6-mer nucleotide

sequence representationswere first generated by querying for nucleotides that are 50 bp upstreamand downstreamof the candidate

C/PAS and then walking over these 101 nucleotide-long DNA sequences with a 6-nucleotide long sliding window. Breaking DNA se-

quences into strings of every 6-nucleotide length and using them as vectors allows for sensitive and specific methods for analyzing

genomes. The human dataset consisted of 633,786 tuples (6-mer nucleotide sequence representation, C/PAS label). We ensured
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that this dataset was balanced – the number of positively and negatively labeled tuples was equal. 90% of this overall dataset was

used for k-fold cross-validation, while the remaining 10% was used as an independent test set. We employed 12-fold cross-valida-

tion to ensures low time complexity for the training process. The resultant C/PAS-BERT model helps to overcome the limitations of

current C/PAS databases by filtering sequencing artifacts and better understanding APA dynamics in gene regulation.

PolyAMiner-Bulk pipeline
PolyAMiner-Bulk takes raw FASTQ or processed BAM alignment files as input and offers an end-to-end APA analysis paradigm. We

first generate an organism-specific candidate C/PAS annotation library that consists of a prioriC/PASs and de novoC/PASs. A priori

C/PASs are sourced from pre-existing C/PAS annotation libraries like PolyA_DB and PolyASite, while de novo C/PASs are sourced

directly from the dataset itself. C/PAS-BERT subsequently filters artificial C/PASs out from this candidate C/PAS library to retain only

high confidence C/PASs. Since alternative polyadenylation is a relatively non-specific process by which cleavage and polyadenyla-

tion can occur within a range of a few nucleotides from a C/PAS, we then deconvolute overlapping C/PASs. These high confidence,

deconvoluted C/PAS annotations are overlayed across the dataset to create a read density matrix for each C/PAS, for each gene, for

each sample. Lastly, we perform vector projection calculations and statistical testing on this read density matrix to collapse these

individual C/PAS-level metrics into a singular gene-level PolyAIndex metric that reflects the gene’s dynamic APA usage between

conditions. Furthermore, PolyAMiner-Bulk not only identifies differential APA genes but also generates (i) read proportion heatmaps

and (ii) read density visualizations of the corresponding bulk RNA-seq tracks and pseudo-30UTR-seq tracks, allowing users to appre-

ciate the differential APA dynamics.

Step 1: Processing raw reads
PolyAMiner-Bulk can take either the raw read files in fastq format or themapped alignment files in bam format as input. Raw reads are

mapped to the reference genome of origin using STAR and the resulting alignment files (in bam format) are sorted and indexed using

samtools. 54,55

Step 2: Extracting de novo C/PASs
PolyAMiner-Bulk amasses a candidate C/PAS collection from two sources: (i) directly from the input data and (ii) indirectly from ex-

isting C/PAS databases. In addition to incorporating a priori C/PASs into our candidate C/PAS library for downstream C/PAS-BERT

mediated filtering, PolyAMiner-Bulk detects de novo C/PASs using softclipped read detection. The entirety of a read need not be

completely aligned to a reference as the read may contain additional bases that are not in the reference or may be missing bases

in the reference. This softclipped region phenomenon underscores the de novoC/PAS extraction engine of PolyAMiner-Bulk. Candi-

date de novo C/PASs are defined as reads from BAM read alignment files whose ends are softclipped regions containing a softclip-

ped length-dependent proportion of adenosines (or thymines, depending on the strandedness of sequencing). For example, a soft-

clipped tail of >12 nucleotides must contain at least 75% adenosines to be classified as a candidate de novo C/PAS. Shorter

softclipped tails require a proportionally greater percentage of adenosines. The default settings for this user-adjustable parameter

are at least 90% adenosines for a 4 nucleotides long-softclipped tail, at least 85% adenosines for a 4–8 nucleotides long-softclipped

tail, at least 80% adenosines for an 8–12 nucleotides long-softclipped tail, and at least 75% adenosines for a >12 nucleotides long-

softclipped tail. This loose thresholding approach is crucial as the poly(A) stretch may not necessarily continue until the end of the

read because sequencing can continue into primer sequences at the end of fragments, sequencing quality of stretches of the

same nucleotide may rapidly deteriorate, and sequencing errors might disrupt the poly(A) stretch.

Step 3: Filtering candidate C/PASs with C/PAS-BERT
These candidate de novo C/PASs from softclipped-based C/PAS detection are merged with our collection of a priori C/PASs from

pre-existing C/PAS annotation databases like PolyA_DB and PolyASite to generate our candidate C/PAS library. We subsequently

employ C/PAS-BERT to filter artificial C/PASs out from this candidate C/PAS library and to retain only high-confidence C/PASs. Of

note, C/PAS-BERT intends to filter artificial C/PAS noise rather than identify de novo C/PASs. Current tools – like methods that rely

only poly(A)-capped reads – use a small subset of this candidate C/PAS library, which does not satisfactorily saturate the C/PAS

feature space and leads to poor performance. However, simply concatenating all C/PASs identified by each approach into a singular

C/PAS library introduces noise and false-positive C/PASs. The C/PAS-BERT filtering module overcomes this issue by reducing the

noise and number of false-positive C/PASs from our candidate C/PAS library.

Step 4: Deconvoluting overlapping C/PASs
Since alternative polyadenylation is a relatively non-specific process bywhich cleavage and polyadenylation can occur within a range

of a few nucleotides from a C/PAS, we equipped PolyAMiner-Bulk with two C/PAS deconvolution modes: (i) softclipped and a priori

clustering, as well as (ii) softclipped-assisted clustering (Figure 3).De novo and a prioriC/PASs are clustered in bothmodes based on

a user-defined cluster distance parameter (default = 30 bp), and PolyAMiner-Bulk selects the most distal C/PAS within a cluster.

Notably, in the softclipped-assisted clustering mode, PolyAMiner-Bulk only keeps softclipped-supported clusters (Figures 3A and

3B). This mode allows for additional specificity in selecting C/PASs supported by the dataset. Other parameters are included to refine

this specificity even further, such as a parameter for the minimum number of softclipped reads required for a cluster to be kept and
Cell Reports Methods 4, 100707, February 26, 2024 e2
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another parameter for the minimum number of unique samples that must meet the criteria mentioned above. Figure 3C shows a

representative differential APA gene identified using the softclipped-assisted clustering mode.

Step 5: Quantifying APA dynamics using vector projections
We previously deployed a vector projection based PolyAIndex engine to analyze differential APA dynamics from 3’sequencing

data.56 In brief, our first-generation PolyAIndex metric ranks genes by the magnitude of APA changes along a genic region. This

ranking is critical for any downstream analysis that takes rank as its input, such as Gene Set Enrichment Analysis (GSEA). Further-

more, this vector projection-based approach accounts for ALL identified APA isoforms, unlike other methodologies that ignore APA

changes involving intermediate C/PASs (Figure 4A).

We havemodified this PolyAIndex engine for PolyAMiner-Bulk, so that our second-generation PolyAIndexmetric also accounts for

the distribution of C/PASs along a gene (Figures 4A and 4B). Let us take two scenarios to illustrated in Figure 4 the utility of this

change: (i) In scenario 1, a gene shifts APA usage between two neighboring C/PASs between two conditions, and (ii) In scenario

2, a gene shifts APA usage between two faraway C/PASs between two conditions (Figure 4B). The revised engine will take the prox-

imity of these C/PASs into account and report the gene in scenario 1 as having a smaller PolyAIndex metric, despite the gene having

the samemagnitude of read density change in both scenarios. This metric better reflects underlying post-transcriptional biology as a

loss (or gain) of C/PASs that are farther away could result in the loss (or gain) of a more significant number of regulatory binding sites

for RBPs or miRNAs.

To calculate the PolyAIndex of a gene, PolyAMiner-Bulk first projects the magnitude of C/PAS usage change to a reference C/PAS

in an n-dimensional vector space, where n is the number of C/PASs in the gene. Then, it computes the difference in projections of

these vectors between conditions and collapses them into a single gene-level magnitude PolyAIndex metric (Figure 4C). A positive

PolyAIndex metric suggests overall 30UTR lengthening, while a negative PolyAIndex metric suggests overall 30UTR shortening.

Step 6: Statistical testing
A beta-binomial test is used to determine the significance of each PolyAIndexmetric. Let J˛N denote the number of C/PAS reads, U

˛N denote the total number of reads spanning across all C/PASs, andN the set of natural numbers. Assume J is distributed accord-

ing to a binomial distribution with success probability r ˛ ½0;1�, pðJj r UÞ =
�
U
J

�
rJð1 � rÞU� J. To capture the variations between bio-

logical replicates, we model r through a beta distribution with a> 0 and b> 0, pðrja bÞ = pa� 1ð1 � pÞfb� 1gBða; b Þ� 1, where

Bða;b Þ� 1 is the beta function. For numerical stability, we can parametrize the beta distribution to p = aða+bÞ� 1;r = ða+bÞ� 1, where

p is the expectation of the r and r represents the dispersion. The log likelihood of the observed data is given by:

L =
XN
i = 1

"XJi
c = 0

logðp + crÞ +
XUi � Ji � 1

c = 0

logð1 � p + crÞ �
XUi � 1

c = 0

logð1 + crÞ
#

Assuming there are G groups in an experiment, we let Lg be the maximal log likelihood value for group g = 1,., G. We propose to

test the homogeneity of the groups by likelihood ratio test, where the log likelihood ratio statistics S is given by 2ð� L0 +
P

gLgÞ. S is

approximately c2 distribution with 2 ðG � 1Þ degrees of freedom. The null hypothesis of this test is that the expectation and disper-

sion of the different groups are equal. Every gene-level APA change is multiple testing corrected using Benjamini-Hochberg proced-

ure.57 Gene-level APA changes with an adjusted p value <0.05 are predicted as significant APA changes.

Step 7: Visualizing APA changes
After calculating PolyAIndex metrics, PolyAMiner-Bulk can further investigate APA dynamics of individual genes through its visual-

izationmodule. We implement pyGenomeTracks andMatplotlib to generate gene-level read density coverage plots and correspond-

ing C/PAS usage heatmaps from the bulk RNA-seq input data.58–60 Notably, we generate two gene-level read density coverage plots:

(i) one showing the entire bulk RNA-seq read density coverage and (ii) the other showing the C/PAS subset of the read density to

mimic 30UTR read density coverage.

Attention landscape

To generate an attention landscape, we scored each nucleotide of the input sequence using the self-attention mechanism. We first

extracted the attention of the ‘‘entire sequence’’ on the k-mer subsequences and used it as an importance measure. Then, we con-

verted the attention score from k-mer to the individual nucleotide by averaging the attention scores for all k-mers that contain the

nucleotide. Lastly, we plotted attention for individual nucleotides as a heatmap for direct visualization.

Motif enrichment analysis

With an array of attention scores as input, we found contiguous high attention sub-regions from our C/PAS containing sequences.We

then extracted fixed, equal length sequences centered at a high-attention motif instance. To obtain a count of instances between

input sequences and motif patterns, we used the Aho-Corasick algorithm for efficient multi-pattern matching and subsequently per-

formed a hypergeometric test to find significantly enriched motifs in positive sequences with an adjusted p value threshold of 0.05.61
e3 Cell Reports Methods 4, 100707, February 26, 2024
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QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical analysis in this study involved several steps, including the development and validation of the C/PAS-BERT machine

learning model, the application of PolyAMiner-Bulk for APA analysis, and subsequent comparisons with existing tools. The details

of the statistical methods, software, and relevant parameters are outlined below.

C/PAS-BERT model development and validation
Dataset composition

The C/PAS-BERT model was trained on a balanced dataset comprising 633,786 tuples of 6-mer nucleotide sequence representa-

tions and corresponding C/PAS labels. The dataset was divided into a training set (90%) for 12-fold cross-validation and an indepen-

dent test set (10%).

Model training

The DNABERT model was extended with task-specific data to create C/PAS-BERT, an attention-based deep learning model. The

training process involved 12-fold cross-validation to ensure low time complexity. The model aimed to distinguish positively labeled

C/PASs shared by PolyASite and PolyA_DB from negatively labeled intergenic sites.

Performance metrics

The overall performance of the C/PAS-BERT machine learning model was assessed using various metrics, which were detailed in

Figure 2B.

PolyAMiner-Bulk APA analysis pipeline
Input data processing

Raw FASTQ or processed BAM alignment files were used as input for PolyAMiner-Bulk. Raw reads were mapped to the reference

genome using STAR, and resulting alignment files were sorted and indexed using samtools.

De novo C/PAS detection

PolyAMiner-Bulk detected de novo C/PASs using softclipped read detection, considering softclipped tails with a length-dependent

proportion of adenosines. Candidate de novo C/PASs were defined based on softclipped regions in BAM read alignment files.

C/PAS-BERT filtering

The candidate de novo C/PASs were merged with a priori C/PASs from databases like PolyA_DB and PolyASite. C/PAS-BERT was

employed to filter artificial C/PASs, ensuring the retention of high-confidence C/PASs.

Clustering and vector projection

Two C/PAS deconvolution modes were implemented: softclipped and a priori clustering, as well as softclipped-assisted clustering.

Softclipped-assisted clustering mode retained only softclipped-supported clusters for additional specificity. Vector projection cal-

culations were performed to quantify APA dynamics at the gene level, considering C/PAS distribution and read density.

Statistical testing

A beta-binomial test was used to determine the significance of each PolyAIndex metric. Likelihood ratio tests were employed to

assess the homogeneity of groups, and significance was determined based on chi-square distribution. Multiple testing correction

using the Benjamini-Hochberg procedure was applied.

Visualization

APA changes were visualized using pyGenomeTracks andMatplotlib, generating gene-level read density coverage plots and C/PAS

usage heatmaps. Attention landscapes were generated by scoring each nucleotide using the self-attention mechanism.
Cell Reports Methods 4, 100707, February 26, 2024 e4
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