Table 3.
Word-embedding dimension parameters with TextCNN.
Evaluation metrics and model | 100 | 150 | 200 | 250 | 300 | 350 | 400 | ||||||||
Accuracy (%) | |||||||||||||||
|
Skip-gram | 93.75 | 94.85 | 94.00 | 93.15 | 93.80 | 93.49 | 93.40 | |||||||
|
TopicSa | 95.10b | 96.10 | 94.80 | 94.45 | 94.95 | 95.25 | 95.40 | |||||||
Precision (%) | |||||||||||||||
|
Skip-gram | 91.92 | 95.32 | 94.07 | 93.16 | 93.33 | 93.28 | 93.09 | |||||||
|
TopicS | 96.32 | 95.95 | 95.56 | 94.11 | 95.20 | 95.87 | 96.53 | |||||||
Recall (%) | |||||||||||||||
|
Skip-gram | 94.00 | 94.50 | 94.00 | 93.30 | 94.40 | 93.90 | 93.90 | |||||||
|
TopicS | 95.90 | 96.30 | 94.00 | 94.90 | 94.70 | 94.60 | 94.20 | |||||||
F1-score (%) | |||||||||||||||
|
Skip-gram | 93.90 | 94.88 | 93.95 | 93.17 | 93.84 | 93.48 | 93.44 | |||||||
|
TopicS | 95.09 | 96.10 | 94.77 | 94.48 | 94.94 | 95.22 | 95.34 |
aTopicS represents the topic-enhanced word-embedding model proposed in this paper.
bItalicization represents that the metrics of TopicS are better than Skip-gram for each metric.