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Abstract

Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of 

disease remains a challenge1,4,6. For some diseases, a successful strategy has been to look for 

cases where multiple GWAS loci contain genes that act in the same biological pathway1-6. 

However, our knowledge of which genes act in which pathways is incomplete, particularly for 

cell-type specific pathways or understudied genes. Here we introduce a new method to connect 

GWAS variants to functions, which links variants to genes using epigenomic data, links genes to 

pathways de novo using Perturb-seq, and integrates these data to identify convergence of GWAS 

loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for 

coronary artery disease (CAD), and discover that 43 CAD GWAS signals converge on the cerebral 

cavernous malformations (CCM) signaling pathway. Two regulators of this pathway, CCM2 and 

TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes, and affect 

atheroprotective processes in endothelial cells. These results suggest a model where CAD risk 

is driven in part by the convergence of causal genes onto a particular transcriptional pathway in 

endothelial cells, highlight shared genes between common and rare vascular diseases (CAD and 

CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signaling 
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pathway. This approach will be widely useful for linking variants to functions for other common 

polygenic diseases.

Introduction

Genetic variants that influence complex traits are thought to regulate genes that work 

together in biological pathways. Identifying convergence on particular pathways can help in 

discovering genes and cellular functions that causally influence disease risk1-6. However, it 

is often challenging to identify such convergence: complex traits involve contributions from 

multiple cell types; most risk variants are noncoding and can regulate multiple nearby genes; 

and it remains unclear which genes work together in which pathways in which cell types7-9.

GWAS for coronary artery disease have discovered over 300 independent 

signals10-12(Supplementary Table 1). 75% of these signals are not associated with 

circulating lipids (Supplementary Table 1), indicating the presence of undiscovered disease 

mechanisms that may function through cells in the coronary artery where atherosclerosis 

that causes CAD develops. Endothelial cells (ECs) are one of the most important of these 

arterial cells, controlling cholesterol uptake and efflux, smooth muscle cell responses, blood 

clotting and inflammatory immune cell recruitment13,14, and are highly enriched for CAD 

heritability15. At a few individual CAD GWAS loci, noncoding risk variants have been 

shown to regulate the expression of key EC genes such as endothelial nitric oxide synthase 

(NOS3), endothelin 1 (EDN1), and others16. It remains unclear, however, which other genes 

in CAD GWAS loci might work together in which EC pathways to modulate disease risk.

To address these challenges, we have developed a new approach that systematically and 

unbiasedly links GWAS variants to genes and identifies their convergence onto specific 

disease-associated transcriptional programs. The 5 steps of this Variant-to-Gene-to-Program 

(V2G2P) approach (Fig. 1a, Supplementary Note 1), and their application to EC functions in 

CAD, are summarized below:

1. Identify a cell type and cellular model relevant to disease genetics, through 
enrichment of disease risk variants in enhancers in that cell type. Here, we 

focused on human arterial ECs, using telomerase-immortalized human aortic 

ECs (teloHAEC) as a model.

2. Build a map of variant-to-gene (V2G) links in that cell type, to link disease-
associated variants to potential target genes. Here, we consider evidence from 

variants in EC enhancers, as well as coding regions and splice sites.

3. Build a map of gene-to-program (G2P) links in that cell type, by using 
Perturb-seq17-20 to systematically knock down all possible candidate disease 
genes and identify sets of genes that act together in biological pathways. 
Here, we knock down all expressed genes within ±500kb of 306 CAD GWAS 

signals, read out the effects of each perturbation with single cell RNA-seq, and 

use unsupervised machine learning to define gene “programs,” unbiased by prior 

knowledge of gene sets or pathways.
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4. Identify “disease-associated programs”, by developing a statistical test to 
determine whether the genes with links to risk variants are enriched in 
(that is, converge on) particular programs. Here, we find that many CAD 

GWAS loci converge on 5 gene programs identified de novo with Perturb-seq, 

which appear to correspond to branches of the cerebral cavernous malformations 

(CCM) signal transduction pathway.

5. Study the genes in disease-associated programs. Here, we nominate 41 

genes likely to influence CAD risk through effects in ECs, and dissect two 

in detail: showing that knockdown of TLNRD1 or CCM2 mimics the effects 

of atheroprotective laminar blood flow, and that the poorly-characterized gene, 

TLNRD1, is a novel regulator in the CCM pathway.

In summary, the V2G2P approach defines cellular programs de novo using Perturb-seq, 

intersects these programs with enhancer-to-gene maps from the same cell type, and provides 

an interpretable, systematic, and unbiased framework for tracing the path from variant to 

gene to disease program simultaneously for all GWAS loci for a given disease and cell type.

A variant-to-gene map in ECs

To implement this V2G2P approach, we collected GWAS signals for coronary artery 

disease10,12, and defined a set of “nearby genes” for each GWAS signal to include the 2 

closest genes on either side, plus all genes within +/−500 kb. We focused on the 228 “non-

lipid” GWAS signals that were not associated with circulating lipid levels (see Methods: 

“Defining variants in CAD GWAS signals”), because lipid-associated signals likely act in 

hepatocytes or other non-endothelial cell types. This yielded 1,942 total candidate genes, 

with a median of 8 nearby genes per GWAS signal (Supplementary Table 1).

We selected telomerase-immortalized primary human aortic ECs (teloHAEC) as a well-

established arterial endothelial cell model21, and collected bulk RNA-seq, ATAC-seq, 

and H3K27ac ChIP-seq data in resting and several stimulated conditions (+IL1β, TNFα, 

VEGFA) to identify expressed genes and candidate enhancers (Supplementary Table 2). 

Variants in teloHAEC enhancers were 11-to-13-fold enriched for CAD heritability by 

stratified linkage disequilibrium score regression (S-LDSC, Extended Data Fig. 1a), and 

the genes near CAD GWAS loci that were expressed in teloHAEC were also expressed in 

primary coronary artery ECs in vivo (Extended Data Fig. 1b-d), supporting the choice of this 

cellular model.

To link risk variants to genes (V2G), we identified genes predicted to be regulated by EC 

enhancers containing CAD variants using the Activity-by-Contact model (ABC9,22). We also 

considered genes containing coding variants (see Methods: Linking variants to genes). We 

identified 254 of 1,942 nearby genes with a link to a CAD risk variant (“genes with a V2G 
link”, or simply “V2G genes”), at 125 of 228 non-lipid GWAS signals (range: 1–5 genes 

per signal, Supplementary Tables 3 & 26).
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A gene-to-program map in ECs

To link genes to programs (G2P), we applied CRISPR interference (CRISPRi)-Perturb-seq 

to identify de novo sets of genes that act in the same transcriptional pathways. While 

Perturb-seq is emerging as a powerful tool to study gene pathways17-20,23,24, new design and 

analysis approaches are needed to discover pathways enriched for genetic risk for common 

diseases. Accordingly, we developed an approach in which we systematically knocked 

down all expressed genes near all CAD GWAS signals, applied an unsupervised matrix 

factorization approach to identify sets of co-regulated genes, and linked upstream perturbed 

genes with the downstream genes they regulate to define “gene programs” in a systematic 

fashion, unbiased by previous knowledge of annotated pathways or gene sets (Fig. 1b).

We engineered teloHAEC to express dCas9-KRAB (CRISPRi, Extended Data Fig. 1e,f) and 

transduced these cells with a guide library targeting all 1,661 expressed genes nearby CAD 

GWAS signals and 624 control genes (15 guides/promoter), plus 1000 control guides, for 

a total of 37,637 guides (Supplementary Tables 4, 5 & 6). After 5 days of doxycycline 

induction of CRISPRi, we collected 20 lanes of 10x 3’ single-cell RNA-seq (see Methods). 

In total, we obtained data for 214,449 cells expressing a single guide at an average depth 

of 929,000 total transcript UMIs per targeted promoter (Extended Data Figs. 1 g-l & 2 a-b, 

Supplementary Table 7). We found that target genes were effectively knocked down, that 

knockdown of common essential genes decreased fitness, and that 10.7% of perturbations 

of expressed targets significantly impacted the transcriptome (Extended Data Fig. 1m-q; 

Supplementary Tables 8, 9 & 10).

We applied an unsupervised approach to this Perturb-seq data to discover gene programs, 

independent of previous knowledge of annotated pathways or gene sets (Fig. 1b, right). First, 

we used consensus non-negative matrix factorization (cNMF)25 to model the gene-by-cell 

matrix as a linear combination of latent components representing co-regulated gene sets that 

covary in the population of cells (see Methods, Extended Data Figs. 2c-g, Supplementary 

Table 11). From each cNMF component, we defined a “program”: a set of genes comprised 

of both “co-regulated genes” (the 300 marker genes whose expression is most specific 

to that component) and “regulators” (the 0 to 35 genes whose perturbations significantly 

affected the expression of each component, relative to negative control guideRNAs, FDR < 

0.05, Extended Data Fig. 2h). This analysis established a gene-to-program map that included 

18,606 links from 7,692 unique genes to 50 programs (Fig. 1c, Extended Data Fig. 3a-c; 

Supplementary Tables 12, 13 & 14).

After defining these 50 programs using an unsupervised approach, we annotated each 

program based on their regulators and co-regulated genes; including manual curation, 

analysis of transcription factor (TF) motifs in their promoters and predicted enhancers, 

and gene set enrichment (see Methods: Definition and annotation of gene expression 

programs). We identified programs representing an array of cellular functions: from 

ubiquitously expressed (“housekeeping”) processes, to a wide variety of inducible responses 

(e.g., unfolded protein response (UPR), DNA damage, heat shock, and inflammation) 

despite the absence of stimuli for these responses in our culture system (Fig. 1c). We 

annotated 13 programs as “EC-specific” because they included genes that were on average 
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more highly expressed in ECs than in other cell types (Fig. 1c, Extended Data Fig. 3c, 

Supplementary Table 13, see Methods: Defining EC-specific programs). These EC-specific 

programs included distinct combinations of genes enriched for roles in angiogenesis, 

extracellular matrix remodeling, barrier function, and the endothelial-to-mesenchymal 

transition (endoMT), and the promoters of their co-regulated genes were enriched for 

different transcription factor motifs (Fig. 1d, Extended Data Fig. 3d-f). Analysis of 

regulators (perturbations) identified cases where programs were coordinately or oppositely 

regulated by the same perturbations (e.g. Extended Data Fig. 3g), and identified 10 genes 

that were regulators of 5 or more EC-specific programs, including genes known to have 

important functions in ECs such as EGFL7 and ITGB1BP1/ICAP126,27 (Extended Data Fig. 

3h-l).

Taken together, this gene-to-program map represents a wide range of cellular pathways, 

links upstream regulators to coherent sets of downstream genes, and provides a resource for 

understanding the functions and potential disease-relevance of genes in ECs.

CAD GWAS signals converge on 5 programs

We next applied a simple statistical test (“V2G2P enrichment”) to determine, in an unbiased 

fashion, whether GWAS variants for a trait would converge onto particular gene programs. 

Specifically, we tested whether genes for each program (Genes with a G2P link, Fig. 2a) 

were more highly enriched in genes likely to be affected by CAD risk variants (Genes with 

a V2G link, Fig. 2a) than expected by chance (see Methods: Identifying CAD-associated 

programs via variant-to-gene-to-program analysis).

We identified significant V2G2P enrichment for 5 programs, each including 12 to 18 genes 

linked to CAD variants (versus 4.5 expected by chance; 2.6- to 4-fold enrichment, FDR 

< 0.05, Fig. 2b, Supplementary Table 13). Together, these 5 programs included 41 unique 

V2G2P genes (genes linked to CAD variants and part of at least one of the 5 V2G2P 

programs), including genes near 43 of 228 non-lipid GWAS signals (Fig. 2c, Supplementary 

Tables 1 & 15).

The 5 V2G2P programs corresponded to distinct sets of genes related to extracellular 

matrix (ECM) organization, cell migration, and angiogenesis (Fig. 2b, Extended Data Fig. 

4). Program 8 included genes involved in negative regulation of angiogenesis (IGFBP4 
and IGFBP5) and osmotic balance (SLC12A2 and AQP1). Program 48 included genes 

involved in cell adhesion and migration such as FSLT1 and TIMP2, and was regulated 

by MEK5/MAP2K5, ERK5/MAPK7, and calcium/calmodulin- dependent (CAMKK2) 

signaling. Program 39 expressed genes involved in the basement membrane (COL4A1/2) 

and platelet recruitment (VWF, SELP). Program 35 expressed genes involved in focal 

adhesions (ITGA2) and the JAK/STAT signaling pathway. Program 47 expressed genes 

involved in angiogenesis including NR2F2 and NRP1/2, including two genes specifically 

associated with a stalk cell phenotype (VWF, EHD4).

Several independent lines of evidence supported the associations of these 5 programs and 

41 genes with CAD. (i) All 5 V2G2P programs were EC-specific programs that included 

at least 1 of the 8 gold standard genes whose variant-to-gene-to-disease effects in ECs 
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have previously been characterized (“known endothelial cell CAD genes” in Fig. 2c, 

Supplementary Tables 15 & 16). Program 8 included four such genes: NOS3, PLPP3, FLT1, 

and PECAM1. (ii) All 5 V2G2P programs were significantly enriched for CAD heritability 

by MAGMA2, and two were significantly enriched for CAD heritability by S-LDSC28 (FDR 

< 0.05, see Methods; Extended Data Fig. 5a,b). (iii) The 41 V2G2P genes were highly 

ranked by an independent gene prioritization method, PoPS3, compared to other nearby 

genes at the same GWAS signals (rank-sum test P = 2.5 x 10−53, Extended Data Fig. 5c,d, 

Supplementary Table 15). (iv) 9 of the 41 V2G2P genes have previously been found to affect 

atherosclerosis and/or vascular barrier integrity via studies in mouse models, in a way that is 

consistent with their acting in ECs (Supplementary Table 15).

In summary, the V2G2P approach identifies the convergence of CAD GWAS signals onto 

5 EC-specific gene programs that are enriched in CAD heritability and include 41 unique 

genes linked to CAD risk variants.

Benchmarking, and methods comparisons

We compared our V2G2P-prioritized genes to those from seven previous studies that used 

a variety of approaches to prioritize genes in CAD GWAS loci (Supplementary Note 2, 

Supplementary Table 17). We found that 31 out of the 41 V2G2P genes were not prioritized 

in the two EC-specific studies, and 17 were not prioritized by any of these seven studies 

(Supplementary Note 2, Supplementary Table 17). These 17 novel genes included the two 

strongest regulators of the 5 V2G2P programs, TLNRD1 and CCM2, which we will explore 

in detail below.

We also benchmarked the ability of V2G2P to identify the 8 gold standard EC CAD 

genes (Supplementary Note 2). Compared to other studies that nominated CAD genes in an 

EC-specific fashion (based on eQTL colocalization29 or variant-targeted CRISPR screens30), 

V2G2P achieved much higher recall for the gold standard genes (50% vs 12.5% for the 

others), while also achieving high precision (80%). V2G2P also performed well compared to 

studies that nominated CAD genes without specificity for ECs, and compared to methods to 

prioritize gene sets/programs from GWAS data (Supplementary Note 2, Extended Data Fig. 

5g).

We found that both variant-to-gene data from ABC and gene-to-program data from 

Perturb-seq were essential for the ability of V2G2P analysis to identify disease-associated 

genes and programs (Fig. 2a, Supplementary Note 3, Extended Data Figs. 5, 6 & 7), 

consistent with recent observations that combining locus-specific variant-to-gene links with 

genome-wide enrichments for gene pathways can improve the specificity of disease gene 

identification3,31,32. In particular, at most GWAS signals, neither V2G nor G2P information 

alone was sufficient to identify likely disease genes: 119 GWAS signals had 2 or more 

genes with a V2G link (up to 5), and 195 GWAS signals had 2 or more genes with a 

G2P link (up to 25), including links to all 50 programs. These observations are consistent 

with the expectation that noncoding variants often regulate multiple nearby genes9,33, and 

that, by chance, a given GWAS signal might have several nearby genes involved in various 

cellular pathways. Combining these two layers of information in the V2G2P enrichment test 

provided far more specificity: for the 43 signals with V2G2P links to these programs, only 6 
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had more than 1 linked gene (up to 2, Extended Data Fig. 6h). We performed other internal 

benchmarking studies to confirm the value of each component of the V2G2P approach 

(including cell type-specific versus cell-type-nonspecific ABC data, and Perturb-seq versus 

scRNAseq without perturbations, Supplementary Note 3).

In summary, we show that V2G2P identifies known CAD genes more accurately than other 

cell-type specific gene prioritization studies, identifies 17 new genes not nominated by 

any prior study of CAD loci, and requires both cell-type specific variant-to-gene data and 

systematic Perturb-seq data for its ability to identify disease-relevant programs and genes.

Linking the CCM pathway to CAD risk

A key feature of the V2G2P approach is that it provides mechanistic hypotheses linking 

variants to genes to pathways at all prioritized loci, and thereby can accelerate further 

functional studies to understand the molecular mechanisms that drive effects on disease risk. 

We used this information to propose potential mechanisms for previously uncharacterized 

GWAS loci (see Supplementary Note 4), and explored in detail 2 specific genes—CCM2 
and TLNRD1—that were the strongest regulators of the 5 CAD-associated programs (Fig. 

2c). These investigations revealed that both CCM2 (a known member of the cerebral 

cavernous malformations (CCM) complex) and TLNRD1 (a previously poorly studied gene 

with no known function in ECs) act together in the CCM signaling pathway to regulate 

many other CAD genes.

We first examined CCM2, which was prioritized in our V2G2P analysis because it harbors 

a missense coding variant associated with a decreased risk of CAD10,12 (rs2107732, V74I; 

odds ratio: 0.92, P = 1.53 x 10−8), and because its knockdown in Perturb-seq significantly 

regulated 4 of the 5 CAD-associated programs (Fig. 2c, Extended Data Fig. 8a-b).

CCM2 encodes one of three known components of the cerebral cavernous malformations 

(CCM) complex. Rare loss-of-function mutations in CCM complex proteins are known to 

cause rare monogenic vascular malformations via effects on microvascular ECs including 

activation of MEKK3/MEK5/ERK5 signaling to KLF2/434,35. However, no mechanistic link 

between CCM signaling and genetic risk for CAD has been previously described.

Notably, examination of the Perturb-seq data revealed that CCM2 and other known 

members of the CCM signaling pathway regulate the CAD-associated programs in a 

consistent pattern (Fig. 3a, b). Knockdown of CCM2, another member of the CCM complex 

(KRIT1), and other genes in the pathway that act upstream of the CCM complex (CDH5, 

ITGB1BP1, CTNNA1, HEG1) showed directionally concordant effects on the V2G2P 

programs (upregulating programs 8 & 48 and downregulating programs 35, 39 & 47, Fig. 

3a, b, Extended Data Fig. 8c). Knockdown of downstream genes known to be repressed by 

the CCM complex — including MEK5 (MAP2K5), ERK5 (MAPK7), and KLF4 — affected 

the expression of the 5 CAD-associated programs in the opposite direction (Fig. 3a, b).

To validate observations from the Perturb-seq screen and further characterize the role of 

the CCM signaling pathway on gene expression, we individually knocked down CCM2 and 

5 other genes in the CCM pathway (ITGB1BP1, CCM2, PDCD10, MAP3K3, MAP2K5, 
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and KLF2) and measured effects using bulk RNA-seq. 28 of the 41 V2G2P genes were 

significantly differentially expressed upon CCM pathway perturbation (FDR < 0.05, Fig. 3c, 

Extended Data Fig. 8d, Supplementary Tables 15, 18).

Interestingly, the directionality of the effects on downstream CAD V2G2P genes indicated 

that inhibition of CCM signaling likely has a protective effect on CAD — opposite of its 

direction of effect on risk for monogenic CCM disease36. In particular, 8 of the V2G2P 

genes that are regulated by the CCM pathway have previously been studied in mice, and 

show effects on atherosclerosis and or vascular permeability in ways that are consistent with 

functions in ECs (Supplementary Table 15). The direction of effect on disease phenotypes 

and response to CCM2 knockdown were similar (Fig. 3d): of the 5 genes previously shown 

to maintain vascular barrier function or be protective for atherosclerosis, 4 (NOS3, PLPP3, 

CALCRL, and SPRY4) were up-regulated in response to CCM2 knockdown, whereas both 

of the genes previously shown to promote atherosclerosis or vascular dysfunction (PGF 
and PREX1) were down-regulated. One additional gene (PECAM1) has been observed 

to have mixed directions of effect on disease depending on the genetic model (Fig. 3d, 

Supplementary Table 15). Thus, down-regulation of the CCM complex leads to changes in 

gene expression that may be protective for CAD.

Together, these data show that many of the V2G2P CAD genes can be placed in a 

transcriptional pathway downstream of CCM2, implicating the CCM complex in genetic 

risk for CAD beyond its known role in rare monogenic CCM disease.

Variant to gene to programs for TLNRD1

We next examined TLNRD1, the V2G2P gene with the strongest combined effect on the 5 

V2G2P programs (Fig. 4a, Fig. 2c, Extended Data Fig. 8e-h). TLNRD1 (talin rod domain 

containing 1) is a poorly studied gene that has previously been found to interact with 

F-actin37 and to affect cell migration in a cancer cell line38, but has not been linked to CAD 

or any function in ECs. Surprisingly, the transcriptional effect of knocking down TLNRD1 
was almost identical to that of knocking down CCM2 (Fig. 4b). TLNRD1 regulated the 5 

CAD V2G2P programs in the same direction as CCM2 and other upstream CCM signaling 

components (Fig. 3a,b), and had a similar effect on the expression of the 41 V2G2P genes 

(Fig. 3c). These observations suggested that TLNRD1 could be a novel regulator in the 

CCM signaling pathway and that its down-regulation should be protective for CAD.

We experimentally validated the predicted variant-to-gene link for TLNRD1 by testing 

whether the protective CAD allele would down-regulate TLNRD1 expression in ECs. 

TLNRD1 is located in the 15q25.1 CAD risk locus (lead variant P=2.63 x 10−10; rank: 

159 of 241), where our V2G2P analysis identified a noncoding variant in a predicted 

EC-specific enhancer (Extended Data Fig. 8e, rs1879454; hg19 chr15:81377717: C (major, 

risk allele) → A (minor, protective allele); MAF = 0.16). We used CRISPRi-FlowFISH22 to 

perturb this and other enhancers near TLNRD1, and found that the chromatin accessible 

element containing rs1879454 indeed regulated TLNRD1 expression (estimated −21% 

effect, FDR corrected two-sided Student’s t-test, P=0.001, Fig. 4c,d, Extended Data Fig. 8i-

k). rs1879454 also appeared to affect the regulatory activity of this element. The protective 

A allele was predicted to disrupt a GATA motif, and, in cells heterozygous for this variant, 
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the A allele was associated with a 2-fold decrease in allele-specific GATA2 ChIP-seq 

signal in human umbilical vein ECs (HUVEC, binomial P = 0.0758), a 2.4-fold decrease 

in allele-specific ATAC-seq signal in teloHAEC (P = 0.0058) and a 1.9-fold decrease in 

allele-specific DNAse-seq signal in human microvascular ECs (HMVEC, P = 0.0192) (Figs. 

4e,f).

These data show that the effects of TLNRD1 knockdown are very similar to those of CCM2 
knockdown, and link a protective noncoding CAD allele to decreased TLNRD1 expression 

in ECs, suggesting that these genes function together and that a decrease of either one may 

protect against CAD.

TLNRD1 interacts with the CCM complex

Given the strong similarity in the transcriptional effects of TLNRD1 and CCM2, we sought 

to gain further insight into the molecular role of this previously poorly characterized gene in 

the CCM signaling pathway.

We first considered whether the two proteins might physically interact. CCM2 is known to 

physically interact with other proteins in the CCM complex and downstream pathways36, 

and a recent genome-wide yeast-2-hybrid screen provided preliminary evidence of a direct 

interaction between CCM2 and TLNRD140. We used AlphaFold2.3 Multimer to model 

potential interactions between the three core CCM proteins and TLNRD1, and found that 

TLNRD1 was predicted to directly bind the C-terminal helix of CCM2 (C-helix, residues 

417-443, Fig. 5a, right inset), as part of a consistent high confidence arrangement that also 

recapitulated the known CCM2/KRIT1 binding site in the PDB domain of CCM241 (Fig. 5a, 

left inset), as well as published interactions with PDCD1042 (Extended Data Fig. 9a-c). The 

predicted CCM2/TLNRD1 interaction depends on the C-helix of CCM2, which binds the 

TLNRD1 nine-helix bundle (Fig. 5a). We tested the TLNRD1-CCM2 interaction in human 

cells, and found that TLNRD1 immunoprecipitated with CCM2 pulldown, and vice versa, 

and that this interaction was lost upon deletion of the C-helix of CCM2 (Fig. 5b & Extended 

Data Fig. 9d-f, Supplementary Fig. 1).

A key molecular function of the CCM complex is to repress downstream signaling through 

MAP3K3/MEKK334,36,43 (Fig. 3a). To test if the transcriptional effects of TLNRD1 

knockdown were also related to MAP3K3 signaling, we knocked down these genes alone 

or in combination. Individual knockdown of TLNRD1 or CCM2 upregulated KLF2, KLF4, 

NOS3 and other likely atheroprotective genes and downregulated likely atherogenic genes, 

MAP3K3 knockdown had the opposite effect, and double knockdown of MAP3K3 and 

TLNRD1 or MAP3K3 and CCM2 partially rescued the transcriptional effect of each 

individual knockdown (Fig. 5c; Extended Data Fig. 10a-d, Supplementary Table 19).

To determine if the relationship between TLNRD1 and CCM2 might extend beyond human 

ECs in vitro, we tested tlnrd1 function in zebrafish—a model system in which ccm2 
has been shown to have characteristic effects in heart and vascular development34,44,45. 

We targeted tlnrd1 or ccm2 with CRISPR and found highly similar effects on cardiac 

and vascular development, including atrial chamber enlargement, pericardial edema, 

atrioventricular valve defects, and thin ventricular walls (Fig. 5d, Extended Data Fig. 
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11b,c,g, Supplementary Table 20). Both tlnrd1 and ccm2 CRISPR embryos also had 

vascular defects, including posterior cardinal vein (PCV) dilation and increased vascular 

permeability to red dextran particles (Extended Data Fig. 11f,h). Tlnrd1 was expressed in 

the heart and vasculature (Extended Data Fig. 11a), and tlnrd1 knockdown led to increased 

klf2b expression, similar to the effect of human TLNRD1 knockdown on KLF2 expression 

in teloHAECs (Extended Data Fig. 11i,j). Finally, whereas a 100 μM dose of tlnrd1 or 

ccm2 morpholino had similar effects as CRISPR perturbations, and a 50 μM dose of either 

morpholino had no effect, 50 μM of both morpholinos had similar effects as 100 μM 

of either morpholino alone (Extended Data Fig. 11b,d,e), consistent with both proteins 

functioning in the same pathway.

Together, these data indicate that TLNRD1 is a previously unrecognized, evolutionarily 

conserved member of the CCM signaling pathway, and provide an example of molecular 

convergence in which V2G2P analysis identifies two novel CAD genes that not only 

regulate the same transcriptional pathway but also physically interact.

CAD-relevant phenotypes of CCM2 & TLNRD1

We further experimentally characterized how TLNRD1 and CCM2 might affect EC 

phenotypes relevant to CAD. Because atherosclerosis predominantly develops in regions 

of disrupted or turbulent blood flow13, we tested how the effects of TLNRD1 or CCM2 
knockdowns compared to the effects of laminar flow. First, we noted that all of the 

genes most strongly upregulated by both TLNRD1 and CCM2 knockdowns, and whose 

effects on relevant EC functions have previously been assessed, were likely atheroprotective 

(including NOS3, damaging mutations in which have recently been shown to be a non-lipid 

driver of CAD 46), while downregulated genes were likely atherogenic (Fig. 6a, top 2 

rows, Supplementary Table 29), suggesting molecular mechanisms by which reduction of 

TLNRD1 and CCM2 could decrease CAD risk. Strikingly, the transcriptional effects of 

TLNRD1 or CCM2 knockdown in static culture were similar to the effects of laminar shear 

stress (“flow”, 12 dynes/cm2) on control cells (Pearson R = 0.40, P = 1.5e-54 for CCM2; R 
= 0.52, P = 1.6e-94 for TLNRD1; Fig. 6a, Extended Data Fig. 10e,f, Supplementary Table 

19).

Consistent with the similar transcriptional effects of flow and either TLNRD1 or CCM2 
knockdown, we found that CCM2 or TLNRD1 knockdown in static culture increased the 

number and parallelness of actin stress fibers (Fig. 6b-e), a characteristic of flow response in 

unperturbed ECs13, consistent with prior studies of CCM2 knockdown in HUVEC47. On the 

other hand, TLNRD1 or CCM2 knockdown cells showed reduced alignment to flow, relative 

to control cells (Extended Data Fig. 10i-k), and a weaker transcriptional response to flow, 

perhaps because the flow-response program was already partly active (Extended Data Fig. 

10g,h). Endothelial dysfunction that is thought to contribute to CAD is also characterized 

by decreased barrier function (a leaky endothelium that allows inflammatory cells into 

the arterial wall13). We found that CRISPRi knockdown of either TLNRD1 or CCM2 in 

teloHAEC reproducibly increased EC barrier function, as measured by trans-endothelial 

electrical resistance (Fig. 6f,g).
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Together, these observations demonstrate that TLNRD1 and CCM2 similarly regulate 

arterial EC phenotypes relevant to CAD. They indicate that down-regulation of TLNRD1 
or CCM2 by common variants may be atheroprotective by conferring a “flow-like” response 

and improving barrier function in ECs not exposed to laminar flow, which are most prone to 

atherogenesis13.

V2G2P generalizes to other traits

To test whether the V2G2P approach would generalize to other complex traits, we 

applied our ABC maps and Perturb-seq data from ECs to study two other vascular 

traits: mean arterial blood pressure (MAP) and pulse pressure (PP) (see Methods). The 

V2G2P enrichment test identified programs significantly associated with each of these 

two traits, which were distinct from those we identified for CAD (Extended Data Fig. 

12a, Supplementary Table 21). For example, for pulse pressure, the V2G2P test identified 

significant enrichment for Program 50 (TGFβ response, FDR = 0.0046) and Program 29 

(EDN1, wound healing, FDR = 0.0316), and identified genes known to regulate vascular 

tone and stiffness such as FHL2, SMAD3, and TGFB1 (Extended Data Fig. 12a). These 

observations confirm that V2G2P does not simply identify generic EC programs, but rather 

identifies different cell-type specific programs relevant to each vascular trait.

To test whether our approach is generalizable to other cell cell types, we applied V2G2P 

to study 7 traits related to red blood cells using ABC maps9 and a recent genome-

scale Perturb-seq dataset from K562 erythroleukemia cells19 (Extended Data Fig. 12b, 

Supplementary Table 22). We again found that different traits showed significant enrichment 

for different, relevant programs. For example, genes linked to variants associated with 

mean corpuscular hemoglobin were most significantly enriched in K562 Program 13, which 

included many hemoglobin genes and known regulators (including GFI1B and CBFA2T3), 

while variants associated with platelet count showed most significant enrichment in K562 

Program 4, whose program genes showed high promoter enrichment of motifs for the 

known megakaryocyte regulators SP1/3, and included genes known to be involved in 

megakaryocyte differentiation and platelet count such as VASP and TPM4 (Extended Data 

Fig. 12b, Supplementary Table 22).

In summary, we find that variants associated with different traits map onto different 

programs corresponding to relevant biological pathways, even within a single cell type, and 

that the V2G2P approach can be successfully applied to a second cellular model. Thus, the 

V2G2P analysis pipeline is likely to be generally applicable to provide insights for complex 

traits and cell types beyond CAD.

Discussion

GWAS have identified hundreds of loci for many common complex diseases such as CAD. 

An emerging paradigm for understanding their function is that risk variants should map onto 

genes that act together in biological pathways1-6. Yet, such pathway-level convergence has 

been difficult to identify for many diseases, because existing approaches can be limited to 

studying one gene or pathway at a time, underpowered, and/or biased toward rediscovering 

known genes and pathways.
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Our study introduces a novel method to address this challenge, in which we build unbiased 

maps of genome function using epigenomic data and Perturb-seq, and then combine these 

maps to identify convergence of risk variants onto pathways. The method is systematic 

in that it measures the full transcriptomic effects of all genes in all relevant GWAS 

loci, facilitating the discovery of novel disease-associated pathways and new functions for 

uncharacterized genes (Supplementary Note 5). Applying this method to ECs revealed that 

43 of 306 CAD GWAS signals indeed converge onto 5 transcriptional programs, all related 

to CCM signaling. We find that two newly prioritized CAD genes, CCM2 and TLNRD1, 

strongly regulate these programs (which include dozens of other CAD genes), show highly 

similar transcriptional and cellular phenotypes, and physically interact with one another. 

This strong signature of molecular convergence identifies the poorly-characterized gene 

TLNRD1 as a new member of the CCM signaling pathway, implicates the CCM pathway 

in genetic risk for CAD, and demonstrates that Perturb-seq indeed identifies transcriptional 

programs that help to interpret disease risk variants.

Our data suggest a model where protective alleles affecting CCM2 and TLNRD1 down-

regulate activity of the CCM complex in ECs, increasing the expression of atheroprotective 

genes (including two V2G2P-prioritized gold standard genes, NOS3 and PLPP350,51) 

and downregulating atherogenic genes (Fig. 3, Fig. 5c, Fig. 6a, Supplementary Table 

15). Importantly, downregulation of CCM2 or TLNRD1 in cells in static culture mimics 

the effect of laminar flow, promoting atheroprotective gene regulation, actin stress fiber 

formation and endothelial barrier function (Fig. 6). Given that atherosclerosis in vivo 
predominantly develops in areas of disrupted or turbulent blood flow13, these data suggest 

that reduction of CCM2 or TLNRD1 function might confer a resistant phenotype on ECs 

precisely in those regions of disrupted flow that are most prone to atherogenesis.

The convergence of 43 CAD risk loci onto CCM signaling related to flow responses in 

ECs (a number of loci comparable to the 78 CAD loci that are associated by GWAS with 

circulating lipid levels) suggests that this is a key mechanism controlling risk for CAD in 

the human population. We anticipate that future application of the V2G2P approach in other 

atherosclerosis-relevant cell types, including smooth muscle cells and monocytes, will be a 

powerful approach to provide a more comprehensive analysis of genetic risk for CAD.

Interestingly, the novel link we find between CCM signaling and common, polygenic 

coronary artery disease is in the opposite direction of its known role in rare, monogenic 

CCM disease: whereas complete loss of function of CCM complex proteins causes 

cavernous malformations in the brain and spinal cord, our results indicate that common 

variant alleles that quantitatively down-regulate CCM complex function in arterial ECs 

reduce CAD risk. Further studies in vivo will be required to understand how CCM signaling 

could have such different effects in these two diseases. Additionally, our finding that 

TLNRD1 is a novel regulator of CCM signaling suggests that future studies could also 

evaluate mutations in TLNRD1 as an alternative possible cause of disease in the 47% 

of sporadic CCM cases with multiple lesions that lack pathogenic mutations in the three 

previously known members of the CCM complex52.
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In summary, our approach establishes a new, generalizable path to systematically link 

risk variants to disease genes and to convergent transcriptional programs, providing a rich 

foundation for further studies to dissect novel disease mechanisms. By applying Perturb-seq 

and the V2G2P approach across many cell types and states relevant to various complex 

diseases, it should be possible to nominate causal disease genes for a large fraction of 

GWAS loci and map how they converge onto particular cellular pathways. Such a project 

is becoming increasingly feasible, and would provide a foundation for systematic efforts to 

leverage human genetic data to discover disease mechanisms.

Methods

Cell culture & creation of CRISPRi TeloHAEC

Telomerase-immortalized human aortic endothelial cells (TeloHAEC) were purchased from 

ATCC (CRL-4052), and grown in Lifeline VEGF endothelial cell media (LL-0005) with 1x 

Penn/Strep. Cells were plated at a density of 0.5-1.0 x 106 cells per 10 cm plate and split 

before reaching 4 x 106/plate (3 to 4 days). To create the TeloHAEC CRISPRi line, cells 

were transduced with lentiviral vectors containing 1) dox-inducible (tetracycline operator 

controlled) dCas9-KRAB-BFP (CRISPRi machinery, which targets epigenetic repressors to 

efficiently silence enhancers or promoters53-55, Addgene #85449) and 2) rtTA (tetracycline 

activator) with a hygromycin marker (Addgene #66810). After hygromycin selection (250 

μg/ml for 4 days), cells were treated with 1 μg/ml doxycycline (dox, a stable tetracycline 

analogue) for 3 days before FACS sorting for the top 15% of BFP positive cells, and 

after a period in culture without dox, treated again with dox and re-sorted (Extended Data 

Fig. 1e). Diagnostic FACS performed immediately before the Perturb-seq screen showed 

no leaky BFP expression in the absence of dox, and 93% BFP positive cells in the 

presence of dox (Extended Data Fig. 1f). CRISPRi TeloHAEC were passaged for routine 

maintenance in the absence of dox. Eahy926 cells (a HUVEC + A549 hybrid line) and 

HEK293T cells were purchased from ATCC (CRL-2922 and CRL-3216, respectively), and 

grown in DMEM + 10% FBS. To study responses to CAD-associated cytokines, cells were 

untreated (control), or treated with 10 ng/ml recombinant human IL-1β (Millipore IL038), 

10 ng/ml recombinant TNFα (Millipore GF023), or with normal media lacking VEGF 

(for TeloHAEC) or supplemented with VEGF (1x concentration from LifeLine VEGF 

media, for Eahy926), for 24 hours. All cell lines were mycoplasma-free. In addition to 

authentication by the provider, we further authenticated each line by analysis of microscopic 

morphology (e.g. TeloHAEC displayed the characteristic EC cobblestone morphology and 

showed localization of VE-Cadherin to endothelial cell junctions), functionality (high 

transfectability and protein expression for HEK293T), mapping of ATAC-seq, ChIP-seq and 

RNAseq reads to the human genome, and RNAseq profiles and responses (e.g., for Eahy926 

& TeloHAEC, expression of EC-specific genes and observation of previously-observed 

responses to stimuli, such as IL-1β).

Bulk RNA-seq

Total RNA was harvested from TeloHAEC (parental or CRISPRi lines) by Qiagen RNeasy 

kit (74016, Qiagen), DNAse treated (TURBO DNAse, InVitrogen AM2238, 15’ 37°C), 

and purified on MyOne Silane beads. For flow response and MAP3K3 knockdown studies, 

Schnitzler et al. Page 14

Nature. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



DNAse treatment was performed on the spin column between two buffer RW1 washes, for 

20 mins at room temperature with Purelink DNAse (InVitrogen 12185010), 10 μl in 80 μl of 

1x buffer. mRNA was purified from 400ng to 1 μg of total RNA using the NEBNext Poly(A) 

mRNA Magnetic Isolation module (NEB), processed for RNA-seq library generation using 

the NEBNext Ultra II RNA Library Kit for Illumina (NEB), and sequenced to a depth of 

10 to 30 million reads/library. Reads were mapped to the human hg19 genome build, and 

counts per gene tables assembled as per 9,22, or, for flow response and MAP3K3 knockdown 

studies, using kallisto 56. Differential expression calls were made using Limma VOOM57 

(for parental TeloHAEC & Eahy926) or edgeR58 (for all other libraries). Bulk RNA-seq 

data is available from the Gene Expression Omnibus (GEO). For cytokine treatment of 

parental lines and single guide knockdowns use accession GSE210522. For flow response 

and MAP3K3 double knockdown studies use accession GSE232400.

ATAC-seq, H3K27ac ChIP-seq & identification of TeloHAEC enhancers

For ATAC-seq, one well of a 12-well plate (~200,000 cells) was directly lysed using a 

custom TN5 buffer (33 mM Tris Acetate pH 7.8, 66 mM Potassium Acetate, 10 mM 

Magnesium Acetate, 16% dimethylformamide & 0.1% NP40). 47.5 μl of lysed cells was 

added to 2.5 μl Tn5 tagmentation enzyme (Illumina) & incubated at 37°C for 1 hr, and 

the reaction stopped by addition of 20 μl buffer RLT (Qiagen). Products were purified by 

addition of 1.8 volumes Ampure XP beads (Beckman-Coulter) & magnetic separation of 

beads, followed by two 80% ethanol washes, brief drying of pellets & resuspension in 23 μl 

water. Barcoded ATAC-seq libraries were then generated as described in 9,22, and sequenced 

to a depth of 10-20 million reads per library. Chromatin immunoprecipitation for histone H3 

lysine 27 acetylation (H3K27ac) was performed as described in 9,22, using anti H3K27ac 

antibody (#39685, Active Motif) at 1:200 dilution. ChIP-seq libraries were prepared using 

the KAPA Hyper Prep Kit (KAPA Biosystems). ATAC-seq libraries were prepared in 

biological triplicate, and ChIP-seq libraries in biological duplicate. For both types of 

libraries, reads were mapped to the human genome (hg19 build) using Bowtie2, and peaks 

identified using MACS2, essentially as per 9,22. Raw and processed data are available on 

GEO: GSE210489 (ATAC-seq) and GSE210491 (ChIP-seq). Enhancers and their predicted 

target genes were identified by applying the Activity-by-Contact (ABC) model to these data, 

using ATAC-seq and H3K27ac ChIP-seq as the measures of enhancer Activity, and using 

a cross-cell type average of Hi-C maps as the measure of 3D enhancer-promoter contact 

frequency (https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction 7,8). We used 

an ABC fractional score threshold of ≥0.0159.

Selection of genes for the Perturb-seq library

We constructed a library of promoter-targeted CRISPRi guides to all potential causal 

CAD genes (Fig. 1b). First, we identified all coding genes within a 1 megabase window 

surrounding the lead SNPs from CAD loci identified in either or both of van der Harst 

et al.10 and Aragam et al.12 that were expressed in TeloHAEC (1+ TPM, from bulk 

RNA-seq). If fewer than 2 expressed genes were found within 500kb up- or downstream 

of the lead SNP, the window was expanded to include the closest 2 genes to each side 

(for a total of 1661 genes). Non-coding genes were generally excluded, unless there was 

strong evidence for regulatory functions, particularly in ECs. Selected genes with TPM 
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<1 were included, particularly if they were known to be important for CAD in tissues 

where they were more highly expressed (e.g. PCSK9), or were regulated by IL1-beta in 

bulk RNA-seq data in TeloHAEC (FDR<0.05, fold change >1.3). As negative controls, we 

included guides targeting 48 coding genes expressed in other cell types but not detectably 

expressed in ECs, and the 132 expressed coding genes within 1 Mb of 16 randomly-selected 

lead SNPs associated with Inflammatory bowel disease, Crohn’s disease or Ulcerative 

colitis 59, and which did not overlap with CAD loci. As positive controls, and to aid in 

connecting candidate CAD genes to known pathways in ECs, we targeted the promoters of 

an additional 284 genes with known roles in a wide range of CAD-relevant EC functions 

such as barrier formation, TGF-beta signaling and inflammation, as well as major classes of 

expressed transcription factors and common essential genes. We also targeted an additional 

160 promoters of expressed genes predicted to be regulated by EC enhancers containing 

fine-mapped variants associated with other disease phenotypes expected to be modulated 

by ECs (migraine, blood clotting in leg, systolic blood pressure, diastolic blood pressure & 

mean arterial blood pressure, from UKBB, see Supplementary Table 23). This gave a total of 

2285 genes, some of which were members of more than one category.

Guide library production and validation

sgRNA guides were designed to target promoters of the chosen CAD and control genes 

(15 guides spanning from -150 to +100 relative to the Transcription Start Site (TSS)), 

using our established pipeline (9,22, https://github.com/EngreitzLab/CRISPRDesigner). 

We included 400 non-targeting guides (that do not have close matches to any 

region in the human genome) and 600 safe targeting guides (targeting non-genic 

regions lacking enhancer marks) 53. Because TeloHAEC are puromycin resistant, we 

adapted the CROP-opti vector (20, Addgene, #106280) for Blasticidin resistance (“CROP-

opti Blast”), by digesting the vector with BsiWI and MluI, PCR-amplifying the 

Blasticidin resistance gene from lenti-dCas-VP64_Blast (Addgene, #61425) with added 

homology arms, and performing Gibson Assembly (Gibson Master mix, New England 

Biolabs). To create “CROP-opti-BC-Blast”, we added HyPR-Seq barcodes between 

the WPRE element and the U6 promoter of CROP-opti-Blast, as described in 60. A 

pool of oligos encoding the guide sequences, plus extensions with homology to the 

U6 promoter and downstream scaffold (TATCTTGTGGAAAGGACGAAACACCG & 

GTTTAAGAGCTATGCTGGAAACAGCATAG) was synthesized by Agilent Technologies, 

and cloned into Crop-Opti-BC-Blast by Gibson assembly and bacterial electroporation as 

described53, at an average coverage of 202 transformants per guide. Note that, since the 

vector was prepared from a single clone, diversity of the HyPR-seq barcodes (which were 

not required for Perturb-seq) was not preserved. The library was sequenced and shown to 

include all 37,637 designed guides with relatively equal coverage of each (the difference in 

count frequency between the top and bottom 10th percentiles of guides was 2.8). A lentiviral 

library was produced using a standard 3-plasmid protocol53, at a scale to yield 10 ml of 

virus, stored in aliquots at -80°C, with each aliquot thawed only once.

Perturb-seq: Experimental procedure

To transduce this library into CRISPRi TeloHAEC, cells were resuspended in media 

containing 10 μg/ml polybrene at a density of 1e6 cells per ml, mixed with virus and 
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plated 4 ml per well to 6-well plates, centrifuged at 2000 rpm for 2 hrs at 30°C, and 

incubated at 37°C for 2 hrs before addition of another 4 ml media without polybrene. 

The next day, cells were harvested and plated to 15 cm plates and treated with 15 μg/ml 

blasticidin for 4 days. The effective viral titre was determined using this same protocol, and 

a volume of virus was chosen that gave a final measured 15.7% infection rate (such that 

most successfully transduced cells have only 1 guideRNA). For the Perturb-seq study, 127.5 

million CRISPRi TeloHAEC were transduced and selected for blasticidin resistance, for a 

coverage of approximately 360 cells per guide (as back-calculated from yield at the first 

post-blasticidin split, using the 36.7 hr doubling time observed in routine culture) to 461 

cells per guide (as estimated from initial number of cells and infection rate). After blasticidin 

selection, cells were treated with 2 μg/ml dox for 5 days (plating 18e6 cells at each split, to 

maintain complexity of the library). We reasoned that, since atherosclerotic plaques develop 

slowly, the longer-term transcriptional effects of causal CAD gene disruption would provide 

the greatest insights into disease mechanisms. Thus, while we have found that knock down 

of guide-targeted genes is near maximal after 2 days of doxycycline treatment (inducing 

the CRISPRi machinery), we treated guide-containing cells with 2 μg/ml doxycycline for 5 

days, to measure the longer-term consequences of each perturbation. We also used this same 

5-day dox treatment protocol for downstream validation studies (e.g. bulk RNAseq of single 

guideRNA clones).

The presence of guideRNAs in cells allows multiplets (droplets containing 2 or more 

cells) to be unambiguously identified, as droplets containing more than one guide. This 

allowed us to load ~10-fold more cells per 10X Genomics lane than the maximum 

number recommended in the manufacturer’s protocol. Briefly, cells were harvested, 

resuspended in PBS with 1% BSA, counted, and loaded at 150,000 cells per lane 

on a 10X Genomics Chromium Controller using a 3’ scRNA-seq V3 kit (20 lanes, 

for a total of 3 million cells). Cells were isolated in two batches, with 6 lanes for 

the first batch, and 14 lanes, across 2 cassettes, for the 2nd batch, 6 hours later. 

scRNA-seq libraries were generated using the 10X Genomics protocol, and given lane-

specific indexes. From the initial amplified cDNA, we used a two stage PCR protocol 

to generate “dialout” libraries, for each lane. Because the CROP-seq vector expresses 

a Pol II polyadenylated transcript that ends just downstream of the guide sequence, 

the dialout libraries identify the guideRNA sequences associated with each droplet20. 

PCR1 oligos for the guide dialout PCR were: CTACACGACGCTCTTCCGATCT & 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTTGTGGAAAGGACGAAACACC, 

and PCR2 oligos were 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC & 

CAAGCAGAAGACGGCATACGAGAT-8bp index sequence-GTGACTGGAGTTCAG.

Assignment of guideRNAs to cells

To get complete information about guide assignments, dialout libraries were sequenced 

to approximately 40-fold saturation. Guides were identified from read 1 sequences, using 

Bowtie2 to align dialout reads to a “genome” composed of all 37,637 guide sequences, 

requiring no-mismatches. Aligning read 1 and read 2 sequences linked gRNA sequences 

with cell barcodes (CBCs, unique to each bead/droplet) and unique molecular identifiers 
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(UMIs). To avoid low-frequency PCR chimeras, we required that each CBC-UMI-guide 

combination be duplicated at least 4 times (Extended Data Fig. 1g). We then identified the 

guides associated with each CBC, and the number of different UMIs for each CBC-guide 

combination. We selected 4 UMIs for any single guide as the threshold to call a cell as 

containing a guide (Extended Data Fig. 1h). We defined singlets (one cell & one guide 

per CBC) as having ≥4 UMIs for the most frequent guide and ≥4x less than this for 

the 2nd most frequent guide (choosing these thresholds to give a good balance between 

power to detect transcriptional effects and accuracy in measuring the magnitude of these 

effects, as described under Selection of Singlet Thresholds, below). Doublets and higher 

multimers, were cells with ≥4 UMIs for the top guide, and one or more additional guides 

with more than 1/4 this number of UMIs. The counts of identified singlets, doublets and 

higher multiplets are shown in Extended Data Fig. 1i.

scRNA-seq data pre-processing and subsetting to singlets

scRNA-seq libraries were sequenced on two Illumina NovaSeq S4 flowcells, yielding 

20,245,734,673 total reads, across all 20 libraries. The FASTQ files were processed on 

the 10X Cloud to run CellRanger count with the hg38 reference genome. We used the 

“filtered” features (i.e., cell barcodes corresponding to droplets that contain a cell), and 

combined the outputs from all twenty 10X lanes into a single genes x cell matrix. This 

analysis identified 822,156 cell-containing droplets (see Supplementary Table 7 for other 

CellRanger output statistics). To measure the effects of individual guides on individual cells, 

we selected only those CBCs identified in the dialout analysis as corresponding to singlet 

cells. This identified 214,449 singlets (droplets containing one cell and one guide), defined 

as 4+ unique molecular identifiers (UMIs) for the top guide and ≥4-fold fewer UMIs for 

any other guide (Extended Data Fig. 1i). This gave an average of 5.7 cells per guide and 

85.5 cells per target promoter. Average sequencing depth was 10,870 transcriptome-mapped 

UMIs per singlet cell, and 929,000 transcript UMIs, across all 15 guides, for each target 

promoter. Raw and processed data, as well as supplemental files for downstream analyses, 

are available from GEO: GSE210681.

Estimation of fitness effects

To estimate the fitness effects of guides, we compared the relative frequency of all 15 guides 

to a given target in the original library to the frequency of the same guides in singlet cells, 

and estimated significance by Benjamini-Hochberg adjusted binomial tests. Essential genes 

were defined as those that scored as fitness reducing in 5 of 7 tested lines in 61.

Differential gene expression (DE) analysis & knockdown efficacy

To measure the differential effects of guides to specific target promoters on individual 

genes, we used edgeR58, with settings for scRNA-seq from 62, comparing all singlet cells 

with guides to each target to all singlet cells with any of the 1,000 non-targeting and 

safe targeting guides. Genes with fewer than 10 UMI counts across all singlet cells were 

excluded from the analysis. To control for possible batch effects, we included the 10X lane 

number as a covariate. For average knockdown efficacy for each perturbation (across all 

15 guides), we used the log2 fold change and p-values reported by edgeR. To measure 

the knockdown efficacy of individual guides, we performed binomial tests on: the number 
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of transcripts for the guide’s target in singlet cells with that guide (hits), all transcripts in 

singlets with that guide (tests) versus a background frequency of (transcripts to the target 

in other singlet cells)/(all transcripts in other singlet cells). Note that with an average of 5.7 

cells per guide, assigning significance for knockdown effects of individual guides was only 

possible for genes with high expression in unperturbed cells (e.g., TPM>100). To identify 

perturbations with a significant effect on the transcriptome, we used the edgeR results for the 

48 negative control promoters (for genes not detectably expressed in TeloHAEC) to estimate 

the number of DE genes found by chance, at thresholds of nominal p-value < 0.01 and fold 

change > 1.15. Perturbations with a significant effect on the transcriptome (across all 15 

guides to each target) were defined as having more DE genes, by these same thresholds, 

than the 48 non-expressed controls (using binomial tests with a background rate equal to the 

average DE gene count for controls over all genes tested, and multiple hypothesis correction 

by the Benjamini Hochberg method).

Selection of singlet thresholds

Expression of the CROP-seq guide mRNA in TeloHAEC is lower than in some other cell 

lines, such as K562 & HEK293T12 resulting in the absence of a clear gap between noise 

(low UMI CBC-guide combinations that are likely PCR chimeras) and higher UMI-count 

true guide reads (Extended Data Fig. 1h). We hypothesized that reducing stringency for 

singlet calls could potentially reduce power to detect perturbation effects on transcription 

(due to increased noise from mis-calling some true doublets as singlets), or could increase 

power (by increasing the total number of called singlets analyzed). To test which of these 

was true, we measured the correlation between differential expression calls for cells with 

guides to a given target in the full Perturb-seq library versus a smaller pilot library tested 

in resting TeloHAEC, reasoning that parameters that improved the correlation between 

these separate studies would also increase the power of the full scale library to detect real 

transcriptional effects. Information about guides, as well as raw and processed data for the 

“200 gene” pilot library can be found on GEO, with accession number GSE212396. For 

the pilot library, we chose singlets with the very stringent threshold of 6 UMIs for the top 

guide and more than 5-fold less for the next most frequent guide (“6&<5x”). For the full 

Perturb-seq dataset we chose 4 UMIs for the top guide and equal to or more than 4-fold less 

than the next most frequent guide (“4&<=4x”, our final applied standard, yielding 214,449 

singlets), or the relaxed thresholds “3&<=3x” (284,466 singlets) and “2&<=2x” (389,792 

singlets). We identified 37 gene targets that were shared between libraries, and which also 

showed an FDR<0.1 effect on the transcriptome in the full Perturb-seq 4&<=4x dataset 

(measured as described above). We then ran EdgeR58,62 for differential expression testing 

(cells with guides to each of these 37 targets versus cells with control guides), for each 

library and singlet definition (pilot 6&<5x, or full library 4&<=4x, 3&<=3x, and 2&<=2x). 

Then, for all genes called as differentially expressed in either the pilot library or the full 

library (raw p-value < 0.01), we measured the correlation in log2 fold changes between the 

pilot & full scale data, repeating this analysis for each singlet definition.

Lastly, we measured the difference in correlation coefficients (R) between the relaxed 

threshold comparisons (pilot v. full library 3&<=3x, and pilot v. full library 2&<=2x) and 

the base comparison (pilot vs. full library 4&<=4x). We found that the median correlation 
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between pilot & full-scale studies significantly improved with the relaxed singlet thresholds 

(Supplementary Fig. 2a, with significance assessed by two-sided t-test). This indicates that 

the increased number of called singlets with the relaxed thresholds increased the power 

to detect real transcriptional effects, despite an expected increase in doublets mis-assigned 

as singlets. Plotting change in R for each target for the 2&<=2x singlet definition ((R 
for pilot v. full library 2&<=2x) - (R for pilot v. full library 4&<=4x), y-axis) against 

the R value for the base correlation (between the pilot and the 4&<=4x full library 

singlet definition, x-axis), we found that in all 13 cases where R started high (>0.15, 

likely real correlations between strong transcriptional effects), R increased (Supplementary 

Fig. 2b). R also increased in all but one case where it started out negative (correcting 

anti-correlations likely driven by noise). Weak positive base correlations were adjusted up or 

down, potentially improving true correlations and correcting spurious ones. As such, relaxed 

singlet thresholds might improve power to detect reproducible transcriptional changes more 

than is indicated by simple mean differences in R values. On the other hand, we found that 

lower stringencies reduced the apparent knock down effect on these target genes, themselves 

(Supplementary Fig. 2c, median log2 fold changes: -0.53 for 4&<=4x, -0.41 for 3&<=3x 

and -0.42 for 2&<=2x), likely due to the fact that a mis-called singlet that was actually 2 

cells with different guides would show half-magnitude transcriptional effects of each guide. 

Reduced singlet thresholds also decreased median log2-fold changes for target genes across 

all targets in the full-scale library (Supplementary Fig. 2d, -0.368 for the 4&<=4x singlet 

definition, and -0.327 for the 2&<=2x singlet definition). Based on these observations, we 

chose the thresholds of 4 UMIs for the top guide and <=¼ this for the next (4&<=4x), to 

provide a good balance between overall power and accurate detection of the magnitude of 

effects.

Data processing prior to defining gene programs

To remove noncoding RNA from the analysis, we removed genes with names starting with 

“LINC” and gene names with patterns starting with two letters and six digits. We retained 

cells with a minimum of 200 unique detected genes and a minimum of 200 UMIs. We 

retained genes detected in a minimum of 10 cells.

Consensus non-negative matrix factorization (cNMF)

To identify sets of genes that are co-expressed across single cells in a dataset, we used 

non-negative matrix factorization (NMF). NMF decomposes an input cell x gene UMI count 

matrix (X) into a cell x component matrix (W) and a component x gene matrix (H), such 

that X = W • H + E, where E is the error term. The cell x component matrix W represents 

the contribution of each component to the cell’s transcriptional profile, and the component 

x gene matrix H encodes information about gene expression programs. The number of 

components (K) is a hyperparameter defined prior to performing matrix factorization (see 

below). To account for the fact that the NMF algorithm is a stochastic algorithm that 

depends on the initial seed, we used the consensus NMF (cNMF) method developed by 

Kotliar et al25. The cNMF method, after normalizing each gene’s expression to unit standard 

deviation, factorizes the normalized matrix multiple times (here, 100 repeats); clusters the 

components from the repeat runs based on their pairwise Euclidean distances; removes the 

components that show low similarity to any other component (here, threshold on Euclidean 
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distance = 0.2); defines “consensus components” as the median of each of the component 

clusters; and recomputes the cell x component matrix W using these consensus components. 

As one technical note about applying the cNMF pipeline as described by Kotliar et al.25, we 

found that including all genes, as opposed to the 2000 most variable genes, was important 

for finding certain programs observed only infrequently in the dataset (data not shown). This 

is because genes whose expression changes in only a small fraction of cells (e.g. cells with a 

particular perturbation) would not end up being included in the 2000 most variable genes.

Choosing the number of components for cNMF analysis

To choose the free parameter K (number of components, Extended Data Fig. 2d-e), we 

defined a set of benchmarking statistics and compared the results of cNMF run for K = [3, 4, 

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 19, 21, 23, 25, 27, 29, 30, 35, 40, 45, 50, 55, 60, 100]. 

We ultimately chose K=60 for all downstream analyses.

We examined the following benchmarking statistics:

(i) Number of unique GO terms enriched in program co-regulated genes (Extended Data Fig. 

2d, see below)

(ii) Number of unique enriched TF motifs in the promoters or enhancers of program co-

regulated genes (Extended Data Fig. 2e, see below)

(iii) Number of perturbations significantly regulating any component (Extended Data Fig. 

2f).

(iv) Error of cNMF (difference between the original normalized data and reconstructed data, 

calculated by taking the sum of squares of the element-wise difference of the data, Extended 

Data Fig. 2g)

(v) Stability of cNMF (a measure of consistency of the components output from repeated 

runs, represented by the silhouette score25, Extended Data Fig. 2g)

We chose K = 60 for further analysis, as the number of components that gave a low cNMF 

error value while near-maximizing each other metric.

Excluding components associated with batch effects

We examined whether some components identified by cNMF were likely to represent batch 

effects. To do so, we calculated the Pearson correlation between each of the 20 batches (i.e., 
10X lanes) and the expression of each component across all cells. Based on the distribution 

of batch x program Pearson correlation (Supplementary Tables 11 & 13), we assigned 10 

components with Pearson correlation > 0.15 as likely representing batch effects (Extended 

Data Fig. 2c). We chose the threshold of 0.15 because: 1) most components showed very 

low correlation with batch, 2) above this threshold sample correlation with batch increases 

greatly (indicating particularly strong association with batch for these 10 components), 3) 8 

of 10 of these components were associated with mitochondrial or ribosomal genes - sets of 

genes commonly observed as batch effects in 10x scRNAseq, 4) these components showed 

abs(R)>.15 across multiple 10X lanes (average of 9), and 5) importantly, none of these 
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components showed enrichment by the V2G2P test (described below), and so would not 

have been identified as significant for CAD risk. We used the remaining 50 components for 

further analysis. This approach (including batch as a covariate in the differential expression 

test) has theoretical advantages, in particular reducing bias when groups (here, perturbed 

genes) are not distributed evenly across batches63.

Defining co-regulated genes for each program

We defined ‘co-regulated genes’ for each cNMF component as the 300 marker genes with 

the highest z-score regression coefficient as defined by cNMF25. Essentially, cNMF uses a 

linear regression model to identify coefficients indicating the number of standard deviations 

each gene’s expression would change with the increased usage of a given component. 

A component’s marker genes, then, are those with the highest “marker gene regression 

coefficients” (or “specificity scores”) for that component, and we selected the top 300 of 

these marker genes as the set of “co-regulated genes” for each gene expression “program” 

(as defined below).

Defining regulators for each program

We tested whether gRNAs targeting a given gene led to a significant change in expression 

of each component from the cNMF model. We used the Model-based Analysis of Single 

Cell Transcriptomics package (MAST)39 to compare the expression of each component 

in cells carrying gRNAs targeting a given gene vs. cells carrying control gRNAs (1,000 

safe-targeting and negative control guides), including 10X lane as a covariate to account 

for batch effects. We removed the guides present in fewer than 3 singlet cells and the 

perturbations with fewer than 2 guides. We used the Benjamini-Hochberg method to account 

for multiple hypothesis testing on the MAST p-values (Extended Data Fig. 2h), and assigned 

‘regulators’ of a program as those genes whose perturbation affected component expression 

with FDR < 0.05 accounting for 140,760 total tests (60 programs x 2,346 perturbations, 

which includes the 2,285 targeted TSSes, as well as targeted enhancers that were not further 

analyzed in this study, Supplementary Table 6).

To confirm that these FDRs were well-calibrated, we also conducted a simulation-based 

test. For each perturbed gene, we sampled from the control cells (all singlet cells with non-

targeting or safe-targeting guides) the same number of cells, and compared these sampled 

cells to the rest of the control cells using the same MAST39 procedure. We identified 0 

significant regulators in this approach (Extended Data Fig. 1q), indicating that our FDR 

< 0.05 threshold is a conservative estimate. We also performed the same procedure to 

estimate the background rate for perturbations called as having a significant effect on the 

transcriptome using EdgeR58,64,65.

Definition and annotation of gene expression programs

We defined a gene expression program as the set of genes comprised of both the 300 “co-
regulated genes” and the significant “regulators” for each cNMF component. We annotated 

programs based on features of their co-regulated genes and regulators, including: by manual 

curation of genes with known biological functions, by enrichment of transcription factor 

(TF) motifs in the promoters and predicted enhancers of co-regulated genes, and by GO term 
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enrichment (see below). The manual labels we assigned to each program (e.g., “Program 8 – 

Angiogenesis and osmoregulation” in Fig. 1c) represent our attempt to annotate the program 

based on functions of known genes, but we note each program includes many genes and 

regulators that have not been studied in combination before and may represent new, specific 

gene-pathway relationships that we do not currently have the vocabulary to describe.

Identifying motifs enriched in promoters and enhancers

To identify transcription factors that might regulate program co-regulated genes, we 

calculated enrichment of human transcription factor motifs in the sequences of the promoter 

and enhancers of the top 300 genes ranked by component specificity score (Extended Data 

Fig. 2e, Supplementary Table 24).

We obtained promoter sequences by taking 500 bp surrounding the TSS as previously 

annotated22 and enhancer regions from the Activity by Contact model at an ABC 

score threshold of 0.015 in the TeloHAEC control condition. For a gene that had 

multiple enhancers, we counted motif instances across all of its enhancers. To match 

motifs to sequences, we used HOCOMOCO v11 human full scan motifs (https://

hocomoco11.autosome.ru/downloads_v11), and Find Individual Motif Occurrences (FIMO) 

(https://meme-suite.org/meme/meme_5.3.2/tools/fimo), with the default settings, and p-

value thresholds of 10−6 for enhancers or 10−4 for promoters.

For a given motif and a given program, we counted the number of occurrences of a motif 

in the promoter sequences of either (i) the top 300 program co-regulated genes, or (ii) all 

expressed genes in teloHAEC, and compared these two vectors of motif counts using a 

two-sided t-test. We computed enrichment by dividing the program gene’s average motif 

match count by the rest of the expressed gene’s average motif match count. We tested all 

pairs of matched motifs (570 for promoter and 590 for enhancer) x 60 programs, and used 

the Benjamini-Hochberg method to account for multiple hypothesis testing on the t-test 

p-values.

Determining enrichment of annotated gene sets in components

To determine if the gene expression programs align with annotated and publicly available 

pathways, we tested whether the co-regulated genes in each component were enriched 

in gene sets from the Molecular Signatures Database (MSigDB). To do so, we used the 

clusterProfiler R package66 and MSigDB gene sets67 (here, the gene sets labeled as “all” 

for all gene sets and “c5” for GO terms only). We filtered the MSigDB gene sets to 

only those with more than 3 genes and less than 800 genes. We annotated each program 

with the gene sets that showed significant enrichment among the program genes (FDR < 

0.05, Supplementary Table 25), and compared the number of gene sets showing significant 

enrichment as a function of the number of programs K (Extended Data Fig. 2d).

Defining endothelial-cell-specific programs

To annotate programs as “endothelial-cell-specific”, we analyzed the degree to which 

program co-regulated genes were expressed in endothelial cells versus other cell types. We 

took gene expression transcript per million (TPM) data across all available cell types from 
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FANTOM5 and calculated the expression z-score of each gene across all cell types. To give 

each gene an endothelial-cell specificity score, we calculated the average of all z-scores for a 

gene across endothelial cell samples. We defined endothelial-cell specificity scores for each 

program as the average of the 300 co-regulated genes’ specificity scores, and selected 0.19 

(90% percentile) as the threshold to call programs as “endothelial-cell-specific” (Extended 

Data Fig. 3c, Supplementary Table 13).

Variance explained by all cNMF components

To quantify the fraction of variance explained by all 60 programs jointly, we compared the 

residual variance in the dataset after subtracting the consensus matrix factorization to the 

total variance in the dataset: V = 1 - Var(X - WH)/Var(X), where X is the (cell x gene) 

normalized data matrix input to cNMF, W is the (cell x program) usage matrix, H is the 

(program x gene) spectra or weight matrix, and matrix variance is defined by summing the 

column- or gene-level variances: Var(X) = ΣjVar(Xj). Note that cNMF normalizes the input 

data so each Var(Xj) = 1.

Variance explained by individual gene programs

To rank gene programs by variance explained, we devised a method to quantify variance 

explained by NMF or cNMF components separately. For the k’th program Hk, we consider 

the effective matrix decomposition given only this program; the effective usage matrix Bk 

in this case is given simply by orthogonal projection or ordinary least squares: Bk = XH’k/
∥Hk∥2, where the prime indicates transposition. We then define the variance explained in 

terms of the residual fraction as above: Vk = 1 - Var(X - BkHk)/Var(X). Our method may 

be generalized to any set of programs, but with more than one program the effective usage 

matrix must be obtained by nonnegative least squares (a single iteration of NMF).

Defining variants in CAD GWAS signals for variant-to-gene analysis

CAD lead GWAS variants were derived from both Aragam et al.12 and Harst et al.10. We 

excluded lead variants from Harst et al. if the variants were in strong LD (r2 ≥ 0.7) with an 

Aragam et al.12 lead variant or were ≤5Kb away from an Aragam et al. lead variant. An LD-

expansion was performed to include variants that are both within a 1 Mb window of, and are 

in strong LD (r2 ≥ 0.9) with the any of these lead GWAS variants in 1000 Genome European 

ancestry (plink --ld-window-kb 1000 --ld-window 99999 --ld-window-r2 0.9). For each lead 

variant, we also included variants prioritized through functionally informed fine-mapping 

(PIP ≥ 0.1) in either study12,10. We defined a “GWAS Signal” as this collection of variants 

around, and including, each lead variant.

Identifying CAD variants associated with lipid levels

We classified CAD GWAS signals as “lipid” or “non-lipid” based on their association 

with lipid levels in other GWAS studies, because the CAD GWAS signals also associated 

with lipids are presumed to act through non-endothelial cells such as hepatocytes. For lead 

signals included in Aragam et al.12, we defined a CAD GWAS signal to be associated 

with lipids if the lead variant was linked to “LDL-direct”, “Triglycerides”, “Cholesterol”, 

“HDL-cholesterol”, “Apolipoprotein A”, “Apolipoprotein B”, “HDLC” or “LDLC” in 

Schnitzler et al. Page 24

Nature. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the phenome-wide association scan (PheWas) conducted by Aragam et al.12 For GWAS 

signals exclusively nominated by Harst et al10, we used a different procedure in which 

we considered a signal to be associated with lipids if its lead variant was associated (P 
< 5 × 10−8) with HDLC, LDLC, TG, ApoA, or ApoB based on GWAS from the UK 

Biobank (Hilary Finucane and Jacob Ulirsch: https://www.finucanelab.org/data). We refer 

to the remaining GWAS signals not associated with lipid levels as “non-lipid CAD GWAS 

signals”, and focused on this subset of signals as cases where CAD variants might plausibly 

act in endothelial cells.

Linking variants to genes

We used a combination of variant-to-gene methods to identify a list of genes linked to 

CAD variants that could plausibly act in endothelial cells. At each CAD GWAS signal, we 

considered as candidate genes at least two genes upstream or downstream of the lead GWAS 

SNP, and all the genes within +/− 500Kb of the lead variant to be potentially regulated 

by the GWAS signal. We focused our analysis on protein-coding genes and excluded long 

noncoding RNAs (“^LINC”), gene isoforms (“-AS”), microRNAs (“^MIR”), small nuclear 

RNAs (“RNU”), and genes of uncertain functions ("^LOC"). To link CAD variants to genes, 

we intersected the variants with ABC enhancers9 in endothelial cells to identify the top 

two genes most likely to be regulated by each variant (highest 2 ABC fractional scores 

over 0.015). Specifically, we used ABC data, for enhancers and predicted target genes, 

from TeloHAEC and Eahy926 (control, or treated with IL1β, TNFα or VEGF, this study), 

and from prior ABC analysis of HUVEC (‘endothelial_cell_of_umbilical_vein_Roadmap’, 

‘endothelial_cell_of_umbilical_vein_VEGF_stim_12_hours-Zhang2013’, and 

‘endothelial_cell_of_umbilical_vein_VEGF_stim_4_hours-Zhang2013’ datasets from 9). To 

account for cell state-specific regulation that was not predicted by ABC, we also intersected 

candidate CAD variants at each signal with ATAC peaks and considered the 2 genes closest 

to variant-containing peaks as plausibly regulated. We also linked variants to genes if the 

variant was in a coding sequence or within 10 bp of a splice site annotated in the RefGene 

database (downloaded from UCSC Genome Browser on 24 June 2017)68. We confirmed 

that these candidate CAD variants were significantly enriched for matching any or all of 

these criteria (Extended Data Fig. 5e). We identified 254 candidate CAD genes, defined as 

“genes with V2G (variant-to-gene) links”, at 125 of 228 non-lipid CAD GWAS signals 

(Supplementary Table 1).

Transcription profile comparisons between teloHAEC and human right coronary artery 
endothelial cell (RCAEC)

To confirm the validity of teloHAEC as a relevant model for endothelial cells in human 

coronary artery (where atherosclerosis that leads to CAD develops), we compared single 

cell RNA-seq gene expression from control guide carrying teloHAEC from our Perturb-seq 

screen to scRNAseq data from explanted human right coronary artery endothelial cells 

(RCAECs)69. We compared the gene expression at two levels: for all perturbed genes (2,285 

genes) and for the 41 CAD associated genes. Among the perturbed genes in teloHAEC, 

2,107 genes are expressed at TPM > 1 in healthy or disease RCAECs. We observed high 

correlation of gene expression in transcripts per million (TPM) between teloHAECs and 

RCAECs (Pearson correlation = 0.66, p-value = 6.45 x 10−280, Extended Data Fig. 1b). We 
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observed similar correlations of gene expression for the 41 CAD associated genes (Pearson 

correlation = 0.63, p-value = 9.29 x 10−6, Extended Data Fig. 1c). Furthermore, 40 out of 41 

CAD associated genes are expressed at >1 TPM in RCAECs (Extended Data Fig. 1d).

Identifying CAD-associated programs via variant-to-gene-to-program analysis

We developed an approach to identify gene programs likely to affect CAD risk through 

functions in endothelial cells. To do so, we tested whether the 254 genes with V2G links 

(between CAD variants and enhancers/coding regions in endothelial cells) were enriched 

in each Perturb-seq program. Specifically, we performed a one-tailed Fisher exact test 

separately for co-regulated genes and for regulators. For co-regulated genes, we constructed 

a contingency table for whether a gene is a co-regulated gene (out of 17,472 expressed 

genes) and whether a gene has a V2G link. For regulators, we constructed a contingency 

table for whether a gene is a regulator (out of all perturbed genes) and whether a gene has 

a V2G link. We then multiplied the p-values from co-regulated gene and regulator Fisher 

exact tests together to get a final program enrichment p-value. We use Benjamini-Hochberg 

method for multiple hypothesis correction across all 50 non-batch programs. For an example 

of this analysis, see Extended Data Fig. 6g. 5 programs showed significant enrichment by 

this method (FDR < 0.05: Programs 8, 35, 39, 47, 48), referred to as “V2G2P programs for 
CAD”.

Defining CAD-associated V2G2P genes

We defined “V2G2P genes for CAD” as those 41 genes that were both (i) a gene with a 

V2G link to a CAD variant and (ii) a member of one of the 5 CAD-associated programs (as 

a regulator and/or co-expressed gene). The 41 genes were linked to 43 GWAS signals due to 

cases where independent GWAS signals are linked to the same gene.

Identifying enriched programs via MAGMA

We tested whether the co-regulated genes in each program were significantly enriched 

near variants associated with CAD using MAGMA. To do so, we took the CAD summary 

statistics from Aragam et al.12 (https://data.mendeley.com/public-files/datasets/2zdd47c94h/

files/5b4eb0d7-96e8-4c7e-b109-046107ebd480/file_downloaded), and used the MAGMA 

--annotate function to summarize CAD association p-values for variants within a 50 kb 

window of all human genes, using the 1000 genomes European reference data for base 

allele frequencies (https://ctg.cncr.nl/software/MAGMA/ref_data/g1000_eur.zip). We then 

ran MAGMA to test for enrichment of CAD heritability within 50 kb of the top 300 program 

genes, and corrected for multiple testing (60 components) using the Benjamini-Hochberg 

method.

Identifying programs and cell types enriched for CAD heritability via stratified LD score 
regression

We used S-LDSC to estimate the enrichment of CAD heritability linked to program 

genes and to enhancers in TeloHAEC. While the original implementations of S-LDSC 

linked variants to genes based on genomic distance28,70, we additionally required that 

variants either overlap exonic regions of the gene or overlap nearby candidate enhancers 
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in endothelial cells (as in 32,71). In particular, for co-regulated genes in each program, we 

derived an annotation for S-LDSC by including exonic regions (exons from transcripts with 

Ensembl_canonical, appris_principal, appris_candidate, or appris_candidate_longest tags, 

as indicated in the GENCODE v38lift37 annotations) as well as endothelial cis-regulatory 

elements derived from snATAC-seq72, from which we merged the 9 adult and 8 fetal sets 

of endothelial peaks into a single annotation, and for each geneset included all peaks within 

50 kb of the gene starts and ends. For all peaks, we first converted coordinates from the 

GRCh38 to the GRCh37 reference assembly using UCSC LiftOver, discarding peaks that 

could not be converted. To estimate the enrichment of CAD heritability in TeloHAEC 

enhancers, we required the variants to overlap enhancers predicted by ABC from ATAC-seq 

and H3K27ac ChIP-seq data in TeloHAEC under control conditions or treated with IL1β, 

TNFα or VEGF (ABC score > 0.015). For each set of variants (programs or TeloHAEC 

enhancers) we ran S-LDSC using 1000G EUR Phase3 genotype data to estimate LD scores, 

baseline v2.2 annotations as recommended by the LDSC developers73, and HapMap 3 SNPs 

excluding the MHC region as regression SNPs. We ranked programs by their enrichments 

and reported the p-values of these enrichments (Extended Data Fig. 5b). Full S-LDSC 

results for TeloHAEC enhancers can be found in Supplementary Table 27.

Polygenic Priority Score (PoPS)

PoPS is a method to nominate likely causal genes in a GWAS locus, which prioritizes genes 

based on their being members of many gene sets enriched for heritability genome-wide3. 

We applied PoPS to summary statistics from Aragam et al.12 using the predefined set of 

gene sets as previously described3 (Extended Data Fig. 5c,d). For each GWAS signal, we 

calculated the PoPS rank among “nearby genes” (2 to either side of the lead SNP, and all 

within +/−500kb). Previously we have shown that genes with the highest PoP score in the 

locus are strongly enriched for likely causal genes, as identified by fine-mapped coding 

variants3, and that this enrichment increases when further focusing on genes that are both the 

closest gene and have the highest PoP score. In this analysis, we did not use any features 

from Perturb-seq and, as such, this method represents an entirely independent method that 

validates the high likelihood of causality of the set of CAD-associated V2G2P genes.

Defining gene expression programs for cells carrying control guides

To examine the gene programs in normal, unperturbed teloHAECs, we used the same 

analysis pipeline on the subset of cells carrying control guides (5,506 cells). We used cNMF 

to discover K=60 components, and defined 60 “control programs” based solely on the 300 

co-regulated genes defining each component (because control guides did not target any 

genes, so there was no regulator information). Of the 60 programs, 4 programs correlated 

with batch (Programs 2, 17, 22, 41). We compared the program co-regulated genes between 

control cells and full library programs (Extended Data Fig. 6d). Control program 10 

highly overlapped with full library programs 8 and 39. The four control programs that 

correlated with batch also had high overlap in co-regulated genes with the full library’s 

batch programs. We then utilized the V2G2P approach to prioritize these programs, and 

found that none of the control programs was enriched for genes with V2G links (Extended 

Data Fig. 6e).
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Identifying genes in the CCM pathway

Fig. 3 shows a curated set of genes previously reported to interact physically or functionally 

with the CCM complex and/or downstream ERK5/MEK5 signaling47,48,74-78, plus one 

additional gene (TLNRD1) that we identify here as a member of the CCM pathway. These 

genes were manually selected through an iterative process involving examining genes known 

to interact with the CCM complex and that were found to regulate the enriched programs in 

Perturb-seq.

Allelic imbalance analysis for a variant linked to TLNRD1

We calculated allelic imbalance in ATAC-seq and ChIP-seq signal for the rs1879454 variant, 

accounting for any mapping bias toward the reference allele following methods previously 

described79. Specifically, we created two reference genome FASTA files that harbored 

the reference or alternate alleles at rs1879454; aligned ATAC-seq data to both genome 

files; selected reads that overlapped the variant coordinate; and used PySuspenders79 

and PySAM (https://github.com/pysam-developers/pysam) to assign and count reads that 

uniquely aligned to one or the other allele. We applied this procedure to ATAC-seq data from 

TeloHAEC and the ENCODE datasets ENCSR000EVW (GATA2 ChIP-seq on HUVEC) 

and ENCSR000EOB (DNase-seq and DGF on HMVEC-dLy-Neo).

CRISPRi-FlowFISH for TLNRD1

We used CRISPRi-FlowFISH to test the effects of 61 candidate enhancers on TLNRD1 
expression in teloHAEC, including the enhancer containing rs1879454. We designed gRNAs 

tiling across all accessible regions (here, defined as the union of the peaks in the chromatin 

accessibility dataset called by MACS2 with a lenient P-value cut-off of 0.1, and 150-bp 

regions on either side of the MACS2 summit) in the range chr15:81,267,614-81,427,246 

in ATAC-seq data from TeloHAEC. We excluded gRNAs with low specificity scores or low-

complexity sequences as previously described 22. We infected teloHAECs with the gRNA 

lentiviral library with 15μg/mL blasticidin selection for 3 days, and activated CRISPRi with 

2μg/mL doxycycline incubation for 5 days. We performed FlowFISH using ThermoFisher 

PrimeFlow (ThermoFisher 88-18005-210) as previously described 22, using ThermoFisher 

probesets VA1-3010837-PF for TLNRD1 and VA4-13187-PF for RPL13A. We observed 

an approximately 2.6-fold signal for TLNRD1 in cells with all probes applied (“stained”) 

versus cells without target gene probes applied (“unstained”) (Extended Data Fig. 8j). We 

analyzed these data as previously described 22. In brief, we counted gRNAs in each bin 

using Bowtie to map reads to a custom index, normalized gRNA counts in each bin by 

library size, then used a maximum-likelihood estimation approach to compute the effect 

size for each gRNA. We used the limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm (implemented in the R stats4 package) to estimate the most likely log-normal 

distribution that would have produced the observed guide counts, and the effect size for 

each gRNA is the mean of its log-normal fit divided by the average of the means from all 

negative-control gRNAs. As previously described, we scaled the effect size of each gRNA in 

a screen linearly, so that the strongest 20-guide window at the TSS of the target gene has an 

85% effect, in order to account for non-specific probe binding in the RNA FISH assay (this 

is based on our observation that promoter CRISPRi typically shows 80–90% knockdown 
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by qPCR). We averaged the effect sizes of each gRNA across replicates and computed the 

effect size of an element as the average of all gRNAs targeting that element. We assessed 

significance using a two-sided t-test comparing the mean effect size of all gRNAs in a 

candidate element to all negative-control guides. We computed the false-discovery rate 

(FDR) for elements using the Benjamini–Hochberg procedure and used an FDR threshold of 

0.05 to call significant regulatory effects.

Generation of single-guide CRISPRi TeloHAEC derivatives

Paired oligos for individual guides (newly-designed, as described for the Perturb-seq 

library, or with the best KD efficacy in Perturb-seq) were annealed and cloned 

into the BsmBI site of a CROP-Opti-Blast vector (plasmid available upon request), 

which were then used to generate lentivirus (as per 53). CRISPRi TeloHAEC 

were infected with each virus, in separate wells, and selected for blasticidin 

(15 μg/ml 4 days), before 5 day dox induction and analysis by bulk RNA-

seq, fluorescence imaging or physiological assays. Guides (TargetGene_CloneIndex: 

ForwardSequence) were: CCM2_C2: GGCAAGAAGGTGAGCGTGCG, 

CCM2_F6: GAGCCGCTACATGCTCGACCC, CDH5_B8: 

GCCAGCTGGAAAACCTGAAG, CDH5_D5: GTTGGACTGCCTGTCCGTCCA, 

ITGB1BP1_C7: GAAGGCCGCGGCACTCCCACG, ITGB1BP1_G8: 

GAAGTCCGCAACCCGGGGAT, KLF2_C9: GGACCCGGGGAGAAAGGACG, 

KLF2_G10: GCCGCGGTATATAAGCCGGC, MAP2K5_A11: 

GCCGAGGCCGCGCGGACTGG, MAP2K5_B5: GTCTGCCCCACCCGGAGACAC, 

MAP3K3_A4: GTTCCTGAGGTGGAGAACGG, MAP3K3_C3: 

GCCAATAACAAGAAGGAAGT, MEF2A_C10: GCGGCGCGAAGCGCTGGTGG, 

MEF2A_H10: GACTGAATTATCCTCTCGGT, Negative_control_B6: 

GCAACGGTGTACCGCGGATC, Negative_control_D2: GTGGTTCACAACCGGACCCA, 

Negative_control_D8: GGTGGTTCGGTTTGCGTGGCC, Negative_control_F4: 

GCTGGGCGGACGTTGGGATA, NFAT5_D4: GGCCTCGCTTCCTGCCGGCG, 

NFAT5_D7: GGTCCCCGTCCCGCCGGGGG, PDCD10_D11: 

GACCGAGCAGAAGAGGTCTA, PDCD10_G1: GCCGCTTTACGCCACTCGCGT, 

TLNRD1_B3: GTGGCTGCGCCGCCGCCCGCA, TLNRD1_D12: 

GCCTCCGGCAGCCCCTGCGGG.

Ribonucleoprotein-based CRISPR/Cas9 genome editing

For some experiments, we used Synthego’s ribonucleoprotein (RNP) technology as an 

orthologous method to knock down target genes, as previously described 80. Briefly, 

TeloHAEC were nucleofected with Synthego’s Gene Knockout Kit v2 for non-targeting 

negative control, CCM2, TLNRD1 or MAP3K3 using the Lonza 4D-Nucleofector system. 

For each nucleofection reaction, we used 150,000 cells with 20 pmol of Cas9 and 50 

pmol of sgRNA. The cells were then nucleofected (program CA-210) using SG cell 

line nucleofection solution (Lonza; V4XC-3024). The nucleofected cells were seeded in 

TeloHAEC culture medium, and harvested 48 hrs later for RNA extraction for qRT-PCR 

analysis and/or RNAseq to measure gene knockdown efficiency and perturbation effects. 

For MAP3K3 knockdown in single-guide CRISPRi lines, cells were treated with 2 μg/ml 

doxycycline for 72 hours before nucleofection, and for the 48 hours afterwards.
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Identification of disease-relevant genes regulated by both TLNRD1 and CCM2

For the heatmaps in Figs. 5c & 6a, we identified genes that were most-strongly regulated by 

both TLNRD1 and CCM2 CRISPRi knockdowns from bulk RNAseq data as follows. 1) We 

included genes that were members of the 8 gold standard, known EC-acting CAD genes, that 

were significantly regulated by both TLNRD1 and CCM2 knockdowns (both p.<.05). 2) We 

included genes that were in the top 40 TLNRD1 and CCM2 up- or down-regulated genes 

(by highest p.value across both knockdowns), had an average fold change in TLNRD1 and 

CCM2 knockdowns of >2 (either positive or negative), and had prior evidence for functions 

predicted to increase or decrease CAD-relevant endothelial cell phenotypes (Supplementary 

Table 29).

Computational prediction of the TLNRD1 and CCM protein structure

AlphaFold2.3 Multimer v3 81 was run using sequences for KRIT1 (UniProt O00522), 

CCM2 (Uniprot Q9BSQ5, with and without deletion of residues 417-444), PDCD10 

(Uniprot Q9BUL8), and TLNRD1 (Uniprot Q9H1K6). Models were visualized using UCSF 

ChimeraX v1.61. Predicted Alignment Error (PAE) was extracted using AlphaPickle 82 and 

plotted using combinations of AlphaPickle, Matplotlib v3.7.0, and Seaborn.

Co-immunoprecipitation of CCM2 and TLNRD1

HEK293 cells were transfected with V5-tagged CCM2 full length, V5-tagged CCM2 

C-terminal truncation, Flag-tagged TLNRD1 and/or Flag-tagged Akt1, as indicated in 

Fig. 5b and Extended Data Fig. 9d-f, using FuGENE (E2311, Promega) or PEI MAX 

(Polysciences). Two days after the transfection, cell lysates were extracted with IP 

lysis buffer (87787, Thermo Scientific) supplemented with 1x Halt Protease Inhibitor 

Cocktail (1862209, Thermo Scientific). Protein concentration was determined using the 

Pierce BCA Assay (ThermoFisher), and equal mass of protein used for each sample. 

Immunoprecipitation was carried out using magnetic beads (88805, Thermo Scientific) 

conjugated with 5 μg of either rabbit anti-V5 (13202, Cell Signaling Technology) or 

mouse anti-Flag (F1804, Millipore Sigma) antibody. Cell lysates were incubated with 

the antibody-conjugated beads for 20 to 30 mins at room temperature. Beads were then 

washed three times with IP lysis buffer (1861603, Thermo Scientific), and precipitants 

were eluted using 2xLDS sample buffer (NP0007, Thermo Fisher Scientific). Precipitants 

and input lysates were separated by 10% SDS-PAGE and transblotted to nitrocellulose. 

For the anti-FLAG IP, blots were immunoblotted with 1:1000 rabbit anti-V5 (13202, 

Cell Signaling Technology), followed by 1: 5000 anti-rabbit HRP secondary (7074, Cell 

Signaling), then stripped (21059, Thermo Scientific) and re-probed with 1:1000 rabbit anti-

TLNRD1 (HPA071766, Sigma). For the anti-V5 IP, blots were immunoblotted with 1:1000 

primary mouse anti-Flag (F1804, Millipore Sigma) and 1:5000 secondary anti-mouse HRP 

(7076, Cell Signaling), and stripped and reprobed with 1:1000 mouse anti-V5 (ab27671, 

Abcam). The Akt1-FLAG vector is Addgene #9021. CCM2-V5 (ccsbBroad304_04281) and 

TLNRD1-V5 (ccsbBroad304_03872) vectors were obtained from the Broad Institute Gene 

Perturbation Platform83. For TLNRD1-FLAG, cDNA sequences were amplified from the 

TLNRD1-V5 vector using primers that incorporated an in-frame FLAG tag, and cloned into 

the pcDNA3.1 backbone. The CCM2 C-terminal truncation, was created in the CCM2-V5 
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vector by site-directed mutagenesis using the QuickChange II Site-Directed Mutagenesis 

kit (Agilent 200523-5), and the oligos F-CACCCTCAGAGGGGTCAGCATGCCCAAC and 

R-GTTGGGCATGCTGACCCCTCTGAGGGTG, which resulted in a deletion of amino 

acids 419-442 at the C-terminus of CCM2, in frame with the V5 tag.

Trans-endothelial electrical resistance (TEER) measurements

For TEER measurements, we used the ECIS Z-Theta instrument from Applied BioPhysics in 

the 96-well plate system (Applied BioPhysics; 96W10idf). CRISPRi TeloHAEC expressing 

individual guides to TLNRD1, CCM2, or non-targeting guides (2 guides each) were treated 

for 5 days with 2 μg/ml doxycycline. A gold electrode-containing 96-well ECIS plate was 

incubated at 37°C and 5% CO2 with culture media for 30 min to equilibrate before coating 

with 2.5 mg/mL fibronectin in 0.1 M bicarbonate buffer at pH 8.0. Then, the coated wells 

were inoculated with 45,000 cells in 100 mL media. An additional 100 mL of media was 

added to each well before initiating the measurements at 4000-Hz AC. At 25 hours, after the 

cells formed a confluent layer, the culture media was replaced with 200 mL of fresh culture 

media with 1 U/mL thrombin to disrupt cell-cell junctions, and measurements continued 

until 50 hrs to observe cell junction recovery after thrombin treatment.

Measurement of endothelial cell responses to laminar flow

200,000 CRISPRi TeloHAEC cells with individual control, CCM2 or TLNRD1 guides were 

seeded on flow chamber slides (80176, Ibidi) that had been pre-coated with 0.2% gelatin. 

After 24 hours, cells were cultured under laminar flow (12 dynes/cm2) for 48 hours (10902, 

Ibidi pump system). Static culture controls were seeded at the same density. Cells were 

treated with 2 μg/ml doxycycline for 2 days prior to seeding, and throughout, for a total of 5 

days. RNA was harvested with 300 μl of Trizol and extracted with 60 μl of chloroform. After 

addition of 1 volume 70% ethanol, RNA was loaded onto a Qiagen RNeasy spin column, 

washed with 350 μl of buffer RW1 and treated for 20 mins at room temperature with 10 μl 

Purelink DNAse (InVitrogen 12185010) in 80 μl of 1x buffer. Subsequent RNA purification 

steps were as per the Qiagen RNeasy protocol.

Fluorescence imaging and quantitation of TeloHAEC

For quantitation of actin fiber characteristics, CRISPRi teloHAEC expressing individual 

guideRNAs (targeting CCM2, TLNRD1, or negative control) were treated with 2 μg/ml 

doxycycline for 5 days. Cells were fixed in situ with by addition of paraformaldehyde 

to 3.2% for 30 mins at 37°C, washed with PBS, permeabilized by addition of PBS with 

0.1% triton X100 for 15 mins at room temperature, washed with PBS and stained with 

PerkinElmer Cell Painting dyes (Phenovue Fluor 568 - Phalloidin, Phenovue Fluor 488 - 

Concanavalin A, Phenovue Hoechst 33342 Nuclear Stain & Phenovue 512 Nucleic Acid 

Stain) according to the manufacturer’s instructions. Cells were imaged in four channels 

as described in 84 on a Perkin Elmer Opera Phenix Imaging System-106513, confocal 

63x magnification with 1x binning. The stacks of images for the Phalloidin and Hoechst 

channels were converted to single images using maximum projection, output ranges 

standardized, and images exported. Cell boundaries were drawn by hand on a Phalloidin/

Hoechst composite image in FIJI and saved as regions of interest (ROI). Phalloidin channel 

images were loaded into FIJI, converted to 16-bit grayscale, and cell areas and dimensions 
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for each ROI were extracted using the Measure function (reporting Area and Fit Ellipse). 

Actin fibers were detected and quantified using the LPX FIJI plugin as described in 85, with 

lineExtract parameters: giwsiter = 5, mdnmsLen = 8, pickup = above (10.0), shaveLen = 

3, delLen = 5, and line properties for each ROI measured using LineFeature. Parallelness 

(a_normAvgRad) ranges from 0 (for randomly-oriented fibers) to 1 (all fibers parallel).

Zebrafish husbandry and transgenic lines

Adult wild type AB, transgenic Tg(flk1:EGFP) (that express EGFP at the surface of blood 

vessels) and transgenic Tg(cmlc2:EGFP) (that express EGFP in heart muscle) zebrafish lines 

were maintained at 28.5 °C in circulating system water on a 14-h light/10-h dark cycle under 

standard conditions. Male and female embryos and larvae (≤ 5dpf) were kept in the dark 

in an incubator at 28.5 °C for subsequent experiments. At the end point, embryos were 

euthanized by tricaine overdose (MS-222; Western Chemical Inc.) followed by freezing 

(for RNA isolation), PFA-fixing (for histological analysis) or bleach treatment. All animal 

experiments were performed in accordance with relevant guidelines and regulations and with 

approval from the Mayo Clinic Institutional Animal Care and Use Committee.

tlnrd1 and ccm2 CRISPR knockdown in zebrafish

crRNAs for both ccm2 and tlnrd1 were designed using the Alt-R Predesigned Cas9 

crRNA Selection Tool using the Integrated DNA Technologies (IDT) database. All the 

crRNAs were selected based on published criteria 86. For ccm2, guides were designed to 

target two distinct exons shared by all transcripts (AA: TTGAACGGAGACACGATACC, 

AF: ATGGAGCCACAACACCCACC). For tlnrd1, guides either targeted 

the 5’ untranslated region (UTR, AN.1: GGAAACACAAGGGACGTCTC, 

AF: GCTGAAAGTTACACCCAACG) or the single tlnrd1 exon (AN.2: 

CTGCCGCTAAGGATGTTGGT, DG: CAAGAGCAAAATGCAGCTGG). For ccm2 and 

tlnrd1, RNPs were prepared as described; briefly, the crRNA (bearing the guide sequence) 

was annealed with an equal molar amount of tracrRNA (bearing the gRNA scaffold, IDT, 

#1072532) in duplex buffer (IDT, #11010301), to form gRNA, by heating at 95 °C for 5 min 

and subsequently cooling on ice. Guide RNA was assembled with an equal molar amount 

of Alt-R S.p. Cas9 Nuclease V3 (IDT, #1081058) to form the RNP complex (28.5 μM final 

concentration), by incubation at 37 °C for 5 min followed by storage at − 20 °C, following 

the published protocol 86,87. RNP complexes prepared from the tracrRNA/scaffold only were 

used as a negative control. 3 nl of each RNP complex (28.5 μM final concentration) was 

injected into the yolk of one-to-two cell stage embryos (wildtype, Tg;Fli:EGFP (for the 

permeability analysis) or Tg;cmlc2:EGFP (for visualization of the atrioventricular valve, 

AV)).

tlnrd1 and ccm2 morpholino knockdown in zebrafish

Morpholinos (MOs) to knock down tlnrd1 and ccm2 were designed and injected 

using standard protocols88. The ccm2 morpholino has been validated to cause 

cardiovascular phenotypes at the 100 μM dose78. A custom morpholino for Tlnrd1 

(TTCCCCGAGCCACTACTAGCCATAG) was designed to target the translation start 

site and ordered from Gene Tools, LLC. The control oligo is a single sequence, 

CCTCTTACCTCAGTTACAATTTATA, that is a validated negative control88. Wildtype 
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zebrafish embryos were injected with 3 nl of diluted morpholinos at multiple concentrations 

(50 μM, 100 μM, 200 μM, 300 μM, of control, tlnrd1 or ccm2 morpholinos) at the one 

cell stage, using a pico-injector (Harvard Apparatus). For coinjection, tlnrd1 and ccm2 MOs 

were mixed to give 50 μM of each, and 3nl of the mixture was injected.

Zebrafish imaging and phenotyping

Embryos were observed for mortality and visible phenotypes at 2 days post-fertilization 

(dpf) and 3 dpf using a light microscope. Images were captured at 2 and 3 dpf on an EVOS 

microscope (Life technology) and Zeiss Axio-observer Z1. 3 dpf embryos (knock down or 

control) were scored as having a heart phenotype if they displayed visible atrial chamber 

enlargement, moderate to severe pericardial edema and slow blood flow in the tail veins. 

Note that, normal zebrafish undergo cardiac looping between approximately 2dpf and 3dpf 

(wherein the atrium and ventricle change from a linear posterior-to-anterior arrangement to 

a right-to-left asymmetric arrangement). Most of the ccm2 or tlnrd1 knockdown embryos 

that scored positive by the criteria above also showed a looping defect, maintaining the 

posterior-to-anterior arrangement of atrium and ventricle at 3dpf. However, because looping 

is a time dependent phenomenon that normally occurs near the 3dpf time when we examined 

the embryos for heart phenotypes, we did not include this as a scoring criterion. For the 

additional phenotypic analyses described below (confocal imaging, H&E staining, tail vein 

morphology, blood flow & vascular permeability), we selected ccm2 or tlnrd1 knockdown 

embryos that scored as positive for heart phenotype at 2dpf. High resolution images for 

the vascular permeability and cardiac chamber analyses, were acquired using a confocal 

microscope LSM 800 (Zeiss).

Histological staining of zebrafish embryos for atrial/ventricular thickness

H&E staining was performed by the Mayo Clinic Comprehensive Cancer Center 

Histology core lab. Jacksonville, FL. Briefly, zebrafish 3dpf larvae were fixed in 4 

% paraformaldehyde overnight at 4 °C. To obtain paraffin sections, fixed larvae were 

dehydrated stepwise in ethanol/1x PBS dilutions (5, 25, 50, 75 and 100% ethanol). 

Transverse sections at a thickness of 5 μm using a microtom (MICROME) were produced 

from the anterior beginning of the otic vesicle and included posterior structures until the 

cloacal vent. The sectioned region therefore spanned from the glomerulus up to the cloaca 

and included the complete pronephros. Sections were stained with Gills 1, eosin Y and 

Harris hematoxylin (Richard Allan Scientific) according to the manufacturer protocol.

FITC-Dextran 2000 kDa & Texas Red-Dextran 70 kDa injections, & imaging for tail vein 
morphology and vascular permeability

Microangiography was performed as described 89,90. Briefly, at 3-days post-fertilization (3-

dpf), Crispr/Cas9-injected embryos were anesthetized in 0.015% tricaine methanesulfonate 

(Western Chemical, Inc) and microangiography was performed by inserting a glass 

microneedle (World precision Instruments, Sarasota, FL) through the pericardium directly 

into the ventricle. For assessment of vascular morphology, 2000 kDa FITC dextran (Sigma, 

FD2000S-100MG) was diluted to 2 mg/ml in Zebrafish embryo medium 91, and a total 

of 4.5 nL was injected. For measurement of vascular permeability, Texas Red-dextran 

with a molecular weight of 70 kDa was solubilized in embryo medium at a 2 mg/mL 
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concentration and a total of 4.5 nL was injected. Images were acquired after 30 minutes, 

using a Zeiss LSM 880 confocal microscope, and standard FITC and dsRed filter sets, 

and 10X objective, at room temperature. For quantitation of permeability, the Raw “.czi” 

images were preprocessed using the Zeiss software (ZEN2) to generate a maximum intensity 

projection image. The maximum intensity projection images of controls as well as Crispr 

mutants were then processed using the MATLAB programming platform, as described in our 

recent publication 90. Movies for the blood flow in the heart and tail veins were taken by 

capturing 60 second bright field-time-lapse images at 60 frames per second, using an EVOS 

microscope at 20x magnification, as described previously 92.

qRT-PCR assays in zebrafish

klf2b, ccm2 & tlnrd1 expression was measured by qRT-PCR on RNA isolated 

from 100 μM tlnrd1 morpholino embryos or CRISPR tlnrd1, ccm2 or control 

embryos at 3 dpf, using primers for klf2b, F: GAAGAGACACCTGTGAGGGC & R: 

GGACACCGATTCGTAGGACC, for ccm2, F: GGCGGATCAGATGAGGGAAC & R: 

CAGACAGCAATACGGACCGA, and for tlnrd1, F: ACACGCGAGAGTACCTGTTG & R: 

TCATCCCGCGACAAATCCAA.

In situ hybridization for tlnrd1 expression in zebrafish.—In situ hybridization was 

performed using previously validated methods93. Briefly, a 437 bp fragment of tlnrd1 was 

amplified from genomic DNA using the PCR primers, F: CATTAACGGAATGGCAGGCG 

and R: TGCCCGGATAAAGGCAAAGT, subcloned and verified by sequencing. Antisense 

in situ hybridization probes were generated using an M13 reverse primer with SpeI-

linearized plasmid, while sense (negative control) probes were generated using an M13 

forward primer with NotI-linearized plasmid. In situ hybridization of embryos was 

conducted at 24 and 72 hrs post-fertilization using these anti-sense or sense (control) probes 

against tlrnd1.

Applying the Variant-to-Gene-to-Program Approach to additional GWAS traits and cell 
types.

We tested whether the V2G2P method was generally applicable to other traits beyond CAD 

in endothelial cells, and to other cell types.

We first examined whether the same Perturb-seq dataset in endothelial cells could be applied 

to interpret variants for other vascular traits related to endothelial cell functions, beyond 

CAD. We applied V2G2P to 2 additional GWAS traits (Pulse Pressure (PP) and Mean 

Arterial Pressure (MAP), from the UK Biobank 94, with finemapping information from 

Hilary Finucane and Jacob Ulirsch: https://www.finucanelab.org/data). We performed V2G 

analysis by mapping variants associated with these traits onto the same endothelial cell 

enhancer map we used for CAD, and identified genes linked to PP or MAP variants in 

endothelial cells. We then performed V2G2P analysis, by testing for enrichment of the PP 

or MAP V2G gene sets in the 50 endothelial cell programs we identified from Perturb-seq. 

Note, that we performed the V2G2P enrichment test using only the 300 co-regulated genes 

in each program, because not all the genes at GWAS loci for these blood pressure traits were 

targeted for perturbation in our endothelial cell Perturb-seq screen.
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We next examined whether the entire analysis framework could be applied to another cell 

type: K562 erythroid cells, which are a relevant model for red blood cell and platelet 

traits. Here, we examined 7 GWAS traits for red blood cell and platelet measures: Mean 

Corpuscular Hemoglobin (MCH), Mean Corpuscular Volume (MCV), Platelet Count (Plt), 

Red Blood Cell count (RBC), Mean Corpuscular Hemoglobin Concentration (MCHC), 

Hemoglobin A1c (HbA1c) and Hemoglobin (Hb), along with 4 traits for which K562 cells 

are not likely to be an appropriate model: pulse pressure (PP), mean arterial pressure (MAP), 

systolic blood pressure (SBP) & diastolic blood pressure (DBP), from the UK biobank 94, 

with finemapping by Hilary Finucane and Jacob Ulirsch: https://www.finucanelab.org/data.

We constructed V2G maps for each trait using ABC data in K562 cells (K562-Roadmap95), 

to identify variant-containing enhancers, and identified the set of V2G genes for each trait 

(genes with links to variants associated, by GWAS, with each trait). We, then, constructed 

a gene-to-program map by applying cNMF to the genome-scale Perturb-seq data previously 

collected in K562 cells 19. We tested K values over a broad range, and selected K=90 

as the number of components that minimized cNMF error and maximized other ranking 

metrics (see “Choosing the number of components for cNMF analysis” above). Finally, we 

performed the V2G2P enrichment test (considering both the 300 co-regulated genes for each 

program and the regulators of each program, identified as the perturbations significantly 

affecting expression of each program, from Perturb-seq). Of the 90 programs, we found, 

32 programs were prioritized for at least one of 6 GWAS traits (Extended Data Fig. 12b, 

Supplementary Table 22).

Curating previously-identified CAD prioritization gene sets.

To assess the ability of V2G2P to prioritize disease-associated genes, we surveyed several 

CAD studies that used more than just GWAS and genomic positioning data to prioritize 

CAD loci and genes. Below is a summary of how each study created their gene set and how 

we accessed this data.

Aragam et al.12, polygenic prioritization score (PoPS): Computed PoPS score for 

all protein-coding genes within 500 kb of all GWAS signals and prioritized the gene with the 

highest PoPS score in each locus, resulting in 221 genes. Obtained from their Supplementary 

Table 25.

Hodonsky et al.96, eQTL and sQTL colocalization: Bulk RNA-seq was collected 

from human coronary artery tissue samples from explanted transplant tissue, or collected 

from rejected transplant donors (138 individuals, from left anterior descending coronary 

artery, right coronary artery, and left circumflex artery). eQTL colocalization was performed 

to find eQTL-associated genes (eGenes), or to find splice QTLs (sQTLs). The eQTL list was 

from Supplementary Table 12 column “vdh_CAD_PPH4” with posterior probability > 0.8 

(Methods: "PPH4 >0.8 to support evidence of a shared causal variant"). The slice variant list 

was from Supplementary Table 22 and subset for variants with posterior probability > 0.8 

(column “vdh_CAD_PPH4”). We then identified sGenes linked to the colocalized sQTLs by 

finding matching genes in Supplementary Table 20 (columns “gene_id” and “spliceid”).
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Li et al.97, transcriptome-wide association study (TWAS): Associated genotype 

and expression data across 15 tissues (7 from STARNET and 8 from GTEx). We used 

Supplementary Table 4 for significant TWAS genes (114 genes).

OpenTarget L2G98 : Used a supervised machine-learning model to learn the weights of 

multiple evidence sources (distance, molecular QTL colocalization, chromatin interaction, 

and variant pathogenicity) based on a gold standard of previously identified causal genes. 

The authors applied this model to the van der Harst coronary artery disease GWAS 

dataset10. Prioritized genes had an L2G model score > 0.5 (table downloaded from https://

genetics.opentargets.org/Study/GCST005194/associations).

Stolze et al.29, endothelial cell-specific eQTL colocalization: Human aortic 

endothelial cells (HAECs) were isolated from deceased heart donor aortic trimmings and 

cultured +/− IL-1beta (53 individuals, bulk RNA-seq), as well as 157 EC donors’ cultured 

ECs +/− oxPL treatment (microarray). They performed eQTL mapping using Matrix eQTL 

and used the R package "coloc" for colocalization. We obtained their data from Table S5.

van der Harst and Verweij10: Prioritized variants using Probabilistic Annotation 

Integrator based on several features such as LD information, p-value distribution, coding 

genes, and H3K4me1 sites. Data were obtained from Table 2 and Online Table XX.

Wunnemann et al.30, endothelial cell CRISPR screen for 6 phenotypes: The 

authors used a CRISPR screening approach to identify CAD risk variant-containing 

regulatory elements in 83 CAD GWAS loci that altered FACS-sortable signals for any of 

6 pre-selected phenotypes in endothelial cells (E-selectin, ICAM1, VCAM1, nitric oxide, 

reactive oxygen species, and intracellular calcium). The identified 26 loci where perturbation 

of a variant-containing element affected one or more of these phenotypes (prioritizing a 

single gene in 21 of these loci). Data was obtained from their Fig. 3a and Supplementary 

Table 4.
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Extended Data

Extended Data Fig. 1. Establishing the TeloHAEC CRISPRi model and Perturb-seq details.
a. Enrichment of CAD heritability in TeloHAEC enhancers, from Stratified Linkage 

Disequilibrium Score Regression analysis (S-LDSC, see Methods), where enrichment is 

the percentage of heritability explained by variants in enhancers (%heritability), divided by 

the percentage of variants in enhancers (%SNPs). Enhancers in TeloHAEC (treated under 

the indicated conditions) were identified from ATAC-seq and H3K27ac ChIP-seq data (n=6 

for control ATAC, 3 for IL-1β, TNFα or VEGF ATAC, 4 for control ChIP, and 2 for IL-1β, 
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TNFα or VEGF ChIP) by the Activity-by-Contact model. Error bars: standard error around 

the enrichment estimate, calculated by S-LDSC using jackknife (which resamples the data 

used for calculating heritability enrichment). P.values were calculated using the S-LDSC 

method28, and FDR by the Benjamini-Hochberg method. *: FDR<0.05, with specific FDR 

values of: Ctrl; 0.037, IL-1β; 0.015, TNFα; 0.020 and VEGF; 0.041. Full S-LDSC results 

can be found in Supplementary Table 27.

b. Scatter density plot of human right coronary artery endothelial cell single cell RNA-seq 

pseudobulk gene expression (from 69) versus teloHAEC pseudobulk gene expression, for 

genes perturbed in this study. Among the perturbed genes in teloHAEC, 2,107 genes are 

expressed at TPM > 1 in healthy or diseased RCAECs. R and p.values from two sided 

Pearson correlation test.

c. Scatter plot of the 41 V2G2P genes, comparing single cell RNA-seq pseudobulk 

expression (in TPM) in human right coronary artery endothelial cells to TeloHAEC. R and 

p.values from two sided Pearson correlation test.

d. Heatmap of gene expression (log10 TPM) of the 41 V2G2P genes in diseased right 

coronary artery ECs and in teloHAEC. 40 out of 41 CAD associated genes are expressed 

at >1 TPM in RCAECs. FBN2 is lowly expressed in the human right coronary artery 

endothelial cells.

e. FACS showing dox inducibility of KRAB-dCas9-IRES-BFP in TeloHAEC, after sorting 

but before the screen. Left panels: gating for viable individual cells. Right panels: Counts of 

gated cells by fluorescence intensity in the BFP/PB450 channel.

f. BFP channel counts of cells grown in parallel and concurrently with cells for the Perturb-

seq screen. After expansion to 120M cells, transduction, selection and 5-day doxycycline 

treatment, 92% of cells remain BFP positive.

g. Cumulative distribution fraction for duplication levels of unique CBC-UMI-Guide 

combinations in deeply-sequenced dialout libraries (“unique UMIs”, red) or all guide reads 

(blue) versus duplication level. Requiring 4 duplicates (dotted line) eliminates 90% of 

CBC-UMI-guide combinations (likely PCR chimeras), while retaining >85% of total guide 

reads.

h. UMIs for top guide per CBC. Arrow: the chosen 4 UMI threshold.

i. Counts of singlets (1 gRNA, black bar), doublets (2) and higher multimers, as well as cells 

with no guide called (0), at the chosen thresholds of 4 UMIs for the top guide and 4 or more 

fold fewer for the next most frequent guide.

j. Histogram of counts of singlet cells per target. Dotted line: average.

k. Histogram of counts of singlet cells per guide. Dotted line: average.

l. Read UMI counts for all transcripts per cell by singlet/multiplet status. Median UMIs 

per singlet cell was 9,997, and average was 10,870. The median for cells with no guide 

called was 7,125, indicating that low guide UMI count is associated with low overall UMI 

count. Median UMIs for doublets was 13,723, 37.3% more than singlets. Assuming that 

droplets with two cells will have double the number of reads, this suggests 37% of doublets 

are due to two cells (9.3% of cells with guides) while the remainder (15.7% of cells with 

guides) are due to two guides in one cell, very close to the expectation from the infection 

MOI of 15%. n=352686, 214449, 79744, 19195 and 5345 cells with 0, 1, 2, 3, or 4 guides, 

respectively. Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 

1.5x interquartile range; points, outliers.
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m. Distribution of knockdown efficiency across target genes (log2 expression in cells 

containing guideRNAs targeting the gene versus in cells containing negative control 

guideRNAs). Gray line: all targeted genes. Yellow and red lines: Genes expressed at >30 

and >300 TPM, respectively. Red dotted vertical line: 40% knockdown (average for 300+ 

TPM target genes).

n. Distribution of fitness effects across all guideRNAs (log2 ratio of guide frequency in 

singlet cells from the Perturb-seq experiment after 5 days of CRISPRi induction compared 

to guide frequency in the original guideRNA library). Guides targeting common essential 

genes (red) were depleted more frequently than guideRNAs targeting other genes.

o. Number of nominally significant differentially expressed (DE) genes per perturbed target 

(genes with raw p <0.01, and fold change >1.15 from EdgeR DE analysis). Perturbations 

that affected the transcriptome were those that significantly increased the number of 

nominally significant DE genes relative to the 48 targeted negative control genes (not 

expressed in TeloHAEC). Dotted line: 95th percentile number of DE genes for negative 

controls. 245 perturbations had a significant effect on the transcriptome, FDR <0.05 (10.7% 

of all targets that were not negative controls: including 31.9% of common essential genes 

(red, as per panel n), and 9.0% of other genes (blue)).

p. Volcano plot showing log2 (# DE genes for target)/(avg. # DE genes for non-expressed 

controls) versus −log10 FDR (capped at 100). Right: Symbols for target genes with the 

strongest effects.

q. Percent of perturbations that have a significant transcriptional effect in Perturb-seq, as 

defined by either (i) “DE Genes”: perturbations with significant effect on the transcriptome, 

as compared to 48 non-expressed negative control promoters, by binomial test (see Methods) 

or (ii) “DE Programs”: perturbations that lead to significant changes in program expression 

by MAST with 10X lane correction (FDR < 0.05).

Permuted Controls: Simulated negative controls, where statistical tests were performed on 

randomly drawn cells that carry negative control or safe-targeting guides.

Expressed: Genes with >1 transcripts per million (TPM) in teloHAEC control bulk RNA-

seq.

Low or No Expression: Genes with less than or equal to 1 TPM.

Common Essential: Common essential genes from DepMap147.

TeloHAEC Proliferation: Fitness effects observed in the Perturb-seq experiment, by 

comparing guide frequencies (see Methods). Increase: >15% increase in guide frequency 

(FDR < 0.05), Decrease: >15% decrease in guide frequency (FDR < 0.05).

Gene near CAD GWAS signals: Expressed genes nearby any CAD GWAS signal (2 closest 

on each side, and all within +/−500kb).

Gene near IBD signals: Expressed genes nearby 10 selected IBD GWAS signals (closest 2 

genes & all within +/−500kb), with no genes overlapping those for CAD signals.
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Extended Data Fig. 2. QC metrics for single cells, and selection of number of components for 
cNMF
a. UMAPs showing number of UMIs per cell (left), percent ribosomal genes detected per 

cell (middle), percent mitochondrial genes detected per cell (right).

b. UMAPs showing cells from each of the twenty 10X lanes. The differences in clustering 

along the UMAP_2 axis indicates a technical batch effect between 10X lanes.

c. Cumulative distribution function (CDF) plot of the maximum absolute value of Pearson 

correlation between cNMF component expression in cells and batch. Dotted line: the 

R>=0.15 threshold used to call programs associated with batch.

Schnitzler et al. Page 40

Nature. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



d. Gene set enrichment analysis for GO terms among co-regulated genes, as a function of 

the number of components in the cNMF model (K). y-axis: The number of unique GO terms 

enriched across all programs for a given K.

e. Number of unique motifs enriched among the promoters (top) or enhancers (bottom) of 

co-regulated genes across all components, as a function of K.

f. Number of unique perturbations that have significant effect (FDR < 0.05) on one or more 

programs, as a function of K.

g. Model-based evaluation of the choice of K. Stability of the components over 100 NMF 

runs (top) and element-wise square of error (bottom, see Methods).

h. Quantile-quantile plot for effects of perturbations on program expression. X-axis: 

Expected uniform distribution. Y-axis: −log10 p-value computed from MAST package39. 

Red: p-value < 0.05.
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Extended Data Fig. 3. Catalog of gene programs
a. Correlation heatmap of cNMF components. Color: Pearson’s correlation of log2 fold-

change in component expression across all perturbed genes.

b. 50 programs ordered by variance explained (see Methods).

c. 50 programs ordered by endothelial-cell specificity score — that is, the degree to 

which the co-regulated genes in the program are specifically expressed in endothelial cells 

versus in other cell types from FANTOM5 CAGE data (see Methods). Red line: z-score 

corresponding to top 10% of genes most specifically expressed in endothelial cells.

d. Effects of selected regulators on the 13 endothelial-cell-specific programs. Heatmap: log2 

fold-change in component expression in perturbation vs control. Top: 16 regulators shared 

between multiple endothelial cell-specific programs. Bottom: the 4 significant regulators 
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(experiment-wide FDR < 0.05) per program with the most specific effects on that program 

relative to other endothelial-cell-specific programs.

e. Programs ordered by number of enriched transcription factor motifs (See Methods). Gray: 

promoters. Blue: enhancers. Some programs only have enrichment for motifs in promoters. 

Some programs showed enrichment of distinct motifs in enhancers versus promoters, such 

as Program 47 (Angiogenesis, GATA2), with promoter enrichment in WT1 and EGR2 

motifs, and enhancer enrichment in GATA2 and PRDM6 motifs. Among the programs with 

few or no enriched transcription factor motifs, we identified other likely proximal regulatory 

mechanisms: Program 17 expressed genes whose promoters were marked by H3K27me3 

in endothelial cells (see also panel k), and the most significant regulator of this program 

was SUZ12, a component of the complex (PRC2) that writes this histone modification; and 

Program 16 pointed to a potential RNA surveillance program, since 40% of its program 

genes were noncoding RNAs (panel l), and its regulators included a component of the 

RNA exosome (EXOSC5) and the chromatin remodeler INO80E, which has previously been 

shown to regulate a subset of noncoding transcripts in yeast148 (see also Supplementary 

Table 12).

f. Annotations for an example program: 15. Left: Top 10 program co-regulated genes. 

Middle, top: Motifs enriched in promoters of the 300 program co-regulated genes. Middle, 

bottom: Gene Ontology terms enriched in the 300 program co-regulated genes. Right: 

Volcano plot of the effects of regulators on cNMF component 15 genes. Program 15 (Flow 

response, KLF2) appeared to correspond to a canonical endothelial cell response to laminar 

shear stress defined by the known flow-responsive transcription factor KLF2: the program 

was highly enriched for KLF motifs in promoters; included known flow-responsive genes 

such as KRT18/19, NOS3, and KLF2 itself; and was significantly reduced by perturbations 

to MAP2K5 (MEK5), a kinase known to activate the signaling pathway upstream of 

KLF235,149.

g. Log2 fold change in expression of programs 28 versus 47 for each perturbed gene 

relative to controls. Program 28 (Tip cell, migration) includes co-regulated genes that 

mark tip cell specification during sprouting angiogenesis (ESM1, RHOC, PLAUR), and 

Program 47 (Angiogenesis, GATA) includes co-regulated genes that are enriched in GATA2 

& TAL1 motifs and that include NRP2, a co-receptor for VEGF-A, previously shown to 

act downstream of GATA2150). Blue, red, and purple mark genes that are regulators of 

Program 28, Program 47, or both programs, respectively. Note that regulators that affect 

both programs do so in opposite directions.

h. Perturbations ordered by the number of regulated programs. Red: top 10 perturbed genes.

i. Programs ordered by the number of regulators. Blue: endothelial-cell-specific programs. 

The top 3 programs, by number of regulators, are labeled.

j. 131 perturbed genes that are regulators of at least one endothelial-cell-specific program, 

ordered by the number of such programs that they regulate. Top 10 regulators are labeled, 

and included genes known to have important functions in ECs such as EGFL7 and 

ITGB1BP1/ICAP126,27.

k. Average H3K27me3 ChIP-seq signal in co-regulated gene promoters. The top program is 

Program 17 (Polycomb targets). See legend to (e) for more details. N=50 programs. Boxplot 

center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; 

points, all data points.
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l. Percent of noncoding RNA genes in program co-regulated genes. The top program 

is Program 16 (ncRNA & antisense RNAs). See legend to (e) for more details. N=50 

programs. Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, all data points.

Extended Data Fig. 4. Annotations for CAD-associated programs: 8, 35, 39, 47, 48
Left panels. Top 10 program co-regulated genes. Program Specificity z-scores are the 

cNMF marker gene coefficients, indicating how specific this gene is to this program, relative 

to other programs (see Methods).
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Middle left panels. Top: Top 5 motifs enriched in the promoters or enhancers of the 

program co-regulated genes. Bottom: Top 5 GO terms enriched in program co-regulated 

genes.

Middle right panels. Regulators of the program. Volcano plot shows effects of all perturbed 

genes on program expression. Red: FDR < 0.05. Labeled: top 2 significant regulators in each 

direction, plus CCM2 and TLNRD1.

Right panels. UMAP of program expression in a subset of cells (24,000, randomly 

selected).
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Extended Data Fig. 5. Prioritization of CAD-associated programs and candidate CAD genes
a. Using MAGMA to prioritize gene programs enriched for CAD heritability (linking 

variants to program genes and 50kb of flanking sequence, see Methods). Barplots show 

beta regression coefficient (left) and −log10 FDR (Benjamini-Hochberg adjusted enrichment 

p-value, right). Programs are ordered separately by beta or FDR value. Dotted line: FDR = 

0.05.

b. Using S-LDSC to prioritize gene programs enriched for CAD heritability (linking variants 

in endothelial cell chromatin accessible regions to genes within 50 Kb, see Methods). 

Barplots show enrichment (left) and −log10 FDR (Benjamini-Hochberg adjusted enrichment 

p-value, right). N = 300 (co-regulated program genes ranked by z-score coefficient, for each 

program). Error bars: standard error around the enrichment estimate, calculated by S-LDSC 

using jackknife (which resamples the data used for calculating heritability enrichment). 

P.values were calculated using the S-LDSC method28, and FDR by the Benjamini-Hochberg 

method. *: FDR<0.05. Dotted lines: 1 fold enrichment (left), or FDR 0.05 (right).

c. CAD-associated V2G2P genes are ranked highly by an independent gene prioritization 

method, the Polygenic priority score (PoPS). For each of the 43 CAD GWAS signals 

including a CAD-associated V2G2P gene, we ranked nearby genes based on their PoPS 

scores. Red: 39 CAD-associated V2G2P genes (2 genes, EXOC3L2 and PECAM1, were not 

assigned scores by PoPS). Gray: all other nearby genes. p-value: two-sided Mann-Whitney 

U-test.

d. Contingency table of PoPS and distance-to-TSS ranks for the 39 CAD-associated V2G2P 

genes. (2 CAD-associated V2G2P genes were not assigned scores by PoPS).

e. Odds ratios of variants in lipid-associated (N=1,181) or non-lipid-associated (N=3,313) 

CAD GWAS signals in (i) ATAC peaks in endothelial cells (N=373,630 unique non-

overlapping non-promoter features from 11 epigenomic datasets in ECs, see Methods), 

(ii) ABC enhancers in endothelial cells (N=47,112 unique non-overlapping non-promoter 

features from 11 epigenomic datasets in ECs), (iii) coding sequences (N=189,232 unique 

non-overlapping non-promoter features), or (iv) all three categories combined (N=519,046 

unique non-overlapping non-promoter features), compared to background variants (all 

SNPs from 1000 Genomes, excluding lipid-associated or non-lipid associated CAD GWAS 

variants, N=9,955,2088 or N=9,953,076, respectively, see Methods). Odds ratios were 

calculated as ((CAD variants within the indicated genomic features)/(all background variants 

within these features))/((CAD variants outside of these features)/(all background variants 

outside of these features), and significance assessed by application of a two-sided Fisher’s 

exact test to the contingency table of this data, with columns=CAD variants v. background 

variants and rows=inside features v. outside features. Error bars: 95% confidence interval. *: 

FDR < 0.05. Specific FDR values, from top to bottom, were 1.1e-4, 3.3e-33, 1.5e-8, 3.2e-6, 

0.39, 6.0e-32, 0.011, 7.5e-31. Dotted line: odds ratio of 1.

f. sc-linker prioritization for 60 EC Perturb-seq gene programs, ranked by z-score. The 

ranking of programs was similar to V2G2P analysis, but none of the programs reached 

significance.

g. Precision/Recall (PR) plot for V2G2P and seven prior approaches to prioritize CAD locus 

genes. Recall: the fraction of the 8 “gold standard” genes (with strong prior evidence for 

endothelial cell-specific roles in CAD) detected by each method. Precision: [number of 
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“gold standard” genes called] / [number of genes called within these gold standard loci]. 

Red: V2G2P. Blue: Other studies that prioritized CAD GWAS genes in endothelial cells.

Extended Data Fig. 6. Details for V2G2P analysis
a. Number of genes with V2G links, per non-lipid CAD GWAS signal.

b. Number of genes with G2P links, per non-lipid CAD GWAS signal.

c. The cell-type specificity of V2G links appeared to be important for identifying 

endothelial-cell-specific programs. Here, we repeated the V2G2P analysis (as outlined in 

Fig 2), but linked variants to genes using cell-type-agnostic criteria (including ABC scores 

from any cell type and not just endothelial cells). The 50 programs are ordered (y-axis) 
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by the number of program genes linked to CAD variants (x-axis). Gray dashed line: the 

number of genes linked to CAD variants that would be expected by chance. Orange labels: 

endothelial-cell-specific programs. Two significant non-endothelial-cell-specific programs 

were identified. Fisher exact test with FDR correction, as outlined in panel g. (*FDR <0.05, 

**FDR <0.005, ***FDR <5e-4)

d. Number of overlapping co-regulated genes between control programs (ctrl, x-axis) and 

full library (2kG, y-axis) programs.

e. Using the full Perturb-seq dataset appeared to be important for identifying the 5 

CAD-associated programs. Programs discovered through cNMF analysis of only the 

“unperturbed” cells carrying negative control guideRNAs. In this version of the analysis, 

none of the programs are enriched for genes with V2G link. Fisher exact test with FDR 

correction, see procedure in panel g. (All programs have FDR > 0.05).

f. Enrichment of genes with V2G links, from the full library but only using co-regulated 

genes (not regulators,***: FDR < 0.0005, **: FDR < 0.005)

g. Steps of V2G2P enrichment test. Numbers shown as examples are from program 8.

h. V2G2P analysis prioritizes a small subset of genes and GWAS signals compared to either 

V2G or G2P information alone. Barplots: Counts for signals (left) or nearby genes (right), 

total (“All”) or those that have: a V2G link, a G2P link, both a V2G link and G2P link to any 

program, or both a V2G link and a G2P link to a significantly enriched V2G2P program.
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Extended Data Fig. 7. Variant-to-gene to program links refine causal gene predictions.
a. V2G2P evidence at the 20p13.1 CAD GWAS locus. Top: Heatmap lists genes within 1 

Mb of the CAD GWAS signal in genomic order, and shows variant-to-gene (V2G) and gene-

to-pathway (G2P) evidence, with the prioritized CAD-associated V2G2P gene(s) labeled in 

red bold font. Legend details: “ABC, top 2”: A noncoding variant overlaps a chromatin 

accessible peak in endothelial cells, and the ABC score is at least the second highest of all 

genes near the GWAS signal. “Distance to variant, top 2”: A noncoding variant overlaps a 

chromatin accessible peak in endothelial cells, and the gene is one of the two closest genes 

to the variant. Bottom: Zoom-in on genes near the CAD GWAS signal, where rs2004772 

is predicted by ABC to regulate PREX1 in the Eahy926 endothelial cell line treated with 
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VEGF. Red dot: Prioritized variant in predicted enhancer. Gray dots: Other variants within 

R2 < 0.9 of the lead variant in the locus. Signal tracks below show ATAC-seq or DNase-seq 

for endothelial and coronary artery smooth muscle cells (CaSMCs, another cell type relevant 

to CAD).

b. As per a, showing V2G2P evidence at the 10p24.33 CAD GWAS signal, where three 

genes had V2G links (to an enhancer containing rs4918069) and 2 had gene to CAD-

associated program links. HUVEC: human umbilical vein endothelial cells.

c. V2G2P evidence at the 17q21.3 CAD GWAS locus, where we have previously linked 

rs17608766 to GOSR2129. Heatmap, as in panel (a). Middle: Box plot of GOSR2 reads per 

cell, normalized to control cell average. n: number of cells. Dotted line: control average 

(100%). Boxplot center line, median; box limits, upper and lower quartiles; whiskers, 1.5x 

interquartile range; points, outliers. Counts for outliers, from top to bottom: GOSR2; 1 & 

17, Control; 4 & 15. Right: Volcano plot shows effect of GOSR2 knockdown in Perturb-seq 

on the expression of the 50 non-batch gene programs. Red: FDR < 0.05, from two-sided 

statistical tests on program expression between perturbed vs. control cells by the MAST 

package39.
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Extended Data Fig. 8. Regulatory connections amongst perturbed genes and the CCM pathway, 
and variant-to-gene links to TLNRD1
a. Locus zoom plot (http://locuszoom.org/) for CAD GWAS in a 1-Mb region around 

CCM2. P.values are from the joint association analysis in Aragam et al. 12.

b. Volcano plot showing effect of CCM2 knockdown in Perturb-seq on the expression of the 

50 programs. Red: FDR < 0.05. Significance was assessed by two-sided statistical test on 

program expression between perturbed vs. control cells by the MAST package39.

c. Effects of selected perturbed genes on CAD-associated programs (Same as Fig. 3b, with 

significant effects marked with a * (FDR < 0.05)). Color scale: log2 fold-change on program 

expression in Perturb-seq. Bold text: CAD-associated V2G2P genes.
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d. Knockdown efficiency for genes in the CCM pathway, in bulk RNA-seq (Fig. 3c). x-axis: 

Gene expression for each target gene in cells receiving target guides, vs. cells with control 

guides. y-axis: guide IDs for CCM pathway genes.

e. 15q25.1 CAD risk locus, where rs1879454 is predicted to regulate TLNRD1 (red arc). 

GWAS variants: −log10 GWAS P-value12 for variants with LD R2 > 0.9 with the lead SNP. 

Green signal tracks: Epigenomic data from ECs. Gray signal tracks: data from other cell 

types. HUVEC: human umbilical vein ECs. CaSMCs: coronary artery smooth muscle cells.

f. Volcano plot showing the effect of TLNRD1 knockdown in Perturb-seq on the expression 

of the 50 programs. Red: FDR < 0.05. Statistical test as per (b).

g. Phenome-wide association study (PheWAS) for rs1879454, from Open Targets98,151. 

P.values are the best GWAS p.values for association of this variant with each trait across all 

GWAS sources used by Open Targets (February 25, 2022 release), including UKBB. Orange 

line: p.value required for significance across all traits. No lipid measure met the p.value 

threshold for inclusion in the plot, of 0.005. Note: The p.value for CAD is higher than 

that observed in Aragam et al.12 because Open Targets does not currently contain summary 

statistics for the latest CAD GWAS. There were no measures of circulating lipids or blood 

pressure associated with this GWAS signal in a PheWAS analysis in Aragam et al.12.

h. Variant-to-gene-to-program evidence at the 15q25.1 CAD GWAS locus. Heatmap shows 

variant-to-gene (V2G) and gene-to-pathway (G2P) evidence for all genes within 1 Mb of the 

CAD GWAS signal, in genomic order, with the CAD-associated V2G2P gene labeled in red 

bold font. Legend details: “ABC, top 2”: A noncoding variant overlaps a predicted enhancer 

linked to this gene in endothelial cells, and ABC score is at least the second highest of all 

genes in the locus. “Distance to variant, top 2”: A noncoding variant overlaps a chromatin 

accessible peak near this gene in endothelial cells, and the gene is one of the two closest 

genes to the peak. “CAD-associated gene programs” are the 5 V2G2P programs: 8, 35, 39, 

47, 48.

i. Histograms of FlowFISH signal (arbitrary units of fluorescence) for RPL13A (left) 

and TLNRD1 (right) in unstained versus stained teloHAEC expressing the gRNA pool 

against promoter and potential enhancers. The complete FlowFISH data can be found in 

Supplementary Table 28.

j. As in (d), but showing the RPL13A (left) and TLNRD1 (right) signal after sorting of 

cells into 4 bins based on expression of TLNRD1. Results are typical of cells across the 4 

independent samples.

k. Scatter plots showing the strong correlation between effects on TLNRD1 gene expression 

for all E-G pairs measured in each of 4 independent CRISPRi-FlowFISH screens. The 

enhancer containing rs1879454 is colored in red, all others in gray. R: Pearson correlation 

coefficient.
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Extended Data Fig. 9. TLNRD1 interaction with the CCM complex depends on the CCM2 
C-terminal helix.
a. The 15 top-ranking AlphaFold2 models of the CCM complex are shown, as predicted 

with and without the presence of CCM2 residues 417-444, and aligned to the CCM2 

PTB domain (residues 55-237). The complex is consistently predicted in a high-confidence 

arrangement (left panel), with most variability in positions of the HHD domain of CCM2 

and flexible regions of Krit1. Interactions are predicted between all members of the 

complex, including published interactions between CCM2-PDCD10. In contrast, multiple 

conformations are predicted in the absence of the CCM2 C-terminal helix (right panel).

Schnitzler et al. Page 53

Nature. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



b. Predicted Alignment Error (PAE, Å) of all pairwise residue combinations in the WT 

CCM complex (extracted and plotted using AlphaPickle 82); lower error indicates higher 

confidence.

c. Differences in PAE (Å) between the full CCM complex and the CCM complex lacking 

the CCM2 C-terminal helix; larger numbers represent higher confidence in the presence of 

the helix. The thick white lines correspond to deleted helix residues, which are omitted from 

comparison. Predictions within individual domains and proteins are largely unaffected, but 

within CCM2, the HHD and subsequent loops are predicted with reduced confidence upon 

helix deletion (yellow). Between domains and proteins, the largest differences are reduced 

confidence interactions between CCM2 and PDCD10 and between Krit1 and TLNRD1. 

Summing over the entire matrices, the increase in predicted error with deletion of the helix is 

0.7Å (22.9 vs 23.6 Å, p=10−56, two-tailed t-test).

d. FLAG-tagged TLNRD1 and/or V5-tagged CCM2 full length (“WT”) or C-terminal 

truncation (“Δ”) were expressed in HEK293T cells, as indicated. Extracts were co-

immunoprecipitated with rabbit anti-V5 and blotted with mouse anti-Flag (top) or mouse 

anti-V5 (bottom). For gel source data, see Supplementary Figure 1b. Similar results were 

seen in 2 separate experiments.

e. HEK293 cells were transfected with V5-tagged CCM2 and either Flag-tagged TLNRD1 

or Flag-tagged Akt (negative control). Cell lysates were either immunoprecipitated with 

mouse anti-Flag antibody-bound beads (IP Flag), or loaded directly on the gel (Input). The 

membranes were first probed with rabbit anti-V5 to detect CCM2 in the Flag precipitant 

and confirm the transfection of CCM2-V5. The membranes were then re-blotted with 

rabbit anti-TLNRD1 to evaluate the efficiency of Flag immunoprecipitation and validate 

the transfection of Akt-Flag and TLNRD1-Flag. Each pair of lanes came from independent 

biological replicates. For gel source data, see Supplementary Figure 1c. Similar results were 

seen in 2 separate experiments.

f. HEK293 cells were transfected with V5-tagged CCM2 and Flag-tagged TLNRD1, or, 

as negative controls, either with CCM2-V5 and Akt-Flag or only TLNRD1-Flag. Cell 

lysates were either immunoprecipitated with anti-V5 beads (IP V5), or loaded directly on 

the gel (Input). The membranes were first blotted for Flag to detect TLNRD1 in the V5 

precipitant and validate the transfection of Akt-Flag and TLNRD1-Flag. The membranes 

were re-blotted for V5 to evaluate the efficiency of V5 immunoprecipitation and confirm the 

transfection of CCM2-V5. For gel source data, see Supplementary Figure 1d. Similar results 

were seen in 2 separate experiments.
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Extended Data Fig. 10. Effects of CCM2 and TLNRD1 knockdown relative to MAP3K3 
knockdown and laminar flow.
a-d. CRISPRi TeloHAEC with control non-targeting guides or with guides to CCM2 
or TLNRD1 (2 guides apiece) were nucleofected with Cas9 particles containing control 

non-targeting guides or with 3 guides targeting exon 3 of MAP3K3 (Synthego). Cells 

were treated with 2μg/ml doxycycline for a total of 5 days (3 prior to nucleofection & 2 

afterwards), to induce the CRISPRi machinery. RNA was harvested 48 hours later (after 

phase contrast imaging), and RNA-seq libraries sequenced to a depth of 10-12 million reads. 

The CCM2 guides reduced target gene expression, on average, by 3.4-3.6 fold (p.<2e-9), 

while TLNRD1 guides reduced target gene expression by 9.4-9.9 fold (p. <2e-43), consistent 

with the effects of these guides in our other bulk RNAseq data (Fig. 3c). MAP3K3 transcript 

levels were not significantly reduced, but genome-mappable reads for the targeted exon 

(#3) were greatly reduced, and most of the remaining reads showed multiple mismatches, 

indicating efficient introduction of Cas9-targeted deletions. N=2 per condition (from one 

experiment, 1 RNAseq library for each of 2 CRISPRi guides per target - CCM2, TLNRD1 
or non-targeting controls). Correlation coefficient (R), and p.values given in each panel are 

from a two-sided Pearson correlation test.

a. The difference between the effect of CCM2 knockdown in cells with 

MAP3K3 knockdown and the effect of CCM2 knockdown in control cells 

([CCM2kd_with_MAP3K3kd/Control_with_MAP3K3kd] / [CCM2kd/Control], Y-axis) was 
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plotted against the effect of CCM2 knockdown in control cells ([CCM2kd/Control], X-axis, 

plotting all genes regulated at p. <5e-4 in either contrast). Labeled genes are the top 5 up- or 

down-regulated genes by log2 fold change, on each axis. Diagonal line: slope -1 reference.

b. As in (a), but for the difference between the effect of TLNRD1 knockdown in cells 

with MAP3K3 knockdown and the effect of TLNRD1 knockdown in control cells (Y-axis), 

versus the effect of TLNRD1 knockdown in control cells (X axis). The negative correlations 

in (a) & (b) indicate that MAP3K3 perturbation partially reverses the transcriptomic effects 

of CCM2 or TLNRD1 knock down, consistent with a role of MEKK3/MAP3K3 signaling in 

regulating transcription downstream of both CCM2 & TLNRD1.

c. The difference between the effect of MAP3K3 knockdown in cells with CCM2 
knockdown and the effect of MAP3K3 knockdown in control cells (Y-axis) versus the 

effect of MAP3K3 knockdown alone (X axis, plotting all genes regulated p. < 5e-4 in either 

contrast). Diagonal line: slope -1 reference.

d. As in (c), but for the difference between the effect of MAP3K3 knockdown in TLNRD1 
knockdown cells and the effect of MAP3K3 knockdown in control cells (Y-axis) versus the 

effect of MAP3K3 knockdown in control cells (X axis). The negative correlations in both (c) 

& (d) indicate that perturbation of CCM2 or TLNRD1 partially reverses the transcriptional 

effects of MAP3K3 knockdown, consistent with the expectation that decreased expression of 

upstream inhibitors can compensate for decreased expression of MEKK3.

e-h. CRISPRi TeloHAEC with control non-targeting guides or with guides to CCM2 or 

TLNRD1 (2 guides apiece) were grown in static culture or subjected to flow in an Ibidi flow 

chamber for 48 hours. In each case, cells were treated with 2μg/ml doxycycline to induce the 

CRISPRi machinery for 5 days (3 days prior & 2 days after introduction of laminar flow). 

After phase contrast imaging, RNAseq libraries were prepared and sequenced to a depth of 

10–12 million reads. N=2 per condition (one experiment, with 1 RNAseq library for each of 

2 CRISPRi guides per target - CCM2, TLNRD1 or non-targeting controls). R and p.values 

for panels (e-h) as per (a-d).

e. The effects of CCM2 knockdown in static culture (Y-axis) compared to the effect of flow 

in control cells (X-axis, showing all genes regulated at p. < 5e-4 in either contrast). Labeled 

genes are the top 5 up- or down-regulated genes by log2 fold change, on each axis. Diagonal 

line: slope = +1 reference.

f. As in (e), but for the effects of TLNRD1 knockdown in static culture. The positive 

correlations indicate that TLNRD1 or CCM2 knockdown in static culture is similar to 

the effect of flow, consistent with the observation that TLNRD1 or CCM2 knockdown 

increases the number and parallelness of actin stress fibers (Fig. 6b-e), a characteristic of 

flow response in unperturbed ECs 13.

g. The difference between the effect of flow in cells with CCM2 knockdown and the effect 

of flow in control cells ([Flow_CCM2kd/Static_CCM2kd] / [Flow_Ctrl/Static_Ctrl], Y-axis) 

versus the effect of flow in control cells ([Flow_Ctrl/Static_Ctrl], X-axis). Diagonal line: 

slope = -1 reference.

h. As in (g), but showing the difference between the effect of flow in cells with TLNRD1 
knock down and the effect of flow in control cells (Y-axis) versus the effect of flow in 

control cells (X-axis). The negative correlations in (g & h) indicate that CCM2 or TLNRD1 
knockdown cells have a weaker transcriptional response to flow than control cells. The 

negative correlations are also consistent with the observations in (e & f) that CCM2 or 
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TLNRD1 knockdown in static culture are similar to the effects of flow, such that lesser 

fold-changes in gene expression would be required for CCM2 or TLNRD1 knockdown cells 

to achieve the full normal transcriptional response to flow.

i. Representative images of CRISPRi teloHAEC with control non-targeting guides or with 

guides to CCM2 or TLNRD1, that were subjected to flow in an Ibidi flow chamber for 

48 hours. Cells were imaged by phase contrast microscopy using a 20x objective. N=2 

per condition from one (one experiment, with 2 CRIPSRi guides to CCM2, TLNRD1 or 

controls), and with 4 images per guide.

j. The normal alignment to flow in control teloHAEC (measured as the angle, relative to 

flow, of the long axis of each cell) is significantly abrogated in both CCM2 & TLNRD1 
KD cells (increased average angle relative to flow). Average values for all cells in each 

of 4 images for each of 2 guides per target were calculated (35 to 103 cells per image). 

Significance was assessed by two sided T-test on these average values. N=8. Boxplot center 

line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; 

points, outliers. Note that alignment to flow is not completely blocked in CCM2 or TLNRD1 
KD cells, since the average angle relative to flow does not reach the 45% value expected if 

orientation were entirely random.

k. As per (j), but measuring the ratio of the long vs. short axis lengths for each cell (“length/

width”) from the fit ellipse function in FiJi.
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Extended Data Fig. 11. Additional analysis of ccm2 and tlnrd1 CRISPR and morpholino 
knockdown zebrafish embryos
Zebrafish is a model system which has been extensively used to study CCM gene functions, 

and where ccm2 has been shown to have characteristic effects in heart and vascular 

development34,35,44,45,78,152.

(a) In-situ analysis of tlnrd1 mRNA expression. tlnrd1 mRNA, detected by the anti-sense 

in situ probe, is expressed in the head (black arrowhead) and heart (red arrowhead, top 

left), and in the notochord (white bracket), posterior cardinal vein (PCV, green arrow) and 

intersegmental vessels (ISVs, blue arrows, bottom panel). This staining pattern is not seen 

with the negative control sense probe (top right). N=10 from one experiment. This staining 
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pattern is consistent with TLNRD1 being most highly expressed in human endothelial cells 

(Tabula Sapiens atlas of gene expression, https://tabula-sapiens-portal.ds.czbiohub.org/).

(b) Quantitation of ccm2 & tlnrd1 CRISPR/morpholino heart phenotypes, knockdown 
efficacy & effects on klf2b expression. The table summarizes the number of embryos 

injected with each guide, or with tracRNA control (for CRISPR experiments), or with 

each experimental or control morpholinos at the indicated concentration(s), the number that 

survived, and the percent that showed a heart phenotype characterized by enlarged atrium, 

pericardial edema and slow blood flow in tail veins. “ccm2/tlnrd1 (v. ctrl)” summarizes 

qRT-PCR analysis of knockdown efficacy (ccm2 or tlnrd1 levels in embryos with CRISPR 

guides to each of these target genes, versus control embryos). “klf2b (v. ctrl)” summarizes 

qRT-PCR quantification of klf2b in CRISPR or morpholino knockdown animals versus 

controls. “NA”: Effects on ccm2 or tlnrd1 were not measured for the morpholino studies, 

because morpholinos generally function by inhibiting translation; and klf2b levels were not 

tested for the indicated morpholino treatments. See also Supplementary Table 20.

(c) Light microscopic images of CRISPR embryos. Representative images of Zebrafish 

3dpf embryos injected with control, ccm2 or tlnrd1 gRNA and Cas9 protein. A: atrium. 

V: ventricle. pc: pericardial space. For N and experimental replicates see panel (b) and 

Supplementary Table 20.

(d) Similar heart phenotypes in ccm2 & tlnrd1 morpholino embryos. Knockdown of 

either tlnrd1 or ccm2 with 100 μM anti-tlnrd1 or anti-ccm2 morpholino caused similar heart 

defects as seen by CRISPR knockdown, with no heart defects seen using 100 μM control 

morpholino. For N and experimental replicates see panel (b) and Supplementary Table 20.

(e) Synergistic effect of ccm2 & tlnrd1 morpholinos. As in (d), but showing the synergistic 

phenotype of 50 μM tlnrd1 & 50 μM ccm2 morpholinos, which, individually, showed 

no phenotype, but together showed the heart phenotype in 72% of embryos. For N and 

experimental replicates see panel (b) and Supplementary Table 20.

(f) Vascular phenotype in ccm2 & tlnrd1 morpholino embryos. Representative 

microangiogram images showing FITC dextran green (2000 kDa) injected in the vasculature 

in control, ccm2 and tlnrd1 gRNA injected 3 dpf larvae. Brackets mark the thickness 

of the posterior cardinal vein (PCV). Arrows indicate the intersegmental vessels (ISVs). 

Experiments were repeated 3 times. N=6 for control, and 5 for ccm2 or tlnrd1 gRNAs, from 

one experiment.

(g) Ventricle wall thinning in ccm2 & tlnrd1 morpholino embryos. Hematoxylin & eosin 

(H&E) stained sections of 3dpf embryos. A: atrium. V: ventricle. The space between dotted 

lines in the ventricle indicates ventricular wall thinning in ccm2 or tlnrd1 CRISPR embryos. 

Cells within each chamber are blood cells. N=3 for each treatment, from one experiment.

(h) More permeable vasculature in ccm2 & tlnrd1 morpholino embryos. Representative 

images from vascular permeability analysis in control, ccm2 and tlnrd1 gRNA injected 

zebrafish at 3 dpf. Red color indicates texas red dextran 70 KD, which was injected 

into the vasculature before imaging. Green: Green fluorescence protein expression in the 

vasculature (Tg:Fli GFP). Both ccm2 and tlnrd1 gRNA injected embryos displayed higher 

levels of red dye in the interspace between the vessels (arrows). Bottom right: Quantitation 

of permeability (ratio of red dextran in interspace vs. controls. n=10 for control, 13 for ccm2 
& 13 for tlnrd1). Significance was assessed by two-sided T-test. Boxplot center line, median; 
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box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; points, outliers. For 

the complete data, see Supplementary Table 31.

(i) tlnrd1 knockdown upregulates klf2b in zebrafish. qRT-PCR for knockdown of tlnrd1 
& induction of klf2b in zebrafish embryos treated with CRISPR guides to tlnrd1, or with 

control tracrRNA. Signal was normalized to Actin, and then to the average for controls. n=9 

for klf2b (6 for guide AF, 3 for guide AN.2). n=5 for tlnrd1 (2 for guide AF, 3 for guide 

AN.2). Quantitation and boxplot features in in (h). For the complete data, see Supplementary 

Table 30.

(j) TLNRD1 knockdown upregulates KLF2 in TeloHAEC. qRT-PCR for knockdown of 

TLNRD1 & induction of KLF2 in TeloHAEC with Cas9-guide nucleofection knock down of 

TLNRD1 (or non-targeting guides, “Control”). Signal was normalized to GAPDH, and then 

to the average for controls. n=4 separate samples. Quantitation and boxplot features as in 

(h). For the complete data, see Supplementary Table 30.

Extended Data Fig. 12. Application of V2G2P to other traits and other cell models.
a. Venn diagram of V2G2P genes for coronary artery disease (CAD), pulse pressure (PP), 

and mean arterial pressure (MAP) GWAS traits in teloHAEC (using the same ABC-maps 

and Perturb-seq data, but disease variants for each trait). For MAP, we prioritized program 

8 (ECM organization, AQP1, FDR = 0.0135) and program 15 (KLF2, flow response, FDR 
= 0.0289). For PP we prioritized program 50 (TGFβ response, FDR = 0.0046) and program 

29 (EDN1, wound healing, FDR = 0.0316). Several genes in the PP programs are known to 

regulate vascular tone and stiffness, including FHL2, SMAD3, and TGFB1153-155.

b. K562 V2G2P programs for mean corpuscular hemoglobin (MCH), mean corpuscular 

volume (MCV), platelet count (Plt), red blood cell count (RBC), pulse pressure (PP), mean 
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corpuscular hemoglobin concentration (MCHC), average blood glucose level (HbA1c), 

hemoglobin count (Hb), mean arterial pressure (MAP), diastolic blood pressure (DBP), 

systolic blood pressure (SBP). Overall, 32 programs were prioritized for 6 GWAS traits, 

ranging from 27 programs associated with MCH to 2 programs for MCHC. In general, traits 

that were not relevant to K562 erythroleukemia cells had no K562 programs significantly 

associated with them (e.g. MAP, DBP & SBP). Programs associated with each trait 

contained genes related to that trait. For instance, the most significantly-enriched mean 

corpuscular hemoglobin program was K562 Program 13, which included many hemoglobin 

genes as well as the known regulators GFI1B156 and CBFA2T3157, while variants associated 

with platelet count showed most significant enrichment in K562 Program 4, which included 

genes known to be involved in megakaryocyte differentiation and platelet count such as 

VASP158 and TPM4159, and which showed high enrichment of motifs for the known 

megakaryocyte regulators SP1/3160.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data Availability

Raw and processed data for Perturb-seq, ATAC-seq, H3K27ac ChIP-seq, and RNA-seq 

in TeloHAEC were deposited in NCBI’s Gene Expression Omnibus under accession 

number GSE210523. This superseries is composed of subseries: GSE210489 (ATAC-seq), 

GSE210491 (ChIP-seq), GSE210522 (bulk RNAseq of cytokine-treated parental lines & 

single guide CRISPRi knockdowns), GSE232400 (bulk RNAseq of cells under flow, and 

MAP3K3 double knockdowns), GSE212396 (pilot scRNA-seq studies) and GSE210681 

(comprehensive Perturb-seq).

Other datasets used in these studies: CAD lead GWAS variants were derived from both 

Aragam et al.12 and Harst et al.10, PheWas data was from Aragam et al.12, GWAS summary 

statistics for other traits, and finemapping analysis, were from Hilary Finucane and Jacob 

Ulirsch’s analysis of UKBB data (https://www.finucanelab.org/data), coding and splice site 

annotations were from the RefGene database (from the UCSC Genome Browser dated 

24 June 2017) 68, 1000 Genome European ancestry LD data was accessed using “plink 

--ld-window-kb 1000 --ld-window 99999 --ld-window-r2 0.9”, TF binding site information 
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was from HOCOMOCO v11 human full scan motifs (https://hocomoco11.autosome.ru/

downloads_v11), gene sets were from the Molecular Signatures Database (MSigDB) 67. 

We also used scRNAseq data from explanted human right coronary artery endothelial cells 
69, endothelial cis-regulatory elements derived from snATAC-seq 72, ENCODE datasets 

ENCSR000EVW (GATA2 ChIP-seq on HUVEC) and ENCSR000EOB (DNase-seq and 

DGF on HMVEC-dLy-Neo), protein structure models for KRIT1 (UniProt O00522), CCM2 

(Uniprot Q9BSQ5, with and without deletion of residues 417-444), PDCD10 (Uniprot 

Q9BUL8), and TLNRD1 (Uniprot Q9H1K6). Previous prioritization calls for genes in 

CAD GWAS loci were from these studies: Aragam et al.12, Hodonsky et al.96, Li et al.97, 

OpenTarget L2G 98, Stolze et al.29, van der Harst and Verweij 10 and Wunnemann et al.30 

(with details in the Methods).

Code Availability

The Variant-to-Gene-to-Program (V2G2P) approach snakemake pipeline is available at: 

https://github.com/EngreitzLab/V2G (V2G)

https://github.com/EngreitzLab/cNMF_pipeline/ (G2P and V2G2P enrichment).
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Fig. 1. Building a map of gene programs in endothelial cells using Perturb-seq
a. Overview of the Variant-to-Gene-to-Program (V2G2P) approach. Red nodes outline an 

example of the predicted convergence of multiple risk variants onto a small number of cell 

type-specific programs related to disease.

b. Diagram of the approach to create a map of gene programs and regulators using Perturb-

seq (Gene to Program, G2P).

c. 50 gene programs were identified de novo from Perturb-seq and cNMF. For the 13 

EC-specific programs, selected co-regulated genes in the program are shown in italics.

d. EC-Specific Programs. Heatmaps show, for each program, the top 3 program co-regulated 

genes (left, ranked by specificity to the program, see Methods); the top 3 transcription factor 

motifs in enhancers (middle, ranked by enrichment FDR); and top 3 regulators (right, ranked 

by fold-change in component expression upon perturbation; see also Extended Data Fig. 3e).
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Fig. 2. CAD genes converge on 5 programs in endothelial cells
a. Path to the convergence of 5 V2G2P programs and 41 V2G2P genes for coronary artery 

disease.

b. Identification of V2G2P programs for CAD. The 50 programs are ordered (y-axis) by the 

number of program genes linked to CAD variants (x-axis). We define the 5 programs with 

FDR < 0.05 as V2G2P programs. Gray dashed line: the number of genes linked to CAD 

variants that would be expected by chance.

c. Relationships among the 41 V2G2P genes for CAD and the 5 V2G2P programs. Top: 

6 V2G2P genes were regulators of one or more V2G2P programs (FDR < 0.05). Light 

blue boxes indicate positive regulators (genes where loss-of-function leads to a decrease in 

program expression); dark blue indicates negative regulators (genes where loss-of-function 

leads to an increase in program expression). Bottom: 36 V2G2P genes for CAD were 

co-regulated genes in one or more V2G2P program. Cross hatching indicates members of 

the 8 gold standard EC CAD genes, previously known to affect CAD risk through effects in 

ECs (Supplementary Table 16).
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Fig. 3. Regulatory connections among CAD genes in the CCM pathway
a. Genes that are members of the CCM complex and pathways regulate V2G2P programs 

for CAD. Color scale: average log2 fold-change of effect of the perturbed gene on the 5 

programs, with red shading indicating knockdown leads to increased expression of Programs 

8 and 48 and reduced expression of Programs 35, 39, and 47. Solid black lines indicate 

previously known physical or functional interactions (see Methods). *: TLNRD1 is newly 

linked to the CCM complex via our analysis (see next section). Gray boxes indicate 

functionally related genes that were not tested in the Perturb-seq experiment. Bold text: 

V2G2P genes for CAD.

b. Effects of genes in panel (a) on the 5 V2G2P programs. Color scale: log2 fold-change on 

program expression.

c. Effects of perturbing CCM pathway members on expression of the 41 V2G2P genes 

for CAD. Color scale: log2 fold-change on gene expression in individual knockdown 

experiments assayed by bulk RNA-seq (average for two guides to each target). Bold row 

names: V2G2P genes. Colored text in columns: Genes significantly regulated by one or 

more CCM pathway perturbation (FDR < 0.05), red: upregulated by upstream signaling gene 

perturbations or downregulated by downstream gene perturbations, blue: vice versa.

d. Likely direction of effect of V2G2P genes on atherosclerosis or vascular barrier 

dysfunction based on prior genetic studies in mouse models (see Supplementary Table 15 for 

citations).
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Fig. 4. Linking CAD risk variants at 15q25.1 to TLNRD1
a. 1,503 perturbed nearby genes to CAD GWAS loci, ordered by effect on the 5 V2G2P 

programs for CAD (average −log10 p-value, two-sided statistical test from MAST39). 

Labels: top 5 genes. Red: V2G2P genes.

b. 2,284 perturbed genes ordered by their similarity with CCM2 perturbation (correlation in 

log2 effects on Program expression). Labels: as in (a).

c. CRISPRi-FlowFISH targeting chromatin accessible elements around TLNRD1. Each 

point represents the average effect on TLNRD1 gene expression of a single gRNA across 

4 replicate FlowFISH experiments. Bars: elements in which CRISPRi leads to either no 

significant change (gray) or a significant decrease (red) in expression. Red numbers: −log10 

FDR (Heteroscedastic two-sided t-test).

d. FlowFISH quantitation for guides targeting the indicated elements. Bar and whiskers: 

mean ± SEM. Dots: average effects, across 4 replicates, of individual gRNAs (117 negative 

controls (Control), 37 targeting the promoter of TLNRD1, and 17 targeting the enhancer 

containing rs1879454). *:FDR 2e-7. **:FDR 0.001.

e. Zoom-in on the enhancer containing rs1879454. Colored bar in signal tracks indicates 

read coverage of the reference (C, blue) and alternate (A, green) alleles. Bottom shows the 

position-weight matrix for a composite GATA/TAL motif and the genome sequence with 

reference and alternate alleles highlighted in gray.

f. Quantitation for allele-specific counts at rs1879454, from (e). Reads were re-aligned to 

both reference and alternate alleles to avoid bias toward the reference allele (see Methods).
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Fig. 5. TLNRD1 interacts with CCM2 and phenocopies CCM2 in ECs and zebrafish.
a. AlphaFold2.3 Multimer model for TLNRD1, CCM2, PDCD10 and KRIT1. Right: 

predicted interaction between TLNRD1 (residues P177-V237) and the C-terminal helix 

of CCM2 (residues E417-S443). Left: Recapitulation of the known CCM2/KRIT1 binding 

site in the PTB (phosphotyrosine binding) domain of CCM2 with KRIT1 residues D225-

N33141. Dashed green lines: flexible loops. Amino acid positions: boundaries of predicted 

alpha-helix and beta-sheet features.

b. FLAG-tagged TLNRD1 and/or V5-tagged CCM2 full length (“WT”) or C-terminal 

truncation (“Δ”) were expressed in HEK293T cells, as indicated. Extracts were co-

immunoprecipitated with mouse anti-FLAG and blotted with rabbit anti-V5 (top) or anti-

TLNRD1 (bottom). For gel source data, see Supplementary Figure 1a. Similar results were 

seen in 2 separate experiments.

c. Heatmap of top genes regulated by both TLNRD1 and CCM2 that affect CAD-relevant 

EC functions (see Methods), in cells with the indicated knockdowns. Black text: the 

TLNRD1 and CCM2 knockdown targets. Green text: likely atheroprotective genes. Red 

text: likely atherogenic genes.

d. ccm2 and tlnrd1 knockdowns induce atrial enlargement and atrioventricular valve (AV) 

dilation in zebrafish embryos. Top: Representative merged light microscopic and fluorescent 

(cardiac myosin light chain 2/cmlc2-GFP in cardiomyocytes) confocal microscopic images 

of 50 hour post-fertilization zebrafish embryos (anterior to the left). Bottom: 3x zoomed-in 

fluorescent-only image of the heart (yellow boxes, above). N=5 embryos were analyzed per 

group. a: atrium, v: ventricle, av: atrioventricular valve.
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Figure 6. CCM2 and TLNRD1 knockdowns mimic the atheroprotective effects of laminar flow in 
ECs
a. Heatmap of genes strongly regulated by both TLNRD1 and CCM2 that affect CAD-

relevant endothelial cell functions (as per Fig. 5c), in CRISPRi TeloHAEC with the 

indicated treatments vs. control cells in static culture.

b. Representative maximum projection images of phalloidin-stained CRISPRi teloHAEC 

with control, TLNRD1 or CCM2 guides.

c. Quantitation of actin fiber (phalloidin stain) intensity per cell area (see Methods). N: 

Control=145, CCM2=47, TLNRD1=117. Boxplot: center line, median; box limits, upper 

and lower quartiles. Significance was assessed by two-sided T-test.

d. As in (c), but showing the number of actin fibers per cell.

e. As in (c), but showing parallelness of actin fibers. A score of 0 indicates randomly 

oriented fibers, and a score of 1 indicates all fibers in a cell are parallel to each other.

f. Trans-endothelial electrical resistance (TEER) measurements for CRISPRi teloHAEC 

with the indicated guides (2 guides per target), each normalized to average resistance over 

the 4 hours before thrombin was added to disrupt cell junctions. N=8 (control), 7 (CCM2 
KD) and 6 (TLNRD1 KD). Ranges: SEM.

g. Boxplot of normalized TEER signal, from (f), averaged for hours 45 to 50 (20-25 

hrs post-thrombin). Quantitation as in (c). In addition, boxplot whiskers=1.5x interquartile 

range and points=outliers. Note that the CCM2 KD effect we see differs from prior 

studies of human dermal microvascular ECs48,49, which showed decreased resistance with 

CCM2 perturbation. This could indicate a difference between ECs from arteries (where 

atherosclerosis develops) vs. capillaries.
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