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ABSTRACT Most Staphylococcus aureus isolates carry multiple
bacteriophages in their genome, which provide the pathogen
with traits important for niche adaptation. Such temperate S.
aureus phages often encode a variety of accessory factors that
influence virulence, immune evasion and host preference of the
bacterial lysogen. Moreover, transducing phages are primary
vehicles for horizontal gene transfer. Wall teichoic acid (WTA)
acts as a common phage receptor for staphylococcal phages
and structural variations of WTA govern phage-host specificity
thereby shaping gene transfer across clonal lineages and even
species. Thus, bacteriophages are central for the success of S.
aureus as a human pathogen.

INTRODUCTION
The diversity of the Staphylococcus aureus species is
mainly determined by mobile genetic elements, many of
which are prophages or phage-related genomic islands.
Strain evolution as a result of short- and long-term ad-
aptation to diverse environments is tightly linked to
phages. Many phages carry accessory genes coding for
staphylococcal virulence factors, which are important for
the success of certain S. aureus clonal complexes (CCs).
Second, phages support the induction, packaging, and
transfer of genomic islands (1, 2). This topic is reviewed
elsewhere. Third, phage-mediated transduction is an ef-
ficient way to transfer not only extrachromosomal mo-
bile elements, such as plasmids, but also chromosomal
markers (albeit with lower efficiency). S. aureus is thought
not to be naturally competent, so that recombination
and horizontal gene transfer are mostly phage mediated
and, to a lesser extent, conjugative. Here, we will first give
a brief overview of previously used methods to classify S.
aureus phages. Thenwewill mainly focus on the impact of
temperate phages on the evolution of the bacterial host.

CLASSIFICATION OF S. AUREUS PHAGES
All known S. aureus phages belong to the order Cau-
dovirales (tailed phages) and are composed of an ico-
sahedral capsid filled with double-stranded DNA and a
thin filamentous tail. Based on the complete genomes of
27 phages (3), S. aureus phages were assigned to three
size classes: siphoviruses, with a genome size of 39 to
43 kb, podoviruses, with a smaller genome size of 16
to 18 kb, and myoviruses, with a genome size of 120 to
140 kb. This capsid and genome size-based classifica-
tion correlates with the tail morphology as observed by
electron microscopy: Podoviridae have a very short tail,
Siphoviridae, a long noncontractile tail, andMyoviridae,
a long contractile, double-sheathed tail (for recent re-
views, see 4–6). All of the known temperate staphylo-
coccal phages belong to the Siphoviridae, which are the
primary focus of this chapter.
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The siphovirus genomes are usually organized into six
functional modules: lysogeny, DNA replication, pack-
aging, head, tail, and lysis (7–9). The evolution of phage
lineages was driven by the lateral gene transfer of in-
terchangeable genetic elements (modules), which con-
sist of functionally related genes. A functional module
found in one phage can be replaced in another phage by a
sequence-unrelated module that fulfils the same or related
functions; often, genes within such modules travel to-
gether (10). Thus, multiple alignments of S. aureus phage
genomes reveal a chimeric and mosaic structure result-
ing from horizontal transfer and recombination (3, 5, 9,
11–13).

Due to this modular structure, phage nomenclature
and classification of the Siphoviridae are challenging and
are a matter of debate. In Table 1 the different designa-
tions and properties of a representative set of S. aureus
Siphoviridae are illustrated. In one approach phages
were classified based on protein repertoire relatedness (5,
7). Thereby, Siphoviridae from S. aureus were clustered
into six major clades. Clades 4 to 6 (Sfi21-like phages)
share characteristic features with the capsid region of
Escherichia coliHK97 phage and use the cos-site strategy
for DNA packaging. Clades 1 to 3 (Sfi11-like pac-type
phages) are related to theBacillus subtilis SPP1 phage (7).
The Sfi11/Sfi21-like grouping of Siphoviridae is based
on genome analysis of lactococcal phages. Gene clusters
extending from the DNA packaging genes to the tail
genes were found to be represented by two unrelated
configurations: one is characteristic of cos-site phages
(prototype: phage Sfi21), and the other is characteristic
of pac-site phages (prototype: phage Sfi11).

In another approach, S. aureus Siphoviridae were
classified according to polymorphism of the int gene and
the modular composition of lysogeny, regulation, repli-
cation, structural, and lytic modules (9, 12) (Table 1).
The modules can be defined by multiplex PCR or se-
quence analyses of selected genes within the modules.
S. aureus prophages were primarily classified on the ba-
sis of int gene homology (9, 12, 13). By including in-
formation on the allelic variation of other modules, a
further meaningful subdivision can be achieved. A similar
approach to the general classification of bacteriophages
has been proposed previously (14, 15). Kahánková et al.
(9) established a mulitplex PCR assay to distinguish be-
tween different types of integrase (10 types), antirepres-
sor (five types), replication proteins (four types), dUTPase
(four types), portal protein (eight types), tail appendices
(four types), and endolysin (four types). The proposed
extended typing scheme covering seven major genomic
modules enables not only the differentiation of phages

but also the design of a classification system. For the
basic description and rapid differentiation of a phage
strain, the serological group type, the int type, and the
endolysin type are the most relevant (located at the left
side, the middle, and the right side of the prophage ge-
nomes). Using a simplified scheme, e.g., phage φ11 can
be classified as Sa5int-Ba-ami1 or phage φ13 as Sa3int-
Fb-ami3 (9). Despite the multiple mosaic variants, there
are close links between particular modules; e.g., all phages
using polA for replication are serogroup A.

There are several reasons to classify S. aureus pro-
phages primarily based on int polymorphism. First, nu-
cleotide sequences are well conserved within int groups,
making the gene an ideal target for PCR amplification.
The int grouping has good discriminatory power, re-
flecting the diversity of the S. aureus phage population.
Recombination and exchange of certain modules seem
to occur more often between phages of the same Sa-int
group than between phages of different Sa-int groups
(16). Second, the int typing allows for prediction of the
chromosomal location of the prophage. Last, the int type
is closely linked to the virulence gene content of the pro-
phage and can therefore convey information about the
pathogenic potential of the bacterial lysogen (12). Most
of the S. aureus phages can be assigned to one of the
major Sa-int types 1 to 8.

PHAGE INTEGRATION/EXCISION
All prophages integrate to position the int gene in close
proximity to the bidirectional origin of chromosome
replication. Based on amino acid sequence homology and
catalytic residues, most integrases belong to the tyrosine
recombinase type family. Only the integrases of Sa7int
phages were found to belong to the serine recombinase
type family (12). Despite the usually strong association of
the int type with the integration site, there are also events
where a phage may integrate in an illegitimate attach-
ment site. This phenomenon was described to occur for
Sa3int phages during chronic lung infections of cystic
fibrosis patients (17). Under these conditions, the recon-
stitution of the phage-interrupted hlb gene may be an
advantage. When these mislocated phages were induced
and used to reinfect S. aureus in vitro, the phages reinte-
grated at their dedicated attachment site within hlb. Sa3
phages are only rarely found in livestock-associated S.
aureus strains of CC398. In these strains the canonical
attB site within hlb is altered, and therefore Sa3int phages
integrate at diverse alternative attB sites (18, 19). The
mechanism for excision of S. aureus Siphoviridae is much
less well understood. Excision followed by replication
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TABLE 1 Classification and properties of selected S. aureus Siphoviridaee

Phage
name

Sfi
typea Cladea Intb Serob Holinc Virulenced cos/pac attB Phage or attB in 8325c

Φ55 Sfi11 II Sa1 B 438 SAOUHSC_00851:
823130-823148ΦMu50B Sfi11 Sa1 B 438 pac TTCGAAATGGAAGGTAGTA

ΦETA Sfi11 2 Sa1 B 276 eta
ΦSa1JH1 Sa1 B 276
ΦETA2 Sa1 B 276 eta
Φ252A Sa2 A 303 SAOUHSC_01583:

Φ12, 1463618-1508581ΦSa2mw Sfi21 Sa2 A 303 lukFS-PV cos:
CGGCGGGGGC

ACCATCACATTATGATGA
TATGTTTATTT

ΦPVL108 Sfi21 5 Sa2 Fb 303 lukFS-PV
Φ2958PVL Sfi21 4 Sa2 A 303 lukFS-PV
ΦPVL Sfi21 5 Sa2 Fb 303 lukFS-PV
ΦSa2USA300 Sfi21 Sa2 A 303 lukFS-PV
ΦSLT Sfi21 4 Sa2 A 303 lukFS-PV
Φ12 Sfi11 4 Sa2 A 303
Φ13 Sfi21 5 Sa3 Fb 255a sak, chp, scn cos:

CGGAGCAGA
TGTATCCAAACTGG hlb: Φ13, 2031923-

2074632-
ΦN315 Sfi21 6 Sa3 Fa 255a sep, sak, chp,

scn
ΦSa3mw Sfi21 Sa3 Fb 255a sek, seq, sea,

sak, scn
ΦNM3 6 Sa3 Fa 255a sea, sak, chp,

scn
ΦMu50A Sfi21 ND Sa3 Fa 255a sea, sak, scn
ΦSa3USA300 Sa3 Fa 255b sak, chp, scn
ΦSa3JH9 Sa3 Fa 255b sak, chp, scn
Φ42E Sfi21 IV Sa3 A 255a
ΦSa4JH1 Sa4 A 438 CATGTAATTCC SAOUHSC_00958 (htrA):

933127-933137ΦSa4ms Sa4 A 303
Φ11 Sfi11 1 Sa5 B 438 pac CTTCCCATGG SAOUHSC_02090: Φ11,

1923398- 1967013
ΦPV83 Sa5 Fb 255a lukM, lukF-PV
Φ187 Sfi11 I Sa5 L 255a
Φ29 Sfi11 II Sa5 B 438
ΦNM1 ND 1 Sa5 B 303
Φ88 Sfi11 II Sa5 B 438
Φ52A Sfi11 II Sa6 B 438 SAOUHSC_00300 (geh):

316250-316257Φ80 Sfi11 2 Sa6 B 438
ΦNM4 2 Sa6 B 303 ATCATACAAGGATGGGAT
ΦSa6JH9 Sa6 B 438
ΦCOL Sa6 A 303
L54a Sa6 A ?
Φtp310-2 Sa6 A 303
Φ53 Sfi11 I Sa7 B 303 Intergenic, downstream

SAOUHSC_01079 (isdB):
1042159-1042167

Φ80alpha Sfi11 1 Sa7 B 303 pac AGGTATCTG
Φ85 Sfi11 I Sa7 B 303
ΦNM2 Sa7 B 438 AGGTATCTG
Φ6390 Sa7 B 255a sak
Φ92 Sfi11 II Sa7 B 438
φSaov2 Sa7 F
ΦRF122 Sa8 B 438 pac CGGAAGGTAAGGGA SAOUHSC_T00050

(trnaS): 1864312-1864325
Φ96 Sfi11 2 Sa9 B 303 pac ND tmRNA, 788659
ΦEW Sfi11 3 Sa11 ND 435 pac ND SAOUHSC_00581: 584240

aClassification based on reference 5.
bClassification based on reference 12.
cLocation of the native phage or the attB site in the genome of reference strain 8325 (GenBank accession number NC_007795.1).
dvirulence genes
eAbbreviations: ND, Not determined; tmRNA, transfer messenger RNA.
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may result not only in bacterial lysis and phage release
but also in a process termed “active lysogeny.” This term
was recently introduced to describe instances where pro-
phages temporally and reversibly excise from the chro-
mosome without lysing the bacterial host (20). This might
be seen as a form of bacterial gene regulation that pos-
sibly improves bacterial fitness. Evidence for active ly-
sogeny in S. aureus comes from a recent sequencing
approach to detect extrachromosomal phages in S. au-
reus (21). Furthermore, it could be demonstrated that
phages are readily induced under infectious conditions
(17, 22–25). Analysis of isolates from cystic fibrosis pa-
tients revealed that translocation of the Sa3int phages
often leads to a splitting of the bacterial population (17)
into Hlb-positive (phage-cured) and phage-positive frac-
tions. Both the phage-encoded virulence factors and Hlb
are secreted factors; thus, functional complementation
can be assumed.

PHAGE-BACTERIAL RECOGNITION
Adsorption to the bacterial host is the first critical step
within the phage life cycle. Interaction of the receptor-
binding protein (RBP) of the phage and its receptor ini-
tiates the infection cycle and, importantly, determines the
host range and specificity (26). Phage receptors have to
satisfy the following distinct requirements to be suitable
for viral attachment. (i) Accessibility: phage receptors
have to be accessible to the phage by random Brownian
motion, flow, or diffusion. (ii) Abundance: with attach-
ment being a stochastic process, the abundance of the
receptor must be high enough to permit a sufficient prob-
ability of RBP-receptor contact. (iii) Constancy: the chem-
ical composition of the receptor must be stable enough
to allow evolutionary adaption of the phage to possible
changes in the receptor appearance. Wall teichoic acid
(WTA) of S. aureus fulfills all three requirements im-
posed on a proper phage receptor and was shown to act
as the primary phage receptor. It is a major component
of the cell wall and is expressed by all S. aureus strains.
Most S. aureus strains produceWTA comprised of ribitol-
phosphate (RboP) repeats. The complex biosynthesis
of WTA is reviewed elsewhere (27, 28). WTA is cova-
lently attached to the peptidoglycan of the cell wall (29,
30). Further derivatization of WTA is achieved in two
ways. Attachment of N-acetyl-glucosamine residues
(GlcNAc) occurs at the C4-position of the RboP unit
by two glycosyltransferases, TarS and TarM, which
attach GlcNAc in the β-position and α-position, respec-
tively (31, 32). Recently, a third prophage-encoded gly-
cosyltransferase, named TarP, was identified (33). Unlike

TarS, TarP catalyzes the attachment of GlcNAc in the
β-1,3-position.

The second modification of WTA is attachment of D-
alanine residues at the C2-position by the Dlt-machinery
(34). In contrast, a completely different type of WTA,
composed of a glycerol-phosphate (GroP) repeating unit
modified with α-N-acetyl-galactosamine (GalNAc) resi-
dues is found in S. aureus strains belonging to CC395
(35). This GroP WTA resembles the WTA structure
found in many coagulase-negative staphylococci (36).
Early studies identified B. subtilis mutants lacking WTA
or WTA glycosylation. Those mutants appeared to be
resistant against certain B. subtilis bacteriophages (37,
38). It was subsequently shown that the sugar moiety of
WTA is also important for S. aureus phage interaction.
Treatment of S. aureuswith exo-β-acetylglucosaminidase
or use of WTA glycosylation mutants leads to a decrease
in phage binding (39, 40).

Although a majority of publications describe only
carbohydrate-based phage interactions (WTA in combina-
tion with peptidoglycan structures), work by Nordström
et al. (41) suggested that additional proteinaceous fac-
tors, prominent among them, surface protein A, interfere
with phage adsorption. To our knowledge, this is the
only account of surface protein phage interactions re-
ported for S. aureus. Interestingly, a secondary protein
receptor besides the primary receptor WTA has been
described for the Gram-positive model organism B. sub-
tilis. The lytic phage Spp1 adsorbs first in a reversible
manner to WTA, which accelerates an irreversible inter-
action with the membrane receptor YueB and injection of
viral DNA (42). A similar phenomenon was described for
the membrane protein PIP, which serves in lactococcal
species as a secondary phage receptor (43). However, PIP
homologues in S. aureus have not been shown to be
necessary for phage adsorption (44). Thus, so far, there is
no clear evidence for a secondary proteinaceous receptor
in S. aureus.

The advent of bacterial genetics allowed further in-
sights into the molecular basis of bacteria-phage inter-
actions. An early study suggested that besides WTA, a
different anionic polymer of the S. aureus cell envelope,
lipoteichoic acid, might serve as a receptor for the tail
protein ORF636 of S. aureus phage ΦSLT (45). Lipo-
teichoic acids (LTA) consist of D-alanylated glycerol
phosphate repeating units attached to the cell membrane
of S. aureus (46). However, using an LTA-deficient mu-
tant strain of RN4220, no difference in the infectivity of
phages expressing homologues of the tail protein of
ΦSLT could be observed (47). In contrast to the LTA-
deficient mutant, gene deletion of tagO, the first gene of
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the WTA biosynthesis pathway, leads to a phage-resis-
tant phenotype (47, 48). By creating a transposon mu-
tant library, Xia et al. (32) were able to isolate the
RN4220 mutant K6, which is deficient in WTA glyco-
sylation. K6 carries a transposon interrupting the gene
coding for the α-glycosyltransferase TarM. K6 addi-
tionally carries a premature stop codon in tarS coding
for the β-glycosyltransferase (31). K6 was resistant to a
wide range of siphoviruses (47). Interestingly, as reviewed
later, lytic myoviruses (Φ812 and φK) were able to infect
K6 despite the lack of WTA glycosylation.

By using defined knockouts of the two identified ribitol-
phosphate glycosyltransferases, tarM and tarS, it could
be demonstrated that siphoviruses of serogroup B do

not seem to differentiate between α- or β-GlcNAcylation
at the ribitol C4 position (31, 44) (Fig. 1A). The receptor
promiscuity of siphoviruses might reflect their role as
the main vectors of horizontal gene transfer. Of note,
Winstel et al. (49) demonstrated that S. aureus patho-
genicity islands (SaPIs) can be transferred between
strains expressing α- or β-GlcNAcylated WTA. Notably,
β-1,3-GlcNAcylation by TarP seemed to reduce the in-
fection and SaPI-transfer capacity of serogroup B sipho-
viruses (33) (Fig. 1A). More importantly, the Winstel
and coworkers publication established the compatibility
of phage and host receptors as a key driver of cross-
species horizontal gene transfer (49). Even distantly re-
lated bacterial species such as Listeria monocytogenes

FIGURE 1 Receptor specificity of S. aureus phages. (A) Siphoviruses Φ11, Φ80, Φ52A, Φ47,
and Φ77 and podovirus SA24-1 recognize α-or β-1,4-GlcNAc-RboP WTA. β-1,3-GlcNAc-
WTA is adsorbed to less strongly by Φ80, Φ52A, and Φ11. (B) Podoviruses ΦP68, Φ44AHJD,
and Φ66 bind to β-1,4-GlcNAc-RboP WTA and are blocked by β-1,3-GlcNAc or α-1,4-
GlcNAc modifications. (C) Siphovirus Φ187 binds to α-GalNAC-GroP. (D) Myovirus ΦK,
Φ812, attache to the backbone of GroP and/or RboP. (E)ΦSA012 recognizes both the RboP
WTA backbone and α-1,4-GlcNAc-RboP by two different RBPs.
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can engage in horizontal gene transfer with S. aureus (49,
50), as long as they express a compatible phage receptor.
In contrast, lack of RboP-GlcNAc WTA excludes bac-
teria from the exchange of genetic information. For in-
stance, S. aureus PS187 (CC395), equipped with GroP-
type WTA, is cut off from horizontal gene transfer
with RboP-WTA-expressing S. aureus, but is able to
engage in exchange with coagulase-negative species that
share a similar GroP-type WTA (35, 49). Interestingly,
ectopic expression of RboP-type biosynthesis genes in
coagulase-negative staphylococci with GroP-WTA ren-
dered them susceptible to S. aureus phages (49). Hence,
it can be speculated that RBP-receptor incompatibility
is a major hindrance for horizontal gene transfer be-
tween S. aureus and coagulase-negative staphylococci.
The other two described classes ofmorphological groups,
namely Myoviridae and Podoviridae, show more di-
verse receptor specificities, that are discussed later in the
article.

Returning to the postulated requirements for a phage
receptor (accessibility, abundance, and constancy), one
can audit whether they hold true for WTA as the phage
receptor of S. aureus. WTA is an exposed cell surface
molecule attached to the peptidoglycan (51), which would
allow easy access to phages. The negative charge ofWTA,
conferred by phosphate residues, might allow polar or
ionic interaction with RBPs. LTA, due to its presence in
the more internal cell membrane of S. aureus, might
therefore be of less utility as a receptor for bacteriophages.
Additionally, WTA is a highly abundant glycopolymer
that constitutes up to 60% of the cell wall mass in many
Gram-positive bacteria. It is a key component of the cell
wall, and no natural isolates of S. aureus without WTA
have been reported so far. The indispensability and
abundance of WTA ensure a high probability of phage-
receptor contact, which is crucial for the adsorption
process. Coagulase-negative bacteria, especially Staphy-
lococcus epidermidis, show an increased diversity ofWTA
glycosylation patterns (36, 52). S. aureus appears to en-
code only one housekeeping glycosyltransferase, TarS.
The tarS gene is found in almost all S. aureus genomes
(53). The second glycosyltransferase, TarM, appears to
have been acquired very early in S. aureus evolution
(54). However, certain clonal lineages, such as CC5 and
CC398, seem to have deleted tarM during their emer-
gence or may have acquired phage-encoded tarP. The
introduction of more sophisticated WTA glycosylation
patterns might lead to less phage interaction and there-
fore to a decrease in the ability to participate in hori-
zontal gene transfer. The described receptor constancy
of WTA together with the widespread absence of clus-

tered regularly interspaced short palindromic repeat
(CRISPR)/Cas systems allows rapid acquisition and ex-
change of genetic elements by phages or phage-like par-
ticles (SaPIs), which ensures the role of S. aureus as a
major human pathogen.

OCCURRENCE AND ROLE OF ACCESSORY
PHAGE GENES
Although phages may be regarded as selfish elements,
bacteria have learned to use them for their own purposes,
and lysogeny can be regarded as a motor for short-term
evolution. In many pathogens, phages provide the bac-
teria with additional genes that enable them to establish a
new lifestyle. In S. aureus, several such phage-encoded
virulence factors have been described, an observation
originally described as phage conversion. Genes coding
for Panton-Valentine leukocidin (lukSF) exfoliative toxin
A (eta) (55), the cell-wall anchored protein SasX (56),
and the immune evasion cluster (IEC) composed of en-
terotoxin S (sea), staphylokinase (sak), the chemotaxis
inhibitory protein (chp), and the staphylococcal com-
plement inhibitor (scn) (57) are the best-characterized
phage-encoded virulence factors in S. aureus. A trans-
poson mutant library was screened for virulence genes,
and phage-encoded virulence genes were detected on all
four prophages from strain Newman (58). Moreover,
small RNAs involved in gene regulation (SprD = teg14)
(59) or coding for the type I toxin-antitoxin system
(SprF1/SprG1) (60) are encoded on Sa3int phages. With
the availability of new phage and S. aureus genomes, new
putative phage-encoded virulence genes (e.g., those cod-
ing for putative Clp protease or phospholipase) are being
discovered and are awaiting functional analysis (18, 61–
63).

Interestingly, accessory genes are strongly associated
with phages of certain int groups and are localized at
the left or (more frequently) right ends of the phage.
There is a link between the encoded virulence factors,
the int module, and the lytic module (holin and amidase
genes), which are localized at the opposite end of the
prophages (9). One may assume that it is evolutionarily
beneficial to interchange this whole unit. Of note, these
modules are in close proximity after phage excision in
the circular and/or concatamer form of the phage. The
close link of the lytic module and the inserted virulence
factors is perhaps favored to optimize the phage control
of the expression of the virulence genes (64). For in-
stance, the expression of the virulence genes becomes
cotranscribed with the late phage genes upon phage
induction (64–66).
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Sa1int Phages Carrying eta
The exfoliative toxins are virulence factors of S. aureus
that cause bullous impetigo and its disseminated form,
staphylococcal scalded-skin syndrome. The clinical symp-
toms vary from blisters anywhere on the body to multiple
lesions complicated by conjunctivitis and staphylococcal
scalded-skin syndrome (67). The exfoliative toxin A gene
(eta) is carried in the genomes of Sa1int phages (9, 12, 13).
An eta homolog is also carried by SaPI2 but is not known
to be functional (1). However, these phages can be dif-
ferentiated into at least six types due to variation in dif-
ferent modules (68). These eta-phages were associated
with outbreaks of methicillin-resistant S. aureus (MRSA)
and methicillin-susceptible S. aureus strains of various
CCs in Japan and the Czech Republic (67, 69, 70) and are
also present in a subpopulation of CC121 strains associ-
ated with superficial infections (25, 71).

Sa2int Phages Carrying lukSF
lukSF encodes the bi-component leucotoxin PVL, which
targets human phagocytes through interaction with the
complement receptors C5aR1 and C5aR2 (72). lukSF-
encoding phages are strongly associated with skin and
soft tissue infection and necrotizing pneumonia, which
can also affect young, immunocompetent people (73–
76). The majority of lukSF-carrying phages are Sa2int
phages (66, 77–82). These phages are integrated within
a conserved ORF which is surrounded by a cluster of
tandemly repeated genes. In CC80 strains, phage induc-
tion led to the acquisition of host DNA into the phage
genome probably due to a homologous recombination
event between direct repeats of the two paralogous genes
adjacent to the phage integration site (83). Phage exci-
sion was accompanied by an additional chromosomal
deletion in this region. PCR-based typing schemes were
established and modified to further subtype the lukSF-
encoding phages (78, 84, 85). These studies confirm the
high mosaicism of phage genomes and show that differ-
ent S. aureus lineages have acquired a diverse set of lukSF
phages. The combination of lukSF phages with methi-
cillin resistance is characteristic of community-associated
MRSA strains that are spreading in various continents.
Strains of the most prominent USA300 lineage (CC8
isolates) are mainly spreading in North America, whereas
in Europe CC80 strains are spreading, in Asia, CC59
strains, in the Asia Pacific region, CC30 strains, and in
Australia, CC93 strains are more prevalent. The global
spread of different S. aureus clones containing different
lukSF-carrying phages supports the idea that PVL pro-
vides some fitness advantage to the bacterial host. The
most common feature of all these strains is the strong

association of lukSF phages and superficial, recurrent
skin infections (75).

Sa3int Phages Carrying the IEC
Sa3int phages are by far the most prevalent S. aureus
phages. Up to 96% of human nasal isolates were found
to carry Sa3int phages integrated into the hlb gene (17,
86). Hlb can modify endothelial cells and platelets by
both toxin sphingomyelinase and biofilm ligase activi-
ties, thereby increasing infection severity (87). The hlb-
converting phages carry genes representing the IEC (sea,
sak, chp, and scn) (57), coding for highly human-specific
virulence genes. SEA has been described to modulate the
function of chemokine receptors such as CCR1, CCR2,
and CCR5 (76). CHIPS blocks two G-protein coupled
receptors involved in chemotaxis and phagocyte acti-
vation (C5a and the formylated peptide receptor) (88).
SAK is a potent plasminogen activator with pleiotropic
function including fibrinolysis and antiopsonic activity.
The latter occurs through degradation of immunoglob-
ulin G and C3b/C3bi on the surface of staphylococci
(89). SCIN is a specific inhibitor of the C3 convertase of
the complement system (90). Seven IEC variants were
discovered, carrying different combinations of sea (or
sep), sak, chp, and scn. The genes’ order was conserved
and always in the same 5′ to 3′ orientation. Scn was the
only gene present in all IECs analyzed, whereas, e.g., sea
was detectable in only 27% of the IECs (57). Interest-
ingly, genes coding for a type I toxin-antitoxin system
(SprF1/SprG1) are also localized within the IEC gene
cluster (60).

Sa7int Phages Carrying sak
As an exception to the rule, sak could be detected not
only on Sa3int phages but also occasionally on Sa7int
phages. Curiously, such a sak-encoding Sa7int phage is
found in derivatives of the laboratory strain 8325-4 (17).
The widely used phage-cured strain 8325-4 was some-
how lysogenized with such a phage and has since been
distributed to laboratories worldwide (designated strain
RN6390 or ISP479C). A similar phage was detected in
most of the prevalent hospital-associated MRSA clones
(belonging to the ST5 lineage) isolated in southern
Germany (91). These strains were highly successful over
the years and were quickly diversifying, as illustrated by
differences in pulsed-field gel electrophoresis patterns
and antibiotic susceptibility. Notably, these isolates can
be clearly discriminated from other CC5 isolates (ST225,
a single-locus variant of ST5) circulating in Germany,
which are characterized by the high prevalence of a typ-
ical Sa1int phage (91, 92).
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SasX-Carrying Phage in MRSA
The assumption that mobile genetic elements promote the
spread of bacterial clones was emphasized by the emer-
gence of highly epidemic MRSA strains carrying a phage
harboring a newly identified cell wall-anchored virulence
factor, SasX (56). SasX promotes nasal colonization,
bacterial aggregation, and virulence. sasX, similar to other
phage-carried virulence genes, is located as an accessory
gene at the right end of a phiSPβ-like prophage. The ge-
nome size of 127 kb is significantly larger than that of a
typical S. aureus siphovirus and highly similar to a pro-
phage found in S. epidermidis strain RP62A (93), indi-
cating that the phage and thus a new virulence trait was
acquired from S. epidermidis. This phage is spreading
between S. aureus strains and is also found in MRSA
strains of the CC5 lineage (56). It is unclear whether this
phage and other genetic elements managed to cross the
species barrier and, if so, how.

TarP-Carrying Phages
Recently, the phage-associated WTA-glycosyltransferase
TarP was found to glycosylate the WTA in an alterna-
tive way (33). The tarP gene is located in the lysogenic
module of three different S. aureus prophages with
integrase groups, Sa1int, Sa3int, and Sa9int. The tarP-
Sa3int phage, ΦN315, additionally encodes the IEC dis-
cussed above. tarP-encoding phages can be found in
clonal lineages CC5 (hospital-associated clones with
Sa3int TarP-phages) and CC398 (livestock-associated
clones with Sa1int and Sa9int TarP-phages). Modifica-
tion of WTA by TarP lead to reduced opsonization by
IgG in human sera. The immune evasion capabilities of
TarP were reflected by lower immunogenicity of TarP-
modifiedWTA in comparison with TarS-modifiedWTA.

ROLE OF PHAGES IN HUMAN ADAPTATION
OF ANIMAL ISOLATES
S. aureus colonizes a variety of animal species and adapts
to particular species through changes in the core ge-
nome as well as potential phage-encoded virulence genes
(94). However, transmission of strains between human
and animal reservoirs also occurs. Since the early 2000s
MRSA strains with the sequence type ST398 were de-
scribed as colonizing pigs and also causing infections in
humans living in close contact with livestock (95, 96).
Strains belonging to the CC398 lineage are commonly
found in livestock and are resistant to multiple antibiot-
ics but lack several important virulence factors (97–99).
More recently, human to human transmission of CC398
strains was reported. Critical in this jump are Sa3int

phages that generally are absent in CC398 strains but are
present in most livestock strains infecting humans with-
out livestock contact (61, 100). The importance of Sa3int
for virulence of CC398 strains to humans has also been
demonstrated more directly, because the presence of
Sa3int decreased phagocytosis by human but not by pig
polymorphonuclear neutrophils, while β-hemolysin pro-
duction was abolished due to integration of the phage in
the hlb gene (101).

Interestingly, the livestock-associated MRSA CC398
strains originated in humans as a methicillin-susceptible
S. aureus strain, and upon introduction into livestock
they lost Sa3int and acquired methicillin resistance and
resistance to tetracycline, which is commonly used in
livestock production (102, 103). The recent reintroduc-
tion of Sa3int into the livestock-associated MRSA strain
population appears to be restricted by mutations in
the 14-base pair phage attachment site of many CC398
strains (104) that leave the hlb reading frame intact
but reduce integration of Sa3int (18, 19, 105). In these
strains Sa3int integrates elsewhere in the chromosome,
and the majority of those integration sites contain a 4-
nucleotide sequence (5′-CTGG-3′) that is shared with the
bona fide integration site in hlb (19). Importantly, the
location of the integration appears to influence the sta-
bility of the Sa3int prophage in the livestock strains (18,
19), indicating that the success of the livestock MRSA
strains in humans may depend on the location of the
prophage. Interestingly, Sa3int also can promote animal
adaptation, because some of the avian isolates carry a
Sa3int-like phage with two putative avian-niche-specific
genes (102).

The loss of Sa3int in the original jump of methicillin-
susceptible S. aureus strains to livestock and the obser-
vation that the hlb gene of livestock-associated CC398
strains is mutated such that the phage integration site is
eliminated but the hlb gene is kept intact underscores the
role of the phages in lysogenic conversion. It also un-
derscores the probability that Hlb is important for live-
stock but not for human pathogenesis. Also, the human
to bovine jump of CC8 strains has been associated with
the loss of Sa3int, similar to the human to livestock jump
of CC398 (102, 106).

Phages other than Sa3int have also been associated
with the human adaptation of CC398. Several studies
document the presence of a phiMR11-like phage in these
strains, and further analysis suggested that it is a defec-
tive phage that may act as a helper phage which interacts
with a coresiding Sa3int phage to promote the expres-
sion of phage gene products (61, 107, 108). In another
subset of CC398 strains associated with human to hu-
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man transmission, Sa7int phages were detected (103).
Little is known about this phage, but its association with
strains being transmitted between humans suggests that
it may be important for human adaptation.

DUAL CONTROL OF PHAGE-ENCODED
VIRULENCE GENES: LINK TO HOST
REGULATORY SYSTEMS AND PHAGE
LIFE CYCLE
Phage-encoded virulence genes are integrated into the
regulatorymechanism of the bacterial host andmodulated
in a manner surprisingly similar to bacterial chromosome-
encoded virulence factors. The alternative sigma factor B
seems to inhibit the expression of most, if not all, of the
currently analyzed phage-encoded virulence factors (109–
111). Furthermore, the two-component regulatory system
saeRS and, to a lesser extent, the quorum-sensing system
agr (66, 109, 110, 112) are required for the activation of
most of the phage-encoded virulence factors, such as eta,
pvl, scn, and chp. Interestingly, as an exception to this
observation, sak was not, or was only marginally, in-
fluenced by sae and/or agr (66, 110). Both the sae and
agr regulatory systems are essential for the coordinated
expression of many bacterial chromosome-encoded vir-
ulence factors, and mutants deficient in these factors are
clearly less virulent as shown in different animal models
of infection. Thus, the phage-encoded virulence factors
are integrated into different regulatory circuits employed
by the bacteria. It is likely that the prophages acquired
these virulence genes along with their pre-existing chro-
mosomally determined regulatory features. Moreover,
the expression of phage-encoded virulence genes is also
influenced by subinhibitory concentrations of certain an-
tibiotics. β-Lactam antibiotics, for instance, enhance PVL
production presumably via the transcriptional factors
SarA and Rot (112).

The expression of these virulence factors is also tightly
linked to the phage life cycle. Prophages are induced by
environmental conditions that lead to DNA damage, in-
cluding exposure to reactive oxygen species generated by
leukocytes or exposure to exogenous agents such as an-
tibiotics (65, 113, 114). It has been demonstrated that
under such phage-inducing conditions, the transcription
of the virulence factors that are localized in close prox-
imity to the lysis module of the phage genome is in-
creased (64–66). This phenomenon is partially due to a
multicopy effect caused by phage replication. However,
it has also been shown that transcription becomes inti-
mately linked to the phage genes through cotranscription
with the now derepressed lysis genes (65, 66). In this re-

gard, the use of antibiotics that induce the SOS response,
such as quinolones or β-lactam antibiotics, is a special
concern. Antibiotic-induced expression of phage-encoded
toxin genes is well documented for E. coli prophages
harboring Shiga-toxin-encoding genes (stx). Quinolones
enhance stx transcription, Stx production, and toxin re-
lease from the bacterial cells via phage-mediated lysis and
death in mice (115).

MYOIRIDAE AND PODOVIRIDAE
Although more is known about the siphoviruses, the
phages belonging to the Myoviridae and Podoviridae
are receiving increasing attention because of their ther-
apeutic potential in combating S. aureus infections. In
this context, their nontemperate and lytic nature does
not carry the risk of enabling the spread of virulence or
antibiotic-resistance genes upon phage treatment (116).

The receptor interaction of Myoviridae and Podo-
viridae demonstrates more diversity in comparison with
the discussed Siphoviridae. The well-described Myovi-
rus ΦK and Φ812 only require either a GroP or RboP
backbone of WTA (Fig. 1D) (35, 47). Structural eluci-
dation of the RBP of Myovirus φ812 demonstrates a so-
phisticated conformational change of the double-layered
baseplate upon binding of the bacterial cell wall (116).
Hence, their high receptor promiscuity allows infection of
many coagulase-negative staphylococci expressing GroP-
WTA (49, 117). Alternatively, Twortlikevirus ΦSA012
appears to distinguish between α- and β-GlcNAcylation
(118). At least two RBPs are encoded by ΦSA012:
one interacting with the RboP backbone and the other,
with α-1,4-GlcNAc residues (Fig. 1E). Interestingly, Podo-
virus ΦP68, Φ44AHJD, and Φ66, requiring β-1,4-
GlcNAcylated WTA, fail to adsorb and infect strains
carryingWTAmodifiedwith α-GlcNAc or β-1,3-GlcNAc
residues in a dominant manner (33, 54). This finding
demonstrates that certain WTA glycosylation patterns
are able to protect S. aureus from viral predation by
preventing proper phage adsorption. Furthermore, it
shows that the alternative WTA glycosyltransferase,
TarM and TarP, play an antiviral role. Obtaining phage
resistance by blocking the host receptor is an often-
observed feature (119, 120). However, TarM-mediated
glycosylation does not block all S. aureus podoviruses
from infection. Certain podoviruses, such as S24-1, ap-
pear to have evolved an RBP that allows adsorption to
α- or β-GlcNAcylated WTA (121). Noticeably, this RBP
shares key amino acids with the RBP of siphovirus φ11,
GP45, also shown to facilitate binding to α- or β-
GlcNAcylated WTAs (44).
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The application of phages to limit S. aureus both
in vitro and in vivo has been tested extensively, and there
seems to be some therapeutic potential (122, 123). In
the following, we mention just a few examples of how
phages may be used to combat S. aureus. Additionally,
the therapeutic use of phage lytic proteins in S. aureus is
yielding promising results, showing good efficacy with-
out apparent side effects (124). During dairy production
a phage cocktail consisting of Myoviridae and Podo-
viridae as well as lytic Siphoviridae eradiated a 106 CFU/g
S. aureus population after 14 days in Cheddar cheese curd
during ripening at 4°C (125). Also, in biofilms, phages
appear to reduce S. aureus numbers as exemplified in two
studies using members of the Myoviridae family (126,
127). However, if present in sublethal doses, the action of
the lytic phages may promote DNA release and collec-
tively enhance biofilm formation, suggesting that cau-
tion should be used when considering phage therapy for
eradication of S. aureus biofilms (128). The potency of
phage therapy in vivo has also been evaluated. In a mouse
model of bovine mastitis a phage cocktail significantly
reduced infection with a clinical bovine mastitis when
applied 4 h postinoculation as demonstrated by improved
pathology and decreased bacterial counts. Importantly,
phage quantification indicated that the phage cocktail
maintained high intramammary phage titers without
spreading systemically (129). Future studies are likely to
further address the therapeutic potential of targeting
S. aureus with phages.

PHAGE DYNAMICS: MOVEMENT OF THE
PHAGE WITHIN AND BETWEEN
STAPHYLOCOCCAL SPECIES
Whereas most S. aureus isolates harbor multiple phages,
less is known about the prevalence and nature of phages
in coagulase-negative staphylococci. Analyses of available
phage genome sequences of coagulase-negative staphylo-
cocci revealed a modular structure similar to that of S.
aureus phages. The transfer of phages between differ-
ent staphylococci is also supported by cluster analyses
of phages from different staphylococcal species (130).
CRISPR/Cas loci are present in some S. epidermidis
strains but are lacking in most S. aureus isolates. These
loci are involved in the recognition and cleavage of for-
eign DNA. Therefore, it was postulated that the gene flow
is uni-directional (131), as indicated by several instances in
which genetic material was presumably transferred from
S. epidermidis to the more pathogenic S. aureus species.
For example, the staphylococcal cassette chromosome ex-
pressing methicillin resistance (SCCmec) genomic islands

that carry the mecA gene conferring resistance to methi-
cillin at least occasionally originate from S. epidermidis
(132). Genetic exchange might be possible between dif-
ferent staphylococcal species because they live in similar
environments, such as on the skin or in the nose. Ad-
ditionally, phages might persist in a specific environment
even though the bacterial host is already eliminated
through the action of the immune system or antibiotics.
Such phages or transducing particles may then infect
coinhabitants, providing them with new properties.

PHAGES MEDIATE HORIZONTAL GENE
TRANSFER
Horizontal gene transfer is commonly observed in S. au-
reus, and phages are believed to be major contributors
(6, 16). In 1959, transduction was described for a staph-
ylococcal phage (133), and soon thereafter, several phages
were shown to be transducing (134), particularly those
belonging to serological group B (135), such as Φ11,
Φ80a, and Φ80 (136, 137). Transduction is the process
by which bacterial DNA, during lytic replication of the
phage, is mis-packaged into phage capsids forming trans-
ducing particles and upon release can be taken up by
bacterial cells. In generalized transduction, the phage ma-
chinery recognizes pseudo pac-sites that mimic the se-
quence from where phage DNA packaging is initiated
during lytic growth, and thus, in principle, any bacterial
DNA can be transferred by this process. Normally, it is
thought that the recipient strain should be susceptible to
the transducing phage, but this appears not to be the case,
because plasmid DNA is effectively transduced into re-
cipient S. aureus strains by φ29, φ52A, and φ80α as well
as by prophage φ53 in spite of their insensitivity to the
lytic action of the transducing phage (138). In S. aureus,
the transfer of antibiotic resistance genes has mostly been
studied, but metabolic traits have also been transduced, as
have been variousmobile genetic elements (139, 140). The
size of the DNA transferred by a transducing particle is
limited to that of the S. aureus siphophage genome (ap-
proximately 43 kbp) (8, 141), and molecules of smaller
sizes such as plasmids are transferred as linear multi-
mers (142). The size limitation of the phage capsid pre-
vents transfer of larger chromosomal elements such as the
SCCmec. The SCCmec cassettes vary in size from 20 kbp
to 60 kbp, so only the smaller SCCmecs are expected
to transfer through generalized transduction, as demon-
strated for SCCmec type IV and SCCmec type I (143, 144).
Even then, transfer of methicillin resistance is a rare event,
and other factors are likely required, such as lysogeny prior
to transduction and the presence of a penicillinase in the
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recipient strain (145). The need for penicillinase activity
was confirmed and explained by the transcriptional regu-
lation of the mec gene by the plasmid-borne blaR1-blaI
regulatory genes (143). Thus, transduction is possibly re-
sponsible for the transfer of SCCmec elements, although
additional factors are required.

In the laboratory, the phages Φ11 and Φ80a in par-
ticular have been used extensively for genetic manipula-
tions of S. aureus (146). However, outside of the lab a
diverse range of transducing phages are being reported
(49, 147, 148). One example is Φ187, which only binds
and transduces ST395 strains expressing an unusualWTA
(Fig. 1C) that, surprisingly, is also present in S. epider-
midis and L. monocytogenes, which are also transducible
(49). Another phage, S6, isolated from sewage, proved to
be a giant myophage that is able to transduce plasmid and
methicillin resistance between S. aureus and non-aureus
staphylococcal species, including S. epidermidis, S. felis,
S. sciuri, and S. pseudintermedius (148).

Although some phages are able to readily transduce
between staphylococcal species, horizontal gene trans-
fer appears generally limited within the species through
restriction-modification (R-M) systems. The principle
function of these R-M systems is to protect the cell by
degrading foreign DNA. If the phage is derived from a
host with the same R-M system, the phage DNA be-
comes methylated at the cognate restriction site and thus
is protected. Strains of the major CCs were shown to
differ in their R-M specificity genes (149). Thus, mobile
genetic elements present in one strain move to a strain of
the same lineage at a higher frequency than to strains of
other lineages. Consequently, S. aureus lineages carry a
unique combination of core variable genes, suggesting
only vertical transmission of these genes (149). It has
also been shown that prophage prevalence is associated
with the clonal background of S. aureus, indicating that
the spread of the phages in the bacterial population is
at least partially restricted (12, 13). In certain CCs, some
phage groups are completely absent, whereas others are
significantly less or significantly more frequent. The most
prominent disequilibrium was the finding that CC15
strains do not carry Sa3int phages, although this is the
most common phage group found in S. aureus, with a
prevalence of up to 90% (17, 57, 150). In addition, many
isolates from the CC15 complex carried none of the
seven prophage groups, suggesting that this lineage is
particularly restrictive to the uptake of foreign DNA.
From these studies, it is clear that restriction barriers are
important in limiting phage transmission and likely also
transduction. Other barriers may also be present, such as
the CRISPR/Cas system, but their biological importance

is unknown because the system has only been reported
for a few S. aureus strains (151).

Although it is well accepted that transduction is cen-
tral for horizontal gene transfer in staphylococci, sur-
prisingly little is known of the process under biologically
relevant conditions. Recently, we observed that phages
spontaneously released from a subpopulation of lyso-
genic cells can infect, lyse, and efficiently transfer DNA
from a phage-susceptible bacterial population back to
the intact lysogenic population, which itself survives be-
cause of immunity to phage killing (152). The process,
which we termed “auto-transduction,” is driven by the
spontaneous release of phages from the lysogenic pop-
ulation. Upon infection of susceptible cells, phages are
formed together with transducing particles containing
bacterial DNA and mobile genetic elements such as plas-
mids or SaPIs. These elements are effectively introduced
in the original population, which due to lysogeny resists
phage killing (152). Even though the phenomenon of
transducing particles entering lysogens was observed in
the first transduction experiments (153), we still do not
know the extent to which it has biological impact. What,
for example, remains to be studied are the conditions that
promote the spontaneous release of prophages and those
that influence the formation of transducing particles.
A recent study showed that the ratio of transducing
particles to phages is affected by antibiotics (154), thus
stressing the need for in vivo studies that assess the po-
tential impact of antimicrobial therapy on transduction.

Recently, another study investigated transduction and
found that packaging of bacterial DNA in transducing
particles differs depending on whether they arise from an
induced, temperate phage or from an infection (155). In-
terestingly, while infection with a transducing phage leads
even to packaging of the bacterial chromosome in trans-
ducing particles, the induction of a temperate transducing
phage leads to preferential packaging of bacterial DNA
downstream of the integration site in a process termed
“lateral transduction.” By lateral transduction, several
hundred kilobases of S. aureus DNA is packaged with
high frequency, leading to hypermobility of this chromo-
somal region (155). With these findings in mind, we are
beginning to understand how bacteriophages can be the
main vehicle of staphylococcal horizontal gene transfer.
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