Skip to main content
. 2024 Feb 22;26:e48324. doi: 10.2196/48324

Table 4.

Accuracy, precision, recall, and F1-score of Skip-gram and TopicS with different classification models.

Model (Embed_sizea) Accuracy (%) Precision (%) Recall (%) F1-score (%) Time (s)
TextCNN

Skip-gram (150 dimens) 94.85 95.32 94.50 94.88 40.30

TopicS (150 dimens) 96.10b 95.94 96.30 96.10 35.23
TextRNN

Skip-gram (150 dimens) 94.85 95.32 94.50 94.88 40.30

TopicS (150 dimens) 96.10b 95.94 96.30 96.10 35.23
Transformer

Skip-gram (100 dimens) 85.45 85.06 78.80 81.13 55.16

TopicS (150 dimens) 90.70 90.90 90.60 90.68 49.32

aEmbed_size represents the word-embedding size.

bItalicization represents that the metrics of TopicS are better than Skip-gram for each model.