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SUMMARY
Method development for mass spectrometry (MS)-based thermal shift proteomic assays have advanced to
probe small molecules with known and unknown protein-ligand interaction mechanisms and specificity,
which is predominantly used in characterization of drug-protein interactions. In the discovery of target and
off-target protein-ligand interactions, a thorough investigation of method development and their impact on
the sensitivity and accuracy of protein-small molecule and protein-protein interactions is warranted. In this
review, we discuss areas of improvement at each stage of thermal proteome profiling data analysis that in-
cludes processing of MS-based data, method development, and their effect on the overall quality of thermal
proteome profiles. We also overview the optimization of experimental strategies and prioritization of an
increased number of independent biological replicates over the number of evaluated temperatures.
INTRODUCTION

Accurately identifying safe and potent small molecules that

affect disease-dependent biology is a critical task for pharma-

ceutical companies, but it presents significant challenges due

to the limitations of currently available approaches.1,2 Despite

unpredictable timelines for target deconvolution, phenotypic

drug discovery was instrumental in discovering potent com-

pounds that typically require further chemical optimization.1

Phenotypic drug discovery is a hypothesis-free method that be-

gins with a disease and a relevant cellular or animal model to

screen for compounds that can modulate the disease pheno-

type.3 In contrast, target-based drug discovery has shown

promise in situations where known and heavily studied targets

are involved, such as specific HIV protease inhibitors and drugs

that target the renin-angiotensin system for hypertension.1,4

Recent reviews have shown that both approaches are useful in

label-based and label-free assays, with target engagement and

verification being essential for small-molecule candidates.1 Tar-

geted cellular thermal shift assays (CETSA) were introduced in

2013 using western blot to measure protein-drug interactions

and later expanded to proteome-level studies using mass spec-

trometry (MS)-based techniques.5,6 Afterward, thermal prote-

ome profiling (TPP) enabled a proteome-wide assessment of

the effect of small molecules on protein thermal stability.5 The

suggested fit for TPP is a sigmoidal fit, which follows thermody-

namic theory.7 TPP was further advanced to identify possible

targets, off-targets, and the effect of small molecules on disease

phenotypes by characterizing the level of protein unfolding and

aggregation within cell lysates, cells, physiological fluids, and tis-

sues.1,6,8–14 CETSA is directly translatable to clinical settings,

with no protein or target modifications necessary.4,11,15 One-
Cell Repo
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dimensional (1D) MS-based TPP) assays, relying on the effect

of temperature-based protein unfolding and aggregation, have

been used to elucidate binding and affinity behavior.5

One of the main parameters proposed by TPP approaches to

detect a thermal shift is the melting temperature, or Tm, which is

the temperature recorded at half of the initial protein abun-

dance.5 The Tm, which can also be measured at the inflection

point of a sigmoid curve, represents the temperature at which

50% of the initial protein abundances at the lowest temperature

is recorded.13 Two-dimensional assays have focused on moni-

toring both temperature- and compound concentration-depen-

dence on protein targets.11 Thermal shift assays can identify

compounds that alter the thermal stability of the protein and pro-

vide insight into protein-protein interactions (PPI) and protein-

ligand/co-factor interactions in various biological matrices,

including tissues, intact cells, or cell lysates.11,16 A disadvantage

of one-dimensional (2D) thermal shift assays is the filtering

criteria based on curve-quality-parameters. Although this

filtering step is useful to ensure a reliable measure of Tm and

decrease the number of false positives, it can also increase the

possibility of having false negatives, although the inclusion of

false negatives is noted as a rare occurrence.17,18 Moreover,

peptide-level TPP has shown differential profiles from post-

translational modifications (PTMs) and proteoforms.19–22

Based on the previous findings, non-parametric analysis of

response curves (NPARC) was implemented to compare protein

interactions from curve-fitting parameters rather than Tm.
2

NPARC provides a statistical summary that implements hypoth-

esis testing using an F-statistic, which is computationally stable

(i.e., less model convergence issues).2 Specifically, the imple-

mentation of TPP using a specific temperature range does not

ensure that all proteins would unfold and aggregate within this
rts Methods 4, 100717, February 26, 2024 ª 2024 The Author(s). 1
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Figure 1. Schematic representation of workflows

(A) General experimental workflow for one-dimensional thermal proteome profiling and (B) general experimental workflow for two-dimensional thermal proteome

profiling.
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temperature window.2,23 Several groups have noted that for up

to 20% of the analyzed proteome, Tm values are not determined

because they are presumably outside of the typically used tem-

perature ranges.10,24 More recently, a new statistical method

based on a hierarchical Gaussian process (GPMelt) was devel-

oped to analyze the melting profiles without any fitting, filtering,

or reliance on Tm.
23 GPMelt relates back to hypothesis testing in

a similar way to NPARC and the Bayesian semi-parametric

model developed for proteomic profiling.23,25 Figure 1A demon-

strates the outline of the 1D thermal shift assay experimental

workflow, where the schematic shows cell cultures treated

with either a compound of interest or vehicle as the starting bio-

logical material, which is harvested, lysed, and aliquoted into

eight or more identical pairs of samples each depending on the

selected tandem mass tag (TMT)-plex. Each of these ten or

more pairs of samples is then subjected to a heating challenge

at a specific temperature. Initial publications suggest digestion

followed by TMT10-plex (1D- or 2D-assay) stable isotope label-

ing while allocating one TMT tag per temperature is performed

prior to bottom-up liquid chromatography-tandem mass spec-

trometry (LC-MS/MS)-based proteomic profiling.5,9,26–28 With

the availability of TMT 16- and 18-plex, more recent work has

shown increased throughput with 2D-assays.29 To evaluate pro-

tein interactions, data processing, curve fitting, and visualization

are typically performed to determine possible targets and off-

targets.

Figure 1B describes a 2D thermal shift assay experimental

workflow, where both temperature and drug concentration

vary, allowing for multiplexing, higher throughput, and increased
2 Cell Reports Methods 4, 100717, February 26, 2024
sensitivity.16 Instead of running vehicle and treated conditions in

different TMT-plexes, 2D-TPP allows both conditions to be

measured within the same TMT-plex.16 In addition, the imple-

mentation of different drug concentrations permits calculation

of compound affinity. Though 2D-TPP is flexible toward

other experimental configurations—such as time points after

treatment, a combination of compounds, and other varia-

tions—curves are no longer visualized.16

MS-centered method development can improve
sensitivity for interacting proteins with thermal shift
assays
The reviewed thermal shift assays utilize mMS acquisition set-

tings employing data-dependent acquisition (DDA) approaches.

DDA is typically preferred for its capability to detect low-abun-

dance peptides, thus offering improved structural information

for the identified peptides.8,30,31 DIA is usually applied in label-

free quantitative approaches because of its consistent quantita-

tive performance across replicates and samples, especially for

low-abundance peptides and proteins.8,30,31 In a mass spec-

trometer, DDA involves a full survey single-stageMS scan, where

the instrument typically selects higher abundance precursor ions

to fragment and perform tandemMS2 scans for further fragmen-

tation. However, DDA approaches are susceptible to precursor

ion interference, limited reproducibility due to dynamic exclusion

and stochastic ion selection for MS2 fragmentation, and limited

accuracy of quantification for peptides with substantially varied

intensities. Peptide co-isolation has a significant impact on ther-

mal shift assays due to ratio compression, which may lead to an



Figure 2. Challenges for thermal shift assays for each of the replicates acquired for the same sample type (i.e., either treated or control)

(A) The implementation of carrier proteomes into adjacent channels; (B) the presence of missing values; (C) aggressive filtering due to missing values and channel

interference; and (D) overfitting the data with more flexible models.

Colors indicate separate temperature challenges; circles and triangles represent two biological replicates.
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underestimation of the true fold-change in peptide abundance

unless the issue is diminished using substantial fractionation or

alternative techniques.8,10,32,33 Two types of ratio compression

effects are ion suppression and ion interference, the former being

onepeptide ion that co-eluteswith another peptide ion (or several

peptides or other ion species) and, thus, lowering the ion signal

and affecting the accuracy of the quantitative attributes (e.g.,

peak height, peak area) of the peptide.32,34 Interference occurs

when co-eluting peptides have overlapping isotopic distributions

and potential fragmentation patterns.32,34 With DDA, solutions to

minimize co-fragmentation of co-eluting peptides include sam-

ple high performance liquid chromatography (HPLC)- or solid

phase extraction (SPE)-based fractionation, narrowing isolation

windows, and using MS3-based quantitation of TMT-derived

ion abundances,.10,32–38 Recently introduced, SPE tip-based

manual fractionation involves the implementation of thermal pro-

teome profiling with somemodifications: mainly, the heating and

centrifugation occur on the same PCR tube followed by sample

processing on a multimode SPE tip and fractionation on a

different SPE tipwith aC18membrane.38MS3-basedDDAquan-

titation methods isolate fragments after MS2 fragmentation,

which results in increased quantitation accuracy at the cost of a

reduction in proteomic coverage.39 Another option to remediate

ratio compression effects is to employ anOnePot approach intro-

duced by Gaetani et al.17 The OnePot approach consists of a

physical pooling all temperature-challenged sample aliquots

prior to isobaric labeling of the sample.17 DDA quantitation using

OnePot 2D over a narrow temperature range has shown greater

sensitivity compared to 1D thermal profiling approaches utilizing

wider temperature ranges.40

DIA for thermal shift assays has been proposed with modifica-

tions of experimental designs to reduce sample analysis

times.31,39 In data-independent acquisition (DIA), precursor

ions are isolated using pre-definedm/zwindows for further frag-

mentation, which results in accurate label-free proteome

quantification, a decreased number of missing values, and an

increased throughput for identification of kinase interactors.31,41

DIA mode is more cost-effective and straightforward, suffers

less from compression of quantitative ratios, and reportedly im-

proves sensitivity for screening sensitivity over TPP and is com-

parable with 2D-TPP.31 Among the disadvantages of both DIA
and DDA approaches, there is a balance between proteomic

coverage and throughput. Hybrid library searches and retention

time alignments performed for DIA data are more time-

consuming than data processing in DDA workflows for thermal

profiling, with a slight increase in the number of identified protein

groups for DIA.39 When compared to DDA, DIA resulted in fewer

protein group identifications in the less complex samples gener-

ated at higher temperatures.39 In addition, data processing time

increases due to the large number of fragment ions generated

and the need for retention time alignment of precursor and frag-

ment ions.42 In terms of processing times, DIA was shown to

reduce instrument time for thermal profiling when only one tem-

perature was used to measure protein interactions.31 The caveat

of this approach is the sensitivity to protein interactions, which

can occur at a different temperature.31 These findings were anal-

ogous to a DDA-based thermal profiling study, in which temper-

ature selection was also relevant to sensitivity.43

Since MS2 reporter ion abundances in TMT-based TPP as-

says are often underestimated because of ratio compression,

Isobarquant software was implemented for better estimation of

the peptide-level fold changes between replicates without hav-

ing to decrease the throughput or alter instrumental settings.8,32

However, the Isobarquant authors also acknowledge that the

vendor or open-source software can mitigate ratio compression

at the peptide level, which would remove a step in the data pro-

cessing pipeline from the user’s side.5 Recent implementations

of carrier proteomes to increase the coverage of thermal prote-

ome profiling can result in isotopic impurities that spill into adja-

cent channels, as shown in Figure 2A.44,45 The spillage in the

signal can be reduced by leaving the adjacent channel(s) empty

or can be corrected to some degree with software and the re-

agent manufacturer’s corrective values.44 Other factors that

affect TPP curve fitting include missing values at higher temper-

atures, as shown in Figure 2B, aggressive filtering (Figure 2C),

and overfitting (Figure 2D), which will be discussed herein.

Further improvement of data processing and curve-
fitting methods can enhance sensitivity for detection of
interacting proteins using thermal shift assays
After LC-MS data acquisition, data processing is performed us-

ing various vendor software tools, which leads to processing at
Cell Reports Methods 4, 100717, February 26, 2024 3
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the protein level or peptide level to generate information to fit

curves. The TPP software, introduced in 2015, facilitates prote-

ome-wide measurements of thermal stability by quantifying

non-denatured and non-aggregated fractions of cellular proteins

as the sample temperature increases.4,8,13 For TPP, a sigmoidal

fit was introduced to represent the transition from the native

folded state of the protein to the unfolded denatured state lead-

ing to aggregation and precipitation as the sample temperature

increases.5 The sigmoidal fit is relevant to thermodynamic un-

folding, as the melting temperature (Tm) represents the tempera-

ture at which half of the proteins have undergone the transition

from the natively folded to the unfolded or partially folded state

toward aggregation.5 Protein interactions have been measured

using DTm or the melting temperature difference between

treated and control curves.5 Nevertheless, curve fitting has

some challenges associated with MS-based thermal profiling.

One of these challenges to curve fitting is that the peptides

that were mapped to a single gene-formed groups, which could

present distinct thermal stability patterns.21 Post-translational

modifications, such as phosphorylation, can also cause changes

in the thermal stability patterns, where differentially melting

phosphoproteins have been compared to unmodified proteins

using Tm values.19 Other challenges consist of co-isolated and

co-fragmented peptides, which can be affected by ratio

compression, as visualized by Phaneuf et al.45

Other groups have focused on the comparison of 3- and

4-parameter log fits for TPP, and found that the 4-parameter

log fit increased the determination coefficient R2 and a lower me-

dian for Bayesian information criterion (BIC) for the R package

Inflect.24 The 4-parameter logistic fit is performed on each con-

dition (vehicle or treated) and on each replicate separately, as

the initial TPP version is established. Protein-level differential

melting behavior for Inflect was based on the inflection point

(Tm) value, which correlated well with the TPP Tm. In addition,

the same group detected unique proteins shifts that were not de-

tected by TPP. However, a comparison between TPP and Inflect

showed small overlaps between shifting proteins, which is

mainly due to the choice of fitting model used for curve fitting.

Although Inflect provided an interesting set of results for curve-

fitting strategies, the package recommends independent statis-

tical analysis for the results using other software. Recent work

has outlined other models that forego the need for sigmoidal as-

sumptions: GPMelt, PSTPP, and I-PISA23,46,47

One of the challenges in performing informative curve fitting is

the number of missing values. Missing quantitative values shown

in Figure 2B present a challenge to thermal shift assays when re-

porter ion abundances fall below the instrument’s detection

sensitivity threshold.45 For thermostable proteins, when the tem-

perature window is not wide enough to capture detectable

changes in protein abundance even at higher temperatures;

this presents a challenge to complete the melting profiles of

the most heat-resilient proteins.27,48 This directly affects curve-

fitting methods that present a value for the plateau and might

also affect the efficiency and accuracy in determining Tm value

of the protein since the lower plateau may not be well defined.

Recent studies for other applications have implemented the

addition of a carrier channel to help increase the low-abundance

peptides at higher temperatures.49,50 Using carrier channels as a
4 Cell Reports Methods 4, 100717, February 26, 2024
modification to the experimental design promotes more confi-

dent identification from a database search and allows for more

sensitive quantitation of low-abundance proteins.44,45,49,50 This

approach is particularly helpful for peptides heated at higher

temperature values, where the reporter ion signal is below the in-

strument’s limit of detection threshold within an MS1 scan.45 A

potential disadvantage to this approach is the amount of carry-

over from the carrier channel to adjacent channels, depending

on the amount of the added carrier sample, as outlined in

Figure 2A.

Quantification faces an additional challenge concerning pep-

tides with shared protein groups, which can impact the esti-

mated protein abundance values.51 Although one approach is

to eliminate peptides with shared protein groups, doing so might

result in the loss of valuable information from proteins with high

homology.51 One study also investigated the effects of filtering

peptide-spectrum matches (PSMs) for proteins interacting with

a highly specific inhibitor.45 PSM filtering helped remove low-

abundance and outlier values, which helped clean up the sum-

marized protein-level curve and improved the accuracy of ther-

moprofiling.45 PSMfiltering provides the advantage of potentially

removing low-abundance and noisy profiles, but it comes with

the disadvantage of potential loss of low-abundance peptides’

measurements per protein.

For example, at the protein level, TPP has less stringent filters

in their most recent implementation of the sigmoidal profile,

where the correlation coefficient (R2) is greater than 0.8, and

the lower sigmoid plateau parameters must be less than 0.3.2,8

These filters will affect proteins with missing values as well as

carrier channel spillage to other TMT channels, as shown in Fig-

ure 2C. Though some authors13,17 have recognized that these

parameters provide sensitivity constraints, previous publications

have kept these or similar parameters because these are imple-

mented in the existing pipelines.9,11,14,18,26,39,43,48,52 Although

additional filters—including slope, p value, and Tm value repro-

ducibility—have been suggested originally by TPP and subse-

quent publications, these filters have not been considered from

recent versions of the package.5,53 From a statistical standpoint,

stringent filtering underestimates the variance in the models,

which can reduce the accuracy of the assay. Overfitting, as

shown in Figure 2D, can also reduce the accuracy of the assay

if the profile of the curve captures artifacts not linked to the bio-

logical or physical properties.

Tm-centered approaches may provide a higher rate of
false negatives and lower sensitivity in thermal
proteome profiling for proteins that are resistant to
unfolding and aggregation
Thermal- or concentration-based shifts have been characterized

by sigmoidal models in TPP as well as other dose-response

models.8,24,26,54,55 Within each statistical model, a statistical

summary defines whether a thermal proteomic shift was de-

tected. One statistical summary that these methods have in

common is the inflection point of the curves, where Tm indicates

the temperature at half of the initial solubility of the protein by

thermal challenge whereas EC50 describes the half maximal

effective concentration of the drug required to achieve half of

the maximum possible effect. Although Tm was one of the first
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summary statistics, two advantages include the extrapolation of

this value directly from the sigmoid parameter or from half of the

maximum initial protein abundance. One of the drawbacks of

these fitting methods is not having enough information in the

data to extract both the upper and the lower plateau parameters

due to the symmetric aspect of the curve, which is also related to

the selection of the temperature challenge as well as the prove-

nance of the sample.48 Moreover, statistical conclusions out of

one parameter Tm using a t or a z test showed a higher rate of

false negatives.14,18 Furthermore, the presence of missing

values in the dataset is also a hindrance to sensitivity and accu-

racy in Tm determination, as discussed in recent reports.17,52,56

For sigmoidal fitting methods, data that do not resemble a

sigmoidal fit may lead to long processing times for a prote-

ome-scale complex sample and sometimes to an inability

to identify a good fit for possible targets.16,18 More recently,

the development of GPMelt would omit the use of curve fitting

and DTm.
23

Another drawback of the DTm-centered approaches is related

to the verification of the magnitude of the thermal shift for a

particular concentration of a small molecule.18,26 This issue

has been discussed in several reports and remediated by per-

forming hypothesis testing on the goodness-of-fit18 and the

area under the curve (AUC) between treated and vehicle

curves,17,56 as well as hypothesis testing using 2D thermal pro-

teome profiling (2D-TPP) by applying nested models. The 2D-

TPP assay was introduced because one of the hindrances to

performing thermal shift assays with one treatment concentra-

tion (i.e., 1D-TPP) was that the 1D-TPP technique could not

ensure whether the affinity of the target protein was correlated

to the magnitude of the thermal shift DTm of the drug.26,57

Whereas the TPP approach mostly depends on one parameter

(e.g., DTm), hypothesis testing based on goodness-of-fit has

increased sensitivity for known targets.13,18

To improve the sensitivity of thermal shift assays for data with

missing values, the measured signal difference DSm, which is

correlated to the AUC, was introduced as a viable option for

data analysis in assessing protein-ligand interactions.17,52,56

These methods were fast and translatable because benchmarks

on their datasets performed alongside TPP proved that both

DSm and DTm were complementary to obtain known targets.52

In a latter publication, reducing the temperature range for AUC

calculation increased the fold changes between vehicle and

treated samples.56 Though the experimental and data analysis

approaches are more simplified with DSm, there is a reported

loss of 30% from poorly fitted proteins toward AUC-based as-

says due to the reliance on high-quality sigmoidal melt curve fil-

ters applied based on initial publications.8,52 When contrasting

PISA with 2D-TPP, distinctions arise in the methodology and un-

derlying mechanistic principles: PISA involves physical sample

pooling of soluble aliquots from the same sample, which is

exposed to heat using selected temperatures. In contrast, 2D-

TPP involves the sample exposure to a combination of several

temperature settings and drug concentration conditions for

each sample aliquot.8,17,26 The interpretation of data differs

accordingly. In 2D-TPP, alterations in a protein’s thermal stability

do not necessarily impact the direct interaction with the treat-

ment molecule.9 Instead, 2D-TPP data may help elucidate
whether the observed effect is attributable to protein conforma-

tional stabilization, cell state perturbations, such as metabolite

levels, PPI, or changes in solubility.9 Disadvantages of 2D-TPP

experiments include long analysis time, often leaving the user

to conduct one replicate analysis per condition. In the case of

PISA, the aliquot pooling before LC-MS analysis may complicate

the detection of interactions and the interpretation of the treat-

ment effects on the thermal profile. Therefore, the resulting

DSm may not offer detailed insights into the specific impact of

PTMs, ligand-binding, and PPIs on protein solubility.

Recent improvements to TPP
Thanks to the initial discoveries in data analysis, the field has

been able to identify several experimental designs, processing,

and curve-fitting modalities to improve TPP.11,14,21,26,27,45,58

Although there is not one tool that would be ideal for all datasets,

TPP remains a useful and translational assay. Several papers

have noted that poor fit, missing values, the selection of inade-

quate temperature windows, statistical analysis, overly stringent

filters, and implementation of biological and technical variation

are factors that must be taken into account when considering

thermal shift models.17,18,52,56 For data analysis of thermal shift

assays, benchmarking with known, peer-reviewed, and publicly

available datasets is instrumental to gauge the translatability of

the pipeline. Another suggested change to the experimental

design is to allow for an increased number of replicates to enable

an informative and thorough assessment of treatment with a

compound of interest by implementing TMT 16-plex.59 This

study provides the potential to explore more replicates within a

TMT-plex with a reduced number of temperatures. Peptide-

centric approaches have also been recently developed since

the studied proteoforms can exhibit differences in thermal stabil-

ity, Tm, or thermal profiles.19–22,60 The functional diversity of pro-

teins is generated through genetic variations, alternative

splicing, and post-translational modifications, which lead to

altered protein properties, functions, and interaction networks.61

Although curve-fitting models have remained persistent in

recent work (and may continue to remain), one group has sug-

gested using one temperature to quantify treatment effects,

which was named the isothermal shift assay or iTSA.43 With

adequate benchmarking using previously published datasets,

relevant ligand-binding proteins were observed by applying

one temperature instead of ten.43 However, the selection pro-

cess for a temperature around the Tm value will vary per the bio-

logical system and the protein of interest, as it was shown that

rather diverse differentially melting proteins were found.48

Another group suggested pooling the sample temperature ali-

quots for each condition after heating while labeling using one

TMT per replicate, and named this assay the OnePot assay.17

This allows the measurement of five replicates, as shown in

(Table 1), employs the same amount of biological material as

TPP, and does not rely on curve fitting to measure the difference

between vehicle and treated samples.17 However, OnePot as

well as other TPP assays, does not distinguish between protein

solubility and conformational stability, in contrast to the ion-

based PISA approach that interrogates and studies changes in

protein solubility.47 One of the challenges related to TPP is that

some proteins are insoluble and/or conformationally unstable
Cell Reports Methods 4, 100717, February 26, 2024 5



Table 1. Some of the most notable recent publications on thermal profiling to date

Year Authors Method Description Replicates Temperatures Reference

2013 Molina et al. CETSA Western-blot-based thermal profiling 3 12 Savitski et al.5

2014 Savitski et al. TPP Mass spectrometry-based thermal profiling 2 10 Martinez Molina et al.6

2015 Franken et al. TPP Protocol for mass spectrometry-based

thermal profiling

2 10 Franken et al.8

2019 Gaetani et al. OnePot Proposed OnePot approach to pool

temperatures and increase replicates

5 10-pooled Gaetani et al.17

2021 Ruan et al. mTSA Proposed DIA-OnePot approach for

thermal profiling using 52�F temperature

and 5 concentrations

5 1 Ruan et al.31

2022 Xu et al. DDA-OnePot Applied DDA-OnePot approach within

45�F–58�F for improved sensitivity over 1D

thermal profiling

3 10-pooled George et al.39

2023 Phaneuf et al. iMAATSA Proposed the implementation of CARRIER,

field asymetric ion mobility spectrometry

(FAIMS), and FSDM to increase protein

identifications and accuracy of thermal

profiling

3 10 Dwivedi and Rose44
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at increased temperatures.47 The solubility of a protein can be

influenced by pH, temperature, ionic strength, detergents,

or denaturing agents.47,52,62–64 Though the OnePot assay de-

scribes a simplified experimental approach to the TPP, the

calculation of p values is based on a comparison of the total pro-

tein abundance between both conditions. Nevertheless, the ob-

tained results correlate with the findings reported with DTm,

which would reduce the computational resources involved.

Table 1 summarizes the recent trends, where the number of rep-

licates is often favored over the number of temperatures.

Another recent advance in the field of data analysis is the inclu-

sion of bioinformatic tools, which are able to correlate the candi-

date and known target findings by, for example, implementing

STRINGdb, GeneOntology, and CORUM.11,13,55,65–67 An imple-

mentation of these bioinformatic tools into data analysis for ther-

mal shift assays has proven useful and could provide additional

information about possible targets as well as off-targets, when

the ligand-protein interaction mechanism and specificity are

not well studied.

Concluding remarks
The field of data analysis for thermal profiling assays has been

vast and informative in terms of data availability, benchmarking

against existing software approaches, curve-fitting approaches,

and simulations. Examples of these advances consist of DIA im-

plementations that minimize requirements for thorough sample

fractionation and lengthy LC-MS analyses and promote

increased identification of proteins and peptide groups.31,39 In

terms of the quality of the identifications from different acquisi-

tion modes, the complementary identifications from DDA and

DIA could provide more detailed insights into protein-ligand in-

teractions.39 There is room for improvement in data analysis

tools for thermal shift assays in the fields of curve fitting, sam-

pling time reduction, benchmarking for method development,

evaluation of the underlying peptide data, the effect of post-

translational modifications on the curves, and time-series

measurements. Moreover, the outstanding questions outline
6 Cell Reports Methods 4, 100717, February 26, 2024
possible areas of improvement. With these approaches, the

expectation is that the performance be measured on well-stud-

ied and highly specific protein-ligand interactions.
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