Skip to main content
. 2024 Feb 22;26:e48324. doi: 10.2196/48324

Table 3.

Word-embedding dimension parameters with TextCNN.

Evaluation metrics and model 100 150 200 250 300 350 400
Accuracy (%)

Skip-gram 93.75 94.85 94.00 93.15 93.80 93.49 93.40

TopicSa 95.10b 96.10 94.80 94.45 94.95 95.25 95.40
Precision (%)

Skip-gram 91.92 95.32 94.07 93.16 93.33 93.28 93.09

TopicS 96.32 95.95 95.56 94.11 95.20 95.87 96.53
Recall (%)

Skip-gram 94.00 94.50 94.00 93.30 94.40 93.90 93.90

TopicS 95.90 96.30 94.00 94.90 94.70 94.60 94.20
F1-score (%)

Skip-gram 93.90 94.88 93.95 93.17 93.84 93.48 93.44

TopicS 95.09 96.10 94.77 94.48 94.94 95.22 95.34

aTopicS represents the topic-enhanced word-embedding model proposed in this paper.

bItalicization represents that the metrics of TopicS are better than Skip-gram for each metric.