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Abstract

Objectives: The link between memory ability and speech recognition accuracy is often examined 

by correlating summary measures of performance across various tasks, but interpretation of such 

correlations critically depends on assumptions about how these measures map onto underlying 

factors of interest. The current work presents an alternative approach, wherein latent factor models 

are fit to trial-level data from multiple tasks to directly test hypotheses about the underlying 

structure of memory and the extent to which latent memory factors are associated with individual 

differences in speech recognition accuracy. Latent factor models with different numbers of factors 

were fit to the data and compared to one another to select the structures which best explained 

vocoded sentence recognition in a two-talker masker across a range of target-to-masker ratios, 

performance on three memory tasks, and the link between sentence recognition and memory.

Design: Young adults with normal hearing (N = 52 for the memory tasks, of which 21 

participants also completed the sentence recognition task) completed three memory tasks and 

one sentence recognition task: reading span, auditory digit span, visual free recall of words, 

and recognition of 16-channel vocoded Perceptually Robust English Sentence Test Open-set 

(PRESTO) sentences in the presence of a two-talker masker at target-to-masker ratios between 

+10 and 0 dB. Correlations between summary measures of memory task performance and 

sentence recognition accuracy were calculated for comparison to prior work, and latent factor 

models were fit to trial-level data and compared against one another to identify the number of 

latent factors which best explains the data. Models with one or two latent factors were fit to the 

sentence recognition data and models with one, two, or three latent factors were fit to the memory 

task data. Based on findings with these models, full models that linked one speech factor to one, 

two, or three memory factors were fit to the full data set. Models were compared via Expected Log 

pointwise Predictive Density (ELPD) and post-hoc inspection of model parameters.
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Results: Summary measures were positively correlated across memory tasks and sentence 

recognition. Latent factor models revealed that sentence recognition accuracy was best explained 

by a single factor that varied across participants. Memory task performance was best explained by 

two latent factors, of which one was generally associated with performance on all three tasks and 

the other was specific to digit span recall accuracy at lists of 6 digits or more. When these models 

were combined, the general memory factor was closely related to the sentence recognition factor, 

whereas the factor specific to digit span had no apparent association with sentence recognition.

Conclusions: Comparison of latent factor models enables testing hypotheses about the 

underlying structure linking cognition and speech recognition. This approach showed that multiple 

memory tasks assess a common latent factor that is related to individual differences in sentence 

recognition, although performance on some tasks was associated with multiple factors. Thus, 

while these tasks provide some convergent assessment of common latent factors, caution is needed 

when interpreting what they tell us about speech recognition.

INTRODUCTION

Speech recognition accuracy in degraded listening conditions partially depends on the 

listener’s cognitive ability (Arlinger et al., 2009), such that measures of individual 

differences in working memory ability tend to correlate with speech recognition accuracy 

(Akeroyd, 2008). However, measures of various cognitive constructs tend to positively 

correlate with one another (Miyake et al., 2000). As a result, most measures of cognitive 

ability have been found to correlate weakly with speech recognition accuracy to some extent 

(Dryden et al., 2017). These correlations are difficult to interpret because they could arise 

from a weak direct link between the measured cognitive abilities and speech recognition, 

or alternatively they could arise indirectly from covariance between the measured cognitive 

abilities and other cognitive abilities that directly support speech recognition. Discovering 

such correlations is an important initial step in the development of theory, but studies in this 

field are often conducted with the goal of identifying latent factors, i.e. the underlying 

individual differences that affect performance on multiple tasks of interest. The work 

presented here demonstrates a method of moving beyond examining correlations by instead 

identifying and comparing latent factor models to explain the individual differences that link 

performance across cognitive and speech recognition tasks.

In the psychology literature, individual performance on specific tasks is typically modeled 

as arising from an underlying set of latent factors (Engle et al., 1999; Miyake et al., 2000). 

While the exact nature and relationship of those latent factors to one another is an area 

of active research (Friedman & Miyake, 2017; Kovacs & Conway, 2016; Rey-Mermet et 

al., 2018; Shipstead et al., 2016; Troche et al., 2021), the norm is to explicitly state and 

test assumptions about how task performance maps onto latent variables. This approach 

is advantageous in that it can identify latent factors which contribute to performance 

across multiple tasks, estimate individual differences in those factors, and identify tasks for 

which performance depends on multiple latent factors. In contrast, not using this approach 

makes the implicit assumption that the observed task performance directly reflects the 

latent variable of interest (Oberauer & Lewandowsky, 2019). Such assumptions can be 

problematic, as it is not always evident at face value whether two tasks measure the same 
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latent factor. For example, although both the Stroop and flanker tasks have long been 

regarded as tests of inhibition, recent work indicates that they are unrelated measures which 

do not measure a common latent variable (Rey-Mermet et al., 2018; Rouder & Haaf, 2019). 

Similarly, the antisaccade task, a measure of attentional control that requires looking away 

from a cued location, and complex span working memory tasks do not obviously relate to 

one another, yet individual differences in performance on complex span tasks predict speed 

and accuracy on the antisaccade task (Kane et al., 2001; Unsworth et al., 2004). Thus, there 

is a need to test hypotheses about what latent factors any given task measures to advance our 

understanding of the cognitive processes that affect speech recognition.

An influential model of the link between working memory and speech recognition is the 

Ease of Language Understanding (ELU) model (Rönnberg, 2003; Rönnberg et al., 2008, 

2013, 2022). The premise of the ELU model is that speech recognition occurs via two 

processes. The first process occurs automatically and rapidly whenever sensory inputs 

unambiguously match a lexical representation in long-term memory, and the second process 

is an explicit and slower mechanism for restoring or inferring an interpretation of ambiguous 

input. This slow, explicit mechanism is conceptualized as working memory.

There is a wealth of empirical findings that have motivated the development of several 

theories regarding the structure of working memory (Oberauer et al., 2018). The ELU 

model is based on one of these models of working memory, Baddeley’s multicomponent 

model (Baddeley, 2012). In this model, working memory is defined as the ability to 

concurrently store and process information. Working memory is distinct from short-term 

memory, which is the temporary storage of information without processing. The ELU 

model emphasizes working memory as a critical ability for speech recognition because tasks 

that measure working memory tend to predict speech recognition accuracy, whereas tasks 

that measure short-term memory do not (Rönnberg et al., 2013). From this perspective, 

individuals differ from one another in terms of their short-term capacity and their ability 

to process information in memory, and it is specifically the processing ability that accounts 

for correlations between working memory tasks and speech recognition accuracy. Working 

memory is often experimentally tested with complex span tasks, which include a primary 

memory task interleaved with a secondary processing task. One of the most widely used 

complex span tasks is reading span (Daneman & Carpenter, 1980). In reading span tasks, 

participants read a sequence of sentences one at a time and make a judgment about each 

sentence, such as whether it is factually true or semantically sensible. At the end of the 

sequence, they then recall the last word of each sentence. Interleaving both a storage task 

(storing and recalling words in order) and a processing task (judging sentence truth) is what 

critically distinguishes reading span from simple span tasks that only include a primary 

recall task, such as serial recall of lists of digits in the order they were presented. This 

processing requirement is the reason complex span tasks are hypothesized to relate to speech 

recognition while simple span tasks are not (Rönnberg et al., 2016, 2021).

However, alternative theories about the structure of working memory have been proposed. 

For example, some models of working memory posit the presence of a limited capacity 

focus of attention that is used to maintain information in a readily accessible state. When the 

capacity of the focus of attention is overloaded, information is displaced into an activated 
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state in long-term memory and must be retrieved back into the focus of attention before it 

can be used (Cowan, 2001; Oberauer, 2002). In these models, individuals differ from one 

another in both their ability to maintain information in the focus of attention and retrieve 

activated information from long-term memory back into the focus of attention (Unsworth 

& Engle, 2007b). From this perspective, maintenance and retrieval demands vary across 

memory tasks, although simple and complex span tasks both measure these processes to 

some extent (Unsworth & Engle, 2007a). Specifically, the dual-task structure of complex 

span tasks requires retrieval of activated items in long-term memory regardless of list length 

because the secondary task displaces those items from the focus of attention. In contrast, 

simple span requires retrieval only at longer list lengths, in which the amount of information 

in the list overloads an individual’s ability to maintain that information in the focus of 

attention. In support of this idea, previous research has reported correlations between the 

number of items recalled at longer list lengths (5 – 7 item lists) in serial recall tasks with 

recall accuracy for complex span at all list lengths (Unsworth & Engle, 2006). Similarly, free 

recall tasks, which present long lists of items and require participants to recall as many items 

as they can in any order, load onto the same latent factor as complex span tasks (Unsworth 

& Engle, 2007b), which supports the theory that individual differences in retrieval ability 

affect performance in both tasks. More generally, Wilhelm et al. (2013) demonstrated that 

performance across a variety of memory tasks was highly correlated and loaded onto the 

same underlying factor, which was in turn closely related to fluid intelligence.

The storage and processing model (which the ELU model is based on) and the maintenance 

and retrieval model make different predictions about which memory tasks will overlap in 

the latent factors they measure. The storage and processing model predicts that all tasks 

which depend on storing information will load onto a common storage factor, and tasks with 

an explicit processing component will also depend on a distinct processing factor. Thus, if 

we use a complex span task, which includes a processing component, in conjunction with 

serial or free recall tasks, which do not include a processing component, we should be 

able to partition individual differences in storage and processing ability from one another. 

Specifically, all tasks should associate with a common storage factor, while complex span 

tasks will also depend on individual differences in processing ability. In contrast, the 

maintenance and retrieval model predicts that complex span tasks at all list lengths and serial 

or free recall tasks with long list lengths that overload the focus of attention will depend on 

retrieval ability, whereas short list lengths in serial or free recall tasks should only depend on 

maintenance ability. Thus, including tasks for which these models make different predictions 

will enable us to identify the underlying latent factor structure. Identifying latent factors and 

estimating individual differences in ability for each factor will enable us to identify which 

latent memory factor(s) determine individual differences in speech recognition accuracy.

For this study, three memory tasks were selected to determine how these tasks overlap in 

the latent memory factor(s) they measure and determine the relationship between sentence 

recognition and memory factors. Reading span was included for its theoretical importance 

in the ELU model and because it often associates with speech recognition in older adults 

(O’Neill et al., 2019; O’Neill, Parke, et al., 2021). Reading span requires concurrent storage 

and processing of information within a trial, as described above. Forward digit span was 

included because performance on this task has been previously found to correlate with 
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vocoded sentence recognition accuracy (Bosen & Barry, 2020), which is part of the listening 

condition used in the current study. This correlation indicates that digit span and sentence 

recognition abilities are related to some extent, but do not tell us whether digit span assesses 

the same underlying speech-related factors as reading span. Forward digit span is a serial 

recall task, which requires storing a sequence of digits in order but does not require any 

manipulation or processing of that sequence. Digit sequence length can be manipulated 

to control the amount of information that needs to be retrieved from activated long-term 

memory during recall. Visual free recall of words was included because it has been shown 

to associate with complex span task performance (Unsworth & Engle, 2007b) but does 

not include an explicit processing component. In a typical free recall task, more items are 

presented than can be stored in short-term memory to place a demand on retrieval ability. 

To our knowledge, free recall has not been previously examined with respect to speech 

recognition. Together, these memory tasks enable the identification of latent memory factors 

that are associated with sentence recognition.

The ELU model states that working memory is needed to infer missing speech information 

whenever the input is ambiguous (Rönnberg et al., 2013). Specifically, when few ambiguous 

inputs are present, individual differences in speech recognition should be governed by 

the automatic, rapid process. As more ambiguous inputs are introduced, i.e. as listening 

conditions become more difficult, then individual differences in recognition accuracy should 

be dominated by the explicit, slow process, with the automatic process playing a smaller 

role. By extension, the ELU model predicts that individual differences in working memory 

factor(s) should have stronger effects on speech recognition accuracy in more difficult 

listening conditions. Currently, it is unknown how the transition from automatic to explicit 

processing occurs across changes in listening condition. If the transition is sharp, then there 

should be a threshold below which working memory factor(s) should consistently associate 

with speech recognition accuracy. Alternatively, if the transition is more gradual, then the 

relationship between working memory and speech recognition accuracy should change as a 

function of listening condition difficulty. It could be the case that a single working memory 

factory becomes more strongly associated with recognition accuracy as difficulty increases. 

Alternatively, it could be that factors associated with automatic and explicit processing trade 

off in their relationship with speech recognition accuracy. If so, individual differences in the 

factors that support automatic processing would be most strongly associated with speech 

recognition in easy listening conditions and factors that support explicit processing would be 

most associated with difficult listening conditions.

Some evidence against a change in latent factors as a function of listening condition 

difficulty was found by Bosen & Barry (2020), in which individual differences in sentence 

recognition accuracy were moderately correlated across three listening conditions that were 

degraded with a vocoder to produce different levels of spectral resolution. At a group 

level, keyword recognition accuracy declined as the number of channels in the vocoder 

was reduced, from 88.1% for a 16-channel vocoder to 77.1% for an 8-channel vocoder 

and 39.1% for a 4-channel vocoder. However, individual differences in keyword recognition 

accuracy across the 16 and 4 channel conditions were correlated with an r = 0.66, which 

is only slightly smaller than the correlations between the 16 and 8 channel (r = 0.75) and 

the 8 and 4 channel conditions (r = 0.73). If the latent factors which supported sentence 
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recognition changed as a function of accuracy within the tested range then we would expect 

individual differences in sentence recognition to be weakly correlated, if at all, across the 

16 and 4 channel conditions. However, we noted above that interpreting correlations in 

performance across tasks can be challenging, so the present study was designed to identify 

the latent factors underlying sentence recognition across a manipulation of recognition 

accuracy.

For this study, we measured sentence recognition accuracy in young adults with normal 

hearing for sentences spoken by multiple talkers which were mixed with competing two-

talker speech and then vocoded. This listening condition was selected to elicit a high 

cognitive demand for successful sentence recognition. Changes in talker elicit a processing 

cost as the listener normalizes to characteristics of the new talker (Magnuson et al., 2021; 

Mullennix et al., 1989; Mullennix & Pisoni, 1990). Listening to speech in the presence 

of competing speech requires selecting and attending to the target talker while ignoring 

competitors, with the greatest interference from the competing talkers occurring with a 

two-talker masker (Freyman et al., 2004). Vocoding the combined target and masking 

speech further increases the cognitive demand because it removes some of the cues that 

support stream segregation (Bernstein et al., 2016; Brungart, 2001; Qin & Oxenham, 2003; 

Shinn-Cunningham & Best, 2008). The inclusion of these elements in the listening condition 

used here should make it more likely that we would observe changes in the latent factors that 

support speech recognition across manipulations of recognition accuracy, if such changes 

exist. Using a degraded listening condition with a high cognitive demand should also 

facilitate the identification of the relationship between memory and speech recognition. As a 

secondary motivation, this listening condition is translationally relevant because identifying 

indexical properties and recognizing speech in the presence of other talkers is particularly 

difficult for individuals with cochlear implants (Smith et al., 2019; Stickney et al., 2004) and 

is a listening situation these individuals frequently encounter in daily life (O’Neill, Basile, et 

al., 2021). Thus, the results of this experiment could inform the design of future studies to 

identify the cognitive constructs that facilitate speech recognition in listeners with cochlear 

implants.

Sentence recognition accuracy was tested across a range of target-to-masker ratios. At 

favorable target-to-masker ratios, we predicted that sentence recognition accuracy would 

not be substantially impeded by the competing speech, so the correlation between sentence 

recognition accuracy and performance on the memory tasks should replicate the findings of 

prior work which used vocoded speech without competing speech (Bosen & Barry, 2020). 

At more difficult target-to-masker ratios the ELU model predicts that there is a greater 

requirement for slow, explicit processing, which may manifest as increased effect of specific 

memory factor(s) on recognition accuracy in the difficult conditions.

MATERIALS AND METHODS

Young adults with normal hearing completed three memory tasks and repeated vocoded 

sentences in the presence of a two-talker masker at a range of target-to-masker ratios. 

Performance in the sentence recognition and memory tasks was compared across 

individuals, first by correlating average performance in each task across participants and 
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second by fitting latent factor models to trial-level data. Task design documentation, data, 

and analysis scripts are available as supplemental material at https://osf.io/j2s45/.

Participants and Experimental Environment

A total of 52 people participated in this study, 27 in the lab and 25 via remote testing. 

27 young adults (21 women, 6 men, range of 19 – 34 years of age, mean of 25.2 years) 

were recruited for this study in our lab. These participants were screened for typical hearing 

(pure-tone thresholds < 20 dB HL at octave frequencies between 0.5 and 8 kHz) and did 

not report any developmental, intellectual, or neurological disorders that would interfere 

with any of the tests used here. For these participants, the tasks described below were 

implemented in MATLAB (Mathworks, Natick, MA, USA) and the Psychtoolbox-3 library 

(Kleiner et al., 2007) was used for visual presentation in the free recall task. Tasks were 

completed in an echo-attenuated sound booth. Visual stimuli were presented on a computer 

monitor located in the booth and auditory stimuli were presented from a loudspeaker, both 

of which were located side-by-side approximately 1 m straight ahead of the participant. 

Auditory stimuli were presented at an average level of 65 dB SPL. Of these 27 participants, 

21 completed all tasks described below, while 6 completed the memory tasks described 

here and a pilot sentence recognition task which used a different approach to vocoding and 

mixing the target and masker speech than the one described below. Given the small in-lab 

sample size of the pilot sentence recognition task, those results are not reported here.

In-person data collection was discontinued at the onset of the COVID-19 pandemic. We 

originally intended to collect more data in the pilot sentence recognition task by recruiting 

participants to complete the study in a remote testing format, although concerns about 

differences in audio equipment and auditory fidelity across participants prevent us from 

reporting their sentence recognition results until we can replicate our findings under more 

controlled listening conditions. However, prior results indicate that assessment of auditory 

digit span is robust to degradations in auditory quality (Bosen & Barry, 2020; Bosen & 

Luckasen, 2019) and the other memory tasks were visually presented, so data collected 

remotely for these tasks should be comparable to those collected in the laboratory. Thus, 

performance on the memory tasks for these remote participants is included to determine if 

in-lab and remote testing yield a similar range of group performance as a reference for future 

studies and to increase the sample size for analyses which compare individual differences in 

performance across memory tasks.

25 participants (20 women, 5 men, range of 19 – 26 years of age, mean of 22 years) 

completed the study via remote testing. Remote testing was conducted via a WebEx 

video call with an experimenter, who provided instructions and links to websites which 

implemented the tasks. Participants were asked to wear headphones throughout the study 

and were free to use any headphones they had available. At the start of the experiment, 

participants were sent a link to a calibration noise which matched the long-term spectral 

characteristics of the digit stimuli and were asked to adjust the volume of their headphones 

so that the calibration noise was at a “loud, but comfortable” listening level. These 

individuals completed the digit span and free recall tasks described here using an 

implementation of the tasks written using the jsPsych library (de Leeuw, 2015) and hosted 
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on the website https://www.cognition.run/. Reading span was administered through Inquisit 

6 Online (Millisecond Software, 2020), which requires participants to download a driver 

program to their computer to ensure reliable timing for stimulus presentation and responses.

All participants provided informed written consent and were compensated hourly for 

participation. This study was approved by our Institutional Review Board.

Memory Tasks

All participants completed reading span, free recall, and digit span in that order.

Reading Span

Participants completed an automated reading span task on a computer (Unsworth et al., 

2005) implemented in Inquisit Lab 5 (Millisecond Software, 2019), available at https://

www.millisecond.com/download/library/rspan/ at the time of publication. The version of the 

reading span task used here is slightly different than the one developed by Daneman & 

Carpenter (1980), in that the items to be remembered are distinct letters presented after 

each sentence rather than the last word of the sentence. This version was used to prevent 

participants from using semantic information from sentences to facilitate recall (Conway 

et al., 2005). In this task, participants were shown alternating sequences of letters and 

sentences between 3 and 7 letter-sentence pairs long, with each length presented three 

times in a random order. Participants were asked to judge whether or not the sentences 

were sensical and to remember the sequence of letters in order. Nonsensical sentences were 

created by taking a semantically sensible sentence and changing one word (e.g. “Andy was 

stopped by the policeman because he crossed the yellow heaven.”). After each sentence a 

prompt appeared stating “This sentence makes sense”, to which participants clicked on true 

or false dialog boxes with a mouse. At the end of each sequence, a keypad appeared on 

screen containing all 12 possible letters and participants were asked to click on the letters in 

the order they were presented using a mouse. The task instructions encouraged participants 

to maintain at least 85% accuracy on sentence judgment and percent accuracy for sentence 

judgment was displayed on screen to ensure participants attended both the judgment and the 

recall portions of the task. Practice trials of letter recall, sentence judgment, and a mixture 

of both were provided prior to completing the experimental trials. The time to respond in the 

practice sentence judgment trials was used to calculate a timeout period, defined as the mean 

time to respond plus 2.5 standard deviations for each participant. In experimental trials, 

sentence judgment responses timed out and were marked as incorrect if a response was not 

provided within the timeout period. This timeout period was intended to ensure participants 

could not chose to pause and rehearse the letter sequence after making sentence judgments.

Free Recall

The structure of this task was previously described by (Engle et al., 1999). Participants saw 

10 lists of 12 words flashed on a computer screen. Each word was presented for 750 ms 

with a 250 ms blank screen between words. At the end of each list, participants said aloud 

as many words as they could remember in any order within a 30 s time limit. Participants 

were told it is easier to recall words from the end of the list first before recalling any other 

words they could remember to be consistent with the methods described by Engle et al. 
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(1999), although they were free to use whatever response strategy they preferred. Verbal 

responses were recorded and transcribed offline by the second author. Unclear responses 

were reviewed by both authors and consensus was reached.

We designed a novel word list for this study. A list of potential words was taken from 

the consonant-nucleus-consonant word lists provided by Storkel (2013). Three-phoneme, 

four-letter words were then selected to form two practice lists and 10 test lists. Lexical 

frequency for each potential word was obtained from Brysbaert & New (2009), and high 

frequency words were preferred because they tend to be easier to recall in other types 

of memory tasks (Roodenrys & Quinlan, 2000). Words with a high (>30) or low (<10) 

number of phonological neighbors were excluded because lexical neighborhood density 

can also affect recall (Roodenrys et al., 2002). Words were compiled into lists that were 

approximately balanced with respect to the number of neighbors, the biphone segment sum, 

and lexical frequency. Meaningful phrases, rhyming words and semantically related words 

were avoided within lists. A spreadsheet of words used and their lexical statistics is provided 

in the OSF repository associated with this manuscript.

Digit Span

Participants repeated spoken lists of between 2 and 9 digits, with each list length presented 

5 times for a total of 40 trials. Prerecorded digits were spoken by a single female talker at a 

rate of one digit per second. All participants heard the same 40 lists in the same order. List 

length was randomized and was not known at the onset of each list. This task was previously 

described by Bosen and Barry (2020), with the exception that in the prior study digits were 

vocoded and participants heard 10 lists of each length. We conducted a sensitivity analysis 

to estimate the distribution of measurement error as a function of the number of lists tested 

at each length and found that we only needed 5 lists per length to obtain similar levels of 

precision as the 10-list version used in the prior study. Task reliability for a version which 

uses 5 lists per length was then estimated by randomly splitting the 10-list data from the 

prior study into two sets of 5 lists per length, summing the number of digits correct recalled 

by each subject in each set, and correlating sum digits recalled across sets (Parsons et al., 

2019). This process was repeated 5000 times to estimate a range of reliabilities, which 

yielded an average reliability for the task with 5 lists per length of r = 0.87, with a 95% 

confidence interval ranging from 0.81 to 0.93. Thus, halving the length of the digit span task 

relative to the prior study provides a shorter task with good reliability. The scripts used to 

conduct these analyses are provided in the OSF repository associated with this manuscript.

Sentence Recognition Task

Following the memory tasks, participants heard and repeated Perceptually Robust English 

Sentence Test Open-set (PRESTO) sentences (Gilbert et al., 2013; Tamati et al., 2013). 

These sentences vary in talker gender, talker dialect, syntactic structure, and semantic 

contents, which limits the ability to strategically use these cues to facilitate sentence 

recognition. These sentences were mixed with a two-talker masker across a range of target-

to-masker ratios and then vocoded.
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The two-talker masker was generated by concatenating PRESTO sentences that were not 

used as target sentences, splitting the concatenated audio into two halves, and summing 

those halves. Silence was automatically trimmed from the onset and offset of each sentence 

to ensure a maximum gap between sentence offset and onset of 100 ms.

Target sentences were taken from PRESTO lists 7, 8, 13, 15, 17, and 23, as these lists have 

good equivalency and consistency (Faulkner et al., 2015). Each list contained 76 keywords 

which were unevenly distributed across 18 sentences. For each target sentence, a random 

sample of the masker was selected that was 1 s longer than the target sentence and aligned 

so that the masker started and ended 0.5 s before and after the target sentence. This delay 

between masker and target onset and offset helped participants identify the target speech. 

The gain of the masker was adjusted such that the long-term average target-to-masker ratio 

across sentences was 0 (list 7), +2 (list 8), +4 (list 13), +6 (list 15), +8 (list 17), and +10 dB 

(list 23) to produce a broad range of keyword recognition accuracy. Based on previous work 

with IEEE sentences in steady-state noise (O’Neill et al., 2019), the masker was expected to 

have little effect on sentence recognition at +10 dB target-to-masker ratio, with a substantial 

reduction of accuracy to a low, but non-zero, level at 0 dB.

Stimuli were presented such that the level of the target sentences in quiet was fixed at an 

average of 65 dB SPL, so overall stimulus level varied with target-to-masker ratio. Target-

masker pairings were the same across all participants to avoid variability in target-masker 

interactions (Buss et al., 2021). Sentences were also presented in a fixed order, starting with 

the highest target-to masker ratio (+10 dB for list 23) and stepping down to the most difficult 

(0 dB for list 7).

Target-masker pairs were vocoded with a 16 channel, sine-wave carrier vocoder, selected 

to match the 16-channel vocoder used by Bosen & Barry (2020). A 16 channel vocoder is 

expected to yield high keyword recognition accuracy at the higher target-to-masker ratios 

used here. Stimuli were passed through rectangular filters with edge frequencies that were 

equally spaced on the Greenwood (1990) function (filter edges of 100, 158, 230, 319, 

430, 566, 735, 944, 1202, 1522, 1917, 2406, 3011, 3760, 4686, 5832, and 7250 Hz). 

The envelope of each filter’s output was calculated with a Hilbert transform and then 

low-pass filtered with a 300 Hz fourth-order Butterworth filter. Low-pass envelopes were 

then multiplied with a sine-wave carrier with a frequency of the geometric mean of the filter 

edges, and the products were summed to produce the vocoded stimulus.

No training was provided for the sentence recognition task. Verbal responses were recorded 

to every sentence for each participant and scored offline for number of keywords correct by 

the second author. Scoring followed the rules provided with the PRESTO sentences (Gilbert 

et al., 2013), which required exact matches for morphological markers. Unclear responses 

were reviewed and scored by both authors and consensus was reached.

Data Analysis

The data were analyzed in two ways. First, individual performance on each task was 

estimated by calculating task-level summary statistics. We report descriptive statistics for 

the range and mean performance on each task to facilitate comparison of participants in the 
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current study to prior work. Pairwise linear correlations were calculated between each task-

level statistic and tested for significance to demonstrate that our results replicate previously 

discovered positive correlations between memory task performance and sentence recognition 

accuracy. Second, latent factor models were fit to trial-level task performance and compared 

against one another to identify the number of latent factors which best explains the data.

Task-Level Summary Statistics

For reading span and digit span, responses were scored by the number of edits required to 

transform the given response into the target list (Gonthier, 2022), such that each edit (an 

insertion, deletion, or swap of a letter or digit) reduced the score for that trial by one, down 

to a minimum of zero. This scoring method differs from the common approach of scoring 

based on the total number of letters recalled in the correct position across all lists (Conway 

et al., 2005; Friedman & Miyake, 2005). The advantage of scoring by number of edits is 

that it yields more intuitive scores that are not sensitive to error position. For example, if 

the target sequence is ‘12345’, then responses of ‘2345’ and ‘1234’ would both receive a 

score of 4 of 5 items correct when scoring by number of edits. Scoring by correct in position 

would instead assign scores of 0 of 5 and 4 of 5 items correct, respectively, despite the 

fact that the only error in either response is a single deletion. Preliminary analysis with 

the latent factor models described below suffered from the inclusion of trials which were 

assigned a score of 0 by the correct in position scoring method, as these trials tended to 

have very high leverage over the model fit. Scoring by number of edits yielded similar 

task-level individual difference scores relative to the group average but made the distribution 

of trial-level scores more consistent within participants. We also scored the data by correct in 

position for comparison to prior work, but used edit distance scoring for all other analyses. 

For both scoring methods, reading span had a maximum possible cumulative score of 75 

letters, and digit span had a maximum possible cumulative score of 220 digits.

For free recall, any responses that matched a word shown in the list were scored as correct, 

and the average number of words recalled across all 10 lists was calculated for each 

participant. Repeated responses were not counted more than once.

For sentence recognition, the proportion of keywords correctly identified by each participant 

for each target-to-masker ratio was calculated to quantify sentence recognition accuracy. 

Pairwise correlations of task performance were calculated across all target-to-masker ratios 

and the memory tasks.

Latent Model Description

Key aspects of the latent model approach are described here, with additional technical 

details provided in supplemental digital content 1. Instead of aggregating data across trials 

in each task, trial level data were coded as the number of correct responses out of the total 

number of items in that trial for every participant and task. These data can be modeled as 

samples from a binomial distribution, such that for a given trial i, task t, and participant p, 

the number of items correct, Xitp, is binomially distributed as a function of the total number 

of items in the trial, ni, and the probability of a correct response for that participant and task, 

αtp (expressed in log odds). The total number of items in the trial is dependent on the task 
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(either number of keywords or number of items to be remembered) and can vary across trials 

within a task. Incorporating the variable number of keywords in each PRESTO sentence into 

the model reflects the variable amount of information obtained in each trial. Each list length 

in the reading span and digit span tasks is modeled as a separate task to allow the probability 

of a correct response to vary across list lengths.

Xitp Binomial ni, αtp

The probability of a correct response is the sum of the group-level average probability of a 

correct response for each task, μt, and individual differences in latent factor(s), ηfp, scaled by 

the amount each factor contribution to performance on each task, λtf.

αtp = μt + ∑
∀f

λtf ⋅ ηfp

This model allows each latent factor to affect performance on each task and enables us to 

estimate the likelihood that the contribution of each factor to each task, λtf, is non-zero, 

as described below. In models with more than one factor, the factors were constrained 

to be orthogonal to one another. The orthogonality constraint was imposed to prevent the 

model from “collapsing”, wherein two different latent factors might take the same values 

during model estimation and thereby reduce the effective number of latent factors in the 

model. Despite this constraint, it is still possible for models with an excess of latent factors 

to collapse, as was observed for a few models described below. An alternative model 

formulation is to allow each latent factor to affect performance on a single task, but allow 

latent factors to be correlated with one another (see Friedman et al., 2008 for an example 

of both model structures applied to the same data set). Here we opted to allow factors 

to affect multiple tasks to examine the convergent and divergent loading of tasks onto 

distinct latent factors. To ensure the model had a fixed scale and was therefore identifiable, 

each latent factor η was restricted such that the mean across participants was zero and the 

standard deviation was 1 in each sample drawn by the fitting algorithm described below. 

To ensure that factors could not change their ordering (i.e. higher values lead to worse task 

performance), all λ parameters were constrained to be positive.

To examine relationships between speech and memory latent factors, individual differences 

in speech recognition factors, ηspeech, were modeled as a linear regression against memory 

factors with regression coefficients βf and normally distributed error terms, σspeech, which 

were constrained to be positive.

ηspeecℎ, p Normal ∑
∀f

βfηfp, σspeecℎ
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Latent Factor Model Comparison

Models that varied in the number of latent factors, η, were fit to three portions of the data 

to determine the number of latent factors which best accounted for task performance. For 

each portion of the data, we started with a model with one latent factor, then iteratively 

increased the number of latent factors in the model until the model with the highest number 

of factors demonstrated poor convergence and high correlations between latent factors. For 

the sentence recognition data alone, this iterative approach yielded a comparison between 

models with one or two latent factors. For the memory task data alone, models with one, 

two, and three latent factors were compared. For the entire dataset, models with one, two, 

or three latent memory factors and one sentence recognition factor were compared, based on 

the results obtained for the two separate portions of the data.

Models were fit using the Stan programming language (v2.26.1, Carpenter et al., 2017) 

using the RStan interface (v2.26.11, Stan Development Team 2020) in R (v4.2.0, R 

Development Team, 2022). Stan code describing each model and R code used to fit 

and analyze models are provided in the OSF repository associated with this manuscript. 

Stan estimates the posterior distribution of model parameters via Markov Chain Monte 

Carlo sampling. This approach to modeling allows us to examine the estimated posterior 

probability distribution of each model parameter given the data and thereby use Bayesian 

inference to test hypotheses. An overview of the workflow involved in Bayesian inference 

is described by Gelman et al., (2020). We can use the probability distributions generated by 

Stan to estimate values of interest, such as the Maximum A Posteriori value of a parameter 

(MAP, i.e. the most likely value or mode of the parameter), and to calculate the likelihood 

that the value of a parameter lies outside of a null hypothesis, which in our case is the 

likelihood that a model parameter lies outside of a negligible region around zero.

The posterior distributions generated by model fitting can be used to estimate the likelihood 

that the experimental data could have arisen from the given model, which can in turn be 

used to select the model which best explains the data from among a candidate set. Pareto 

smoothed importance-sampling leave-one-out cross-validation (Vehtari et al., 2017) was 

used to estimate the goodness of fit of each model, quantified as the expected log pointwise 

predictive density (ELPD). ELPD includes a penalty term for the number of effective 

parameters to penalize more complex models which do not have a better explanatory power 

than simpler models. When comparing models, both the ELPD difference between models 

and the standard error of that difference are calculated. If the ELPD difference between 

models is greater than 4 and the standard error is smaller than the difference then we select 

the model with the better fit as a substantially better explanation for the data (Sivula et al., 

2020).

Model Parameter Significance

In addition to examining the likelihood of whole models, we can also examine the likelihood 

that parameters within those models are non-negligible. There are several approaches to 

testing parameter values in a Bayesian context, depending on the hypothesis being tested 

(see Makowski et al., 2019 for an overview). Here, we are interested in testing whether 

the contribution of each latent factor to performance on each task, λtf, and whether the 
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regression coefficients of the latent speech factor onto each latent memory factor, βf, were 

likely to be greater than a negligible region around zero (Morey & Wagenmakers, 2014). 

For this test, we computed Bayes Factors as the ratio of probability density inside or outside 

a Region of Practical Equivalence (Kruschke, 2018; Morey & Rouder, 2011). We tested 

whether the effect of factors on task performance, λ, were likely to have values above 

a region of 0 to 0.02. This small negligible region was selected to account for the fact 

that effect size likely depends on overall task performance, and tasks with low overall 

performance, such as Free Recall in the manner the data were coded, could have small but 

meaningful effect sizes. We also tested whether regression coefficients, β, were likely to 

have values above 0.3. This negligible region was selected based on the meta-analysis by 

Dryden et al., (2017), which found that most cognitive measures correlated with speech 

recognition accuracy at around r = 0.3, so normalized regression coefficients less than this 

value are unlikely to reflect a specific relationship between the construct being measured and 

sentence recognition. We adopt the convention of labeling Bayes Factors greater than 3 in 

favor of the parameter value lying outside of the negligible region as “substantial” evidence 

in favor of that parameter being meaningful in the model (Wetzels et al., 2011).

RESULTS

Task Performance

The distribution of performance on each task is depicted in Figure 1. Comparison of the 

range of performance on each of these tasks to prior work and estimates of task reliability 

are provided in supplemental digital content 2. To summarize, individual differences in 

performance on all tasks were reliable and followed trends that have been previously 

reported in the literature, and the in-lab and remote testing participant groups did not differ 

from one another on memory task performance.

Task-level summary statistic correlations between sentence recognition and memory 
tasks

Individual performance relative to the group was consistent across target-to-masker ratios 

in the sentence recognition task and across memory tasks, as shown by the correlations 

in Table 1. Significant positive correlations across target-to-masker ratios indicates that 

individuals with relatively high/low keyword recognition accuracy had high/low accuracy 

across target-to-masker ratios. Memory task performance was positively correlated with 

sentence recognition at all target-to-masker ratios, although many of these correlations did 

not reach significance (p < 0.05).

To visualize these correlations, Figure 2 shows the association between PRESTO sentence 

recognition accuracy averaged across target-to-masker ratios and performance on the 

memory tasks. Significant correlations (p < 0.05) were observed for each memory task 

but were marginal for reading and digit span (p = 0.02 and p = 0.05, respectively).

Latent factor models of sentence recognition and memory task accuracy

Models with one or two latent individual difference factors were fit to keyword recognition 

accuracy for PRESTO sentences across target-to-masker ratios to test which model provided 
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the best explanation for these speech data. A comparison of expected log pointwise 

predictive density across models indicated that a model with a single latent factor was a 

better explanation for the data than a model with two latent factors, as summarized in Table 

2. Post-hoc inspection of the two-factor model fit indicated that even though the model was 

constrained so that latent factors were orthogonal within each sample, the posterior modes of 

both factors were highly correlated (r > 0.99). Exploratory attempts to constrain the model 

to reduce this correlation were unable to remove this correlation or improve the model fit. 

Thus, the model fit comparison and correlation between factors in the two-factor model both 

indicate that one latent factor is the best explanation for individual differences in sentence 

recognition accuracy across target-to-masker ratios in this study. This finding is consistent 

with the strong correlations across target-to-masker ratios in Table 1.

The one-factor model fit is depicted in Figure 3A. Individual differences in the latent factor, 

η, significantly contributed to keyword recognition accuracy in every target-to-masker ratio 

(bayes factors greater than 100 for all λ parameters), and group-level keyword recognition 

accuracy, μ, declined from +10 dB down to 0 dB, consistent with the trend depicted in 

Figure 1. Note that the estimated values of contribution of the latent factor to performance 

are not directly comparable across target-to-masker ratios because they are on a log-odds 

scale and the effect of a change in log-odds on percent correct is relative to where that 

change occurs on the scale. For example, in the +10 dB and +4 dB target-to-masker ratio 

conditions, the group-level accuracy is 0.78 and 0.27, respectively, which corresponds to 

keyword recognition probabilities of 68.6% and 56.7%. Going up by one standard deviation 

in the latent factor (0.78 + 0.38 and 0.27 + 0.31) yields an increase to 76.1% and 64.1%, 

respectively, or a difference of 7.6% and 7.4% relative to the mean. Thus, although the 

contribution of the latent factor to each condition differs across target-to-masker ratios 

(0.38 vs 0.31), they both yield a similar change in the probability of correctly recognizing 

keywords because they are relative to different group-level intercepts.

The estimated posterior densities for the single latent sentence recognition factor are 

depicted in Figure 3B. These densities show the range of values that the latent factor 

could likely have for each participant and can be used in two ways. First, individual 

differences in sentence recognition ability can be estimated as a point value by finding 

the most likely value for each participant (i.e. the maximum a posteriori value or mode 

of the distribution), which is analogous to a random intercept in a mixed effects model. 

Second, density can be used to estimate a range of likely values for the parameter for each 

participant, which can be quantified in a variety of ways (e.g. Kruschke, 2018; Morey et al., 

2016). Estimates of 95% highest density interval and visual inspection of Figure 3B both 

indicate that individuals are heterogeneous in their latent sentence recognition ability, which 

demonstrates that substantial individual differences exist in sentence recognition accuracy 

in this population for these stimuli and that sufficient data was collected per participant to 

estimate those differences across participants.

For the three memory tasks, models with one, two, or three latent factors were fit to 

data from all three tasks, again to select the latent structure which best explained task 

performance. A comparison of model fits is provided in Table 3. As in the speech model, 

post-hoc inspection of the three-factor model fit found that the posterior modes of all three 
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factors were highly correlated (r > 0.8), indicating that the three-factor model had an excess 

of latent factors. Further inspection of posterior densities for model parameters found that 

they tended to be multi-modal, indicating that there were multiple model fits that could 

explain the data. Multiple fits can arise from swapping parameters throughout model fitting, 

such that there is not clear mapping of each latent factor onto performance in each task. 

As in the speech model, exploratory attempts to constrain the model did not eliminate these 

correlations or improve the fit of the three-factor model. This evidence favors the two-factor 

model as the best explanation for the memory data, which is a finding that is not evident 

from correlations of task-level performance reported in Table 1.

The two-factor memory model is depicted in Figure 4A. Group-level accuracy, μ, declines 

with increasing list length for digit and reading span, consistent with the trends depicted in 

Figure 1. Performance on each task was determined by individual differences in two latent 

factors, η1 and η2. Scale parameters λ1 and λ2 are comparable within a task, so the relative 

contribution of each latent factor to performance on each task is a meaningful comparison. 

The first level of comparison of scale parameters is to examine whether Bayes Factors 

support each parameter lying outside the region of practical equivalence, which is depicted 

as coefficients in bold in Figure 4. As shown, η1 predominantly determined performance on 

the free recall task and reading span at all list lengths and had some contribution to digit 

span at short list lengths. η2 predominantly determined performance in the digit span task 

at longer list lengths and had a secondary effect on performance in the reading span task. 

The second level of comparison is to examine the relative magnitude of the coefficients that 

are likely to be nonzero. η1 has a larger contribution to reading span performance than η2 

even when λ 2 is nonzero. Conversely, η2 has a larger contribution to performance on the 

digit span task for lists of length 5 and greater, which is where most of the variance in 

performance on this task arises. Because performance on the digit span task for lengths of 2 

and 3 was almost completely at ceiling, meaningful individual differences in performance on 

these list lengths were not observed, which is reflected in the fact that the scale parameters 

for these list lengths are unlikely to differ from zero.

Estimated posterior densities for η1 and η2 are shown in Figure 4B. Because these data 

are two-dimensional, posterior density is depicted as a shade gradient around the most 

likely values of each of these parameters for each participant. As shown, the most likely 

parameter values are uncorrelated across participants, indicating that the model was able to 

recover two independent factors per participant that accounted for their performance across 

memory tasks. Visual inspection of the gradient regions for each participant indicate that 

they were centered around the most likely value and took on an approximately multivariate 

Gaussian shape, indicating that latent factors estimates were independent of one another. 

As in Figure 3, the separation of posterior density between participants indicates that 

meaningful differences in each latent factor exist across participants in this population and 

the data collected per participant were sufficient to precisely estimate those differences.

Finally, models with a varying number of memory factors and a single speech factor were 

fit to the entire data set to select the latent structure which best explained the link between 

memory and sentence recognition. The decision to compare these specific models was 

made post-hoc after seeing the results of the models depicted in Figures 3 and 4. Only 
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a single speech factor was included here because the two-factor speech model completely 

collapsed into a single factor. The memory model with three factors appeared to have an 

excess of interchangeable factors that was less severe than the two-factor speech model, so 

we believed that it was possible that adding their relationship to the speech factor could 

constrain the model in such a way that allows for all three memory factors to have a unique 

relationship with the speech factors and memory tasks. For these models, data from digit 

span at list lengths 2 and 3 were excluded because they did not contribute to estimation 

of individual differences in latent memory factors. Preliminary model fits with one latent 

memory factor and the speech factor converged to a single solution, with a regression 

coefficient of β = 0.62 and σspeech = 0.78 (Bayes Factor of 26.7 that β lay outside the region 

of practical equivalence). However, the model we initially used failed to converge when 

the number of latent memory factors was greater than one. Post-hoc inspection of posterior 

densities indicated that model fitting failed because the model trended toward values of β1 

= 1 and σspeech = 0 (i.e. ηspeech = η1), which were parameter values at the boundaries of 

the initial model. Based on this observation, a second model was created that fixed ηspeech 

= η1 and was fit with two and three latent memory parameters. Comparison of models with 

different free or fixed model parameters is valid because they are both used to explain the 

same data set and thereby generate comparable estimates of likelihood of the data arising 

from each model. A comparison of model fits is provided in Table 4. As was expected based 

on the memory models reported in Table 3 and Figure 4, the model with two or three latent 

memory factors had similar model fits to the data, but inspection of the three-factor model 

found that latent factors 2 and 3 were highly correlated, which supports the selection of the 

two-factor model as the best explanation for the data.

The full two-factor model is depicted in Figure 5A. The effect of latent factors on their 

respective memory and speech task performance is similar to the component models 

depicted in Figures 3 and 4. The latent sentence recognition factor affected recognition 

accuracy across all target-to-masker ratios and was the same factor that predominantly 

affected performance in the free recall and reading span tasks. Because this model fixed β1 

= 1 estimating Bayes Factor is not possible for this model parameter. However, the fact that 

this model is a better explanation for the data than the one-factor model indicates that η1 

is closely related to ηspeech, even if their true relationship is not unitary. Posterior densities 

for η1 and η2 are shown in Figure 5B in the same format as in Figure 4B, and similarly 

indicate that these latent factors are independent of one another and meaningfully vary 

across individuals. A post-hoc power analysis, described in supplemental digital content 

3, demonstrated that the amount of data collected per participant was sufficient to select 

from among models with the number of latent factors tested here and to estimate individual 

differences in latent factors with high reliability.

DISCUSSION

In this study, we examined the relationship among three memory tasks, digit span, reading 

span, and free recall, and recognition of vocoded sentences in the presence of a two-talker 

masker across a range of target-to-masker ratios. Performance across memory tasks was 

positively correlated. Memory tasks had positive correlations with recognition accuracy for 

vocoded speech-in-speech, although only some correlations were significant. These results 
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indicate that all three memory tasks measure underlying abilities which are associated with 

sentence recognition. Subsequent latent factor modeling of accuracy in each trial of each 

task indicated the presence of two distinct memory factors, one of which was closely related 

to sentence recognition and one of which was not.

Individual differences in sentence recognition across target-to-masker ratios

As shown in Figure 3, individual differences in PRESTO sentence recognition across 

target-to-masker ratios were best explained by a single latent factor that differed across 

participants. The posterior densities of these individual differences, depicted in Figures 3B 

and 5B, indicates that these differences are likely to be meaningful variability within the 

population of young adults with normal hearing, rather than measurement error. This finding 

is consistent with the results from Bosen and Barry (2020), which found that individual 

differences in sentence recognition accuracy were correlated across spectral resolutions. 

Together, these results indicate that the extent to which latent factors are responsible for 

individual differences in sentence recognition accuracy does not depend on recognition 

accuracy in the task. Thus, our results indicate that the explicit, slow processing component 

of the ELU model consistently affects speech recognition accuracy in young adults with 

normal hearing within the range of performance we have observed (group averages of 88% 

to 23% across this study and Bosen and Barry, 2020). It is possible that the factors that affect 

speech recognition change outside of this range, although in such cases accuracy would be 

close to floor or ceiling and individual differences in speech recognition accuracy would 

be challenging to precisely assess. Thus, if there is a threshold for which cognition “kicks 

in” (Rönnberg et al., 2010), it is likely that this threshold is reached whenever recognition 

accuracy is not perfect, or alternatively whenever inference is needed to identify unclear 

words regardless of accuracy (Winn & Teece, 2022). If the transition from automatic to 

explicit processing occurs when recognition accuracy is nearly perfect, then alternative 

methodology is likely needed to identify this transition, such as examining the time course 

of lexical activation (Farris-Trimble et al., 2014) or listening effort (Winn & Teece, 2022).

An important design detail in the present study is that the target-masker pairs were fixed 

across all participants, which allows for fair comparison of individual differences in sentence 

recognition accuracy without the confounding effects of variability in the vocoder’s effect 

on target intelligibility (DiNino et al., 2016), in target audibility relative to a fluctuating 

speech masker (Buss et al., 2021), and in cross-talker differences in intelligibility (Markham 

& Hazan, 2004). This finding is in agreement with prior work by Carbonell (2017), who 

found consistent individual differences in monosyllabic word recognition when words 

were vocoded, time-compressed, or presented in the presence of four competing talkers. 

It seems plausible that these individual differences in sentence recognition accuracy are 

driven by individual differences in cognitive ability, but a study that uses multiple types of 

speech materials and adverse listening conditions within participants is needed to determine 

whether multiple latent factors are needed to account for individual differences across 

stimuli and degraded listening conditions.

There appears to be a discontinuity in recognition accuracy in Figure 1, where accuracy 

drops between the +4 and +2 dB target-to-masker ratio conditions. Such a discontinuity 
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could indicate that the attentional mechanisms for picking out the target relative to the 

masker were impaired when the target-to-masker ratio was close to zero (Ihlefeld & Shinn-

Cunningham, 2008). Vocoding reduces access to auditory cues that facilitate segregation 

of concurrent auditory streams (Qin & Oxenham, 2003), so the discontinuity could reflect 

loss of access to an obvious level cue to distinguish the target speech from the maskers. If 

a distinct attentional mechanism is responsible for stream segregation we might expect to 

see recognition accuracy at +2 dB and 0 dB target-to-masker ratio associate more with a 

second latent sentence recognition factor, but that was not the case here. It is possible that 

individual differences in segregation ability would manifest as a second latent factor when 

stream segregation cues are available, so it would be informative to repeat this study without 

vocoding the target and masker speech to determine if multiple latent factors are evident in 

sentence recognition when stream segregation cues are available.

Multiple memory factors explain cross-task performance

Examination of the most likely model to explain memory (Tables 3 and 4) supports the 

existence of two independent memory factors. The presence of multiple latent factors 

provides evidence against a single unifying explanation for individual differences in task 

performance, such as motivation or general cognitive ability. However, these factors did not 

seem to align with our expectations based on the storage and processing or maintenance and 

retrieval models as described by prior literature, and instead supported the existence of one 

factor that predominantly affected performance on free recall and reading span and a second 

factor that dominated digit span performance at long list lengths, as shown in Figures 4 and 

5.

A post-hoc explanation for the observed results is that serial recall of digits, and to a lesser 

extent serial recall of letters in the reading span task, depends on domain-specific knowledge 

of the stimuli used for the task (Botvinick, 2005; Waris et al., 2017). Recall accuracy for 

digit sequences has been shown to depend on how often transitions between successive 

digits occur in natural language samples (Jones & Macken, 2015), which supports the 

idea that individual differences in digit span task performance might depend on experience 

specifically with storing and retrieving digit sequences, in addition to general memory 

ability. Previous work with older adults who hear with cochlear implants found a correlation 

between digit serial recall accuracy and self-reported vocabulary (Bosen et al., 2021), 

which further suggests that the memory factor which primarily determined digit span task 

performance could be reflective of verbal crystallized intelligence or experience. This factor 

made no contribution to sentence recognition outcomes in the best fitting model tested here. 

In contrast, the memory factor that accounted for performance in the free recall task and was 

the primary determinant of performance in the reading span task was equivalent to the latent 

sentence recognition factor in the best-fitting model. While it seems unlikely that these two 

latent factors are truly unitary, the evidence is in favor of a strong relationship between these 

latent factors.

Our results suggest a refinement to the Ease of Language Understanding model. There is 

ample evidence that performance on complex span tasks such as reading span, which include 

interleaved storage and processing components, correlates with speech recognition accuracy 
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in a variety of conditions. However, our results demonstrate that complex span tasks are 

not unique predictors of speech recognition accuracy. Performance on the free recall task 

also correlated with speech recognition accuracy and loaded onto a common latent factor 

with reading span. The common feature linking these tasks is the ability to retrieve recently 

presented verbal information (Unsworth & Engle, 2007b). Thus, we posit that the slow, 

explicit process of the Ease of Language Understanding model is dependent on individual 

differences in activation and subsequent retrieval of information in long-term memory, 

which is line with the role of long-term memory in the Ease of Language Understanding 

Model (Rönnberg et al., 2021).

While performance on all three tasks was affected by the factor related to sentence 

recognition ability to some extent, digit span task performance seems to be primarily 

determined by a second factor that is not related to sentence recognition ability. It appears 

that prior work (Bosen & Barry, 2020) found correlations between digit span performance 

and sentence recognition despite the choice of task, not because of it. Re-examination of 

the correlations shown in Figure 2 are consistent with this interpretation, with the weakest 

correlation for digit span and the strongest correlation for free recall. Our findings indicate 

that caution is needed when interpreting the presence or absence of correlations between 

various cognitive tasks and speech recognition, as it cannot be assumed that any given task is 

a pure measure of the cognitive construct it is purported to measure.

When does memory affect speech recognition in young adults with normal hearing?

As discussed in the introduction, performance on many cognitive tasks weakly correlates 

with speech recognition accuracy (Dryden et al., 2017), so it is generally unsurprising to 

find positive correlations such as the ones shown in Table 1 and Figure 2 so long as the 

tasks used have sufficient reliability (Heinrich & Knight, 2020; Parsons et al., 2019). Latent 

factor modeling demonstrated that all three tasks used here measure the latent memory 

factor which was related to sentence recognition to some extent, so it appears that observing 

associations between memory and sentence recognition does not depend on the use of a 

specific memory task. Comparison of the current results with prior literature indicates that 

observing a correlation between memory task performance and speech recognition accuracy 

in young adults with normal hearing seems to require specific conditions in the speech 

recognition task that are present in the PRESTO sentences, as described below.

One potential condition is adaptation to a novel listening condition. When participants 

who are unfamiliar with vocoded speech hear it for the first time they undergo a period 

of learning which improves speech recognition accuracy, which occurs within about 10 – 

12 sentences (Davis et al., 2005). If the rate at which participants could learn to interpret 

vocoded speech were a major factor determining the presence or absence of a correlation, 

then we would expect accuracy for the first target-to-masker ratio tested (+10 dB) to have 

the strongest correlation with individual differences in memory ability because that is when 

learning would occur. The magnitude of correlations between memory task performance 

and sentence recognition accuracy in Table 1 is indeed larger for the +10 dB condition, but 

significant correlations are present at other target-to-masker ratios. Thus, it is possible that 

individual differences in learning the novel listening condition were partially responsible for 
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the observed link between memory and sentence recognition, although the consistency of 

individual differences in recognition accuracy across target-to-masker ratios suggests that a 

transient learning mechanism would only account for a small portion of this link.

Another potential condition is the presence of the two-talker masker. Bosen & Barry 

(2020) observed correlations between serial recall accuracy and vocoded PRESTO sentence 

recognition when vocoder spectral resolution was manipulated, rather than target-to-masker 

ratio as in the current study. The presence of correlations in that study without including the 

two-talker masker used here indicates that the inclusion of the masker does not determine 

the presence or absence of a correlation between memory and sentence recognition accuracy. 

However, a within-participant comparison of recognition accuracy with and without the 

two-talker masker would be needed to determine whether the magnitude of the correlation 

changes across these listening conditions.

The use of vocoded speech is also unlikely to determine the presence or absence of 

correlations, as O’Neill et al., (2019) used vocoded IEEE sentences and found no correlation 

between sentence recognition accuracy and performance on the reading span task in young 

adults with normal hearing. A similar lack of correlation was also reported by Shader 

et al., (2020) between vocoded IEEE sentence recognition and performance on the List 

Sorting working memory test from the NIH Toolbox. Contrasting their findings with the 

ones presented in the current manuscript indicates that the strength of the correlations that 

we observed were likely driven by the use of PRESTO sentences.

PRESTO sentences are somewhat unusual relative to many other speech stimuli, in that the 

PRESTO sentences were designed to limit talker-contingent learning by changing talkers 

and indexical properties of those talkers across sentences (Gilbert et al., 2013). Word 

recognition is slower and less accurate following changes in target talker, which indicates 

the presence of an obligatory cognitive cost that is incurred when switching between talkers 

(Magnuson et al., 2021; Martin et al., 1989; Mullennix et al., 1989; Mullennix & Pisoni, 

1990). Talkers change across successive PRESTO sentences, so this switch cost would be 

present at the onset of each sentence. This switch cost also increases under conditions of 

cognitive load (Nusbaum & Morin, 1992), indicating that the switching process requires 

cognitive resources. More recent work has shown that the cost of switching talkers occurs 

even if the switch is predictable and to a previously heard talker (Kapadia & Perrachione, 

2020), that the magnitude of the cost depends on the similarity of the prior talker and 

the new talker (Stilp & Theodore, 2020), that brief auditory precursors are sufficient to 

eliminate the switch cost (Morton et al., 2015), and that the switching cost is transient, 

dissipating within about 600 ms (Choi et al., 2021). Taken together, these findings indicate 

the presence of an automatic attentional mechanism for normalizing to a new talker. In 

addition, Choi et al. (2021) also found that expectation of a multi-talker listening condition 

incurred a sustained cognitive cost, demonstrated through increased reaction times, that 

lasted for at least 1.5 s after a talker switch. It is possible that individual differences in 

the cognitive abilities that underlie switching between talkers are assessed by the memory 

tasks we used here, which would account for the correlations we found between PRESTO 

sentence recognition and performance on our memory tasks. If this were the case, we 

would expect such correlations to arise whenever PRESTO sentences are presented in an 
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adverse listening condition, regardless of the nature of the listening condition. Evidence in 

favor of this possibility is provided by Tamati et al. (2013), who found that a group of 

young adults with normal hearing who had high recognition accuracy for PRESTO sentence 

recognition in a six-talker masker (without vocoding, as was used in the present study) also 

had better serial recall ability than a group of young adults with low recognition accuracy. 

Associations between speech recognition in noise and performance on the reading span 

task are generally weaker in young adults with normal hearing than in older adults and 

individuals with hearing loss across a variety of other types of speech materials (Füllgrabe & 

Rosen, 2016; Gordon-Salant & Cole, 2016), which further supports the idea that recognizing 

PRESTO sentences depends on individual differences in cognitive ability in young adults 

with normal hearing, while other materials do not. While these possibilities are intriguing, 

additional within-participant comparisons of recognition accuracy for PRESTO sentences 

and other speech materials across various listening conditions are needed to test whether 

relationships between speech recognition and memory vary across speech materials and/or 

listening conditions.

Steps toward identifying the latent structure linking cognition and speech recognition

The apparent importance of variable indexical properties in the PRESTO sentences for 

eliciting a correlation between speech recognition accuracy and performance on memory 

tasks suggests that working memory could be required to identify and extract speech cues 

(Heald & Nusbaum, 2014) in dynamic listening conditions. An important caveat of this 

interpretation of our data is that, as noted in the introduction, distinct cognitive abilities tend 

to be correlated with one another. Thus, it is possible that even though our memory tasks 

provided a convergent estimate of individual ability, we only measured a cognitive construct 

that is correlated with the constructs which mechanistically support speech recognition, 

rather than the supporting constructs themselves. Given that identifying the overall structure 

linking various cognitive abilities is a vast and active field of research we will not attempt 

to review all possible mechanisms which could support speech recognition, but rather 

provide a brief overview of plausible mechanisms underlying the link between memory task 

performance and speech recognition accuracy that could be readily tested.

Working memory and attentional control are closely related cognitive abilities (Shipstead 

et al., 2015; Unsworth & Robison, 2015). Working memory guides attentional control by 

maintaining perceptual templates and actions in a readily available state, and attentional 

control determines what information is held in working memory (Oberauer, 2019). Adapting 

to a change in talkers seems to be an automatic attentional mechanism as described above, 

so working memory maintenance could support adaptation by holding templates for targets 

of perception (i.e. indexical properties of the target talker) and by controlling action (the 

mapping of acoustic to linguistic information for that talker). In visual working memory 

experiments, such as remembering a specific color hue, evidence indicates that a single item 

to be remembered can be held in a continuous representation, while other items are stored 

in a categorical representation (Hardman et al., 2017). If a similar limitation was present in 

verbal working memory then the continuous properties of the target speech would be limited 

to a singular store as well, which would be consistent with the finding that switch costs are 

incurred every time the target talker changes (Choi et al., 2021). In addition to the transient 
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automatic switching cost, sustained costs for multi-talker listening condition could reflect 

maintenance of multiple speech maps in memory at once. Correlations between working 

memory ability and motor control have been observed in experiments where individuals 

must switch between response actions across successive experimental trials, such as being 

cued to looking toward or look away from a visual target (Unsworth et al., 2004). Similar 

correlations have also been observed between working memory and attentional filtering, so 

long as the filtering demands of the task change on a trial-by-trial basis (Robison et al., 

2018). If attentional control and working memory maintenance are mechanisms underlying 

speech recognition, then alternating between adverse listening conditions or talkers should 

yield declines in speech recognition accuracy that are contingent on working memory 

ability, with individuals who have low working memory ability showing greater declines 

because they have more frequent lapses in attentional maintenance (McVay & Kane, 2012; 

Unsworth et al., 2012; Unsworth & McMillan, 2014) of indexical properties or novel 

mappings and/or have difficulty maintaining multiple speech maps in a readily accessible 

state. Working memory ability would also predict the speed with which individuals can 

adapt to a change in talker.

Recognizing speech in a novel adverse condition likely also depends on learning and 

retrieval abilities. Familiarity with a talker improves speech recognition (Nygaard et al., 

1994; Souza et al., 2013). Such improvement can occur rapidly, as demonstrated by 

increases in recognition accuracy for vocoded speech within about a dozen exposures 

to vocoded speech (Davis et al., 2005). Improvements in recognition accuracy persist 

across multiple training sessions (Nogaki et al., 2007) for at least one week after training 

(McGettigan et al., 2014). From a working memory perspective, individual differences in 

working memory ability predict the ability to use previously presented information to solve 

novel problems (Harrison et al., 2015). If working memory ability supports learning to 

recognize speech in novel conditions, then working memory ability should be correlated 

with individual differences in the rate at which individuals learn to extract speech cues. 

Training participants to recognize synthetic speech improves speech recognition accuracy 

while maintaining information in memory, which suggests that training diminishes working 

memory demands of speech recognition (Francis & Nusbaum, 2009). This suggests that 

working memory ability should be correlated with speech recognition prior to learning 

the novel condition, but such correlations should diminish or be absent after learning. 

Individuals who have a high ability to encode into and retrieve relevant information to 

and from long-term memory, such as recalling speech mappings for particular accents or 

listening conditions, would be predicted to be better at adapting to changes in talker or 

listening condition for conditions they have prior experience with.

We posit that these working memory mechanisms may be active when listening in any 

condition where the mapping of speech cues changes over time. For example, signal 

processing algorithms in hearing aids can distort the speech signal in a manner that changes 

over time, and evidence suggests that individuals with low working memory ability are 

adversely affected by this distortion to a greater extent than individuals with high working 

memory ability (Souza et al., 2015). Correlations between working memory ability and 

speech recognition are also most evident shortly after device activation or alteration (Foo 

et al., 2007; Lunner, 2003; Ng et al., 2014; Rudner et al., 2009), suggesting the presence 
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of a learning phase in which device users must learn to interpret novel distorted speech 

signals. The effect of experience listening with a hearing aid on the correlation between 

working memory ability and speech recognition also depends on listening condition, with 

the relationship persisting with experience in the presence of difficult multi-talker maskers 

but not in steady-state noise (Ng & Rönnberg, 2020). In cochlear implants, the mapping of 

acoustic cues to speech percepts can vary dramatically across individuals (Harnsberger et al., 

2001) and changes in one acoustic dimension, such as stimulus level, can alter perception 

of other stimulus dimensions, such as pitch, in a manner that is idiosyncratic (Carlyon et 

al., 2010). In both types of devices, it is plausible that these features of listening with an 

assistive device create a condition wherein the listener is frequently adapting to changes in 

the mapping of speech cues, which could be why associations between working memory 

ability and speech recognition accuracy are most often found in these populations (O’Neill 

et al., 2019; O’Neill, Parke, et al., 2021; Rönnberg et al., 2016; Tamati et al., 2020). Souza 

et al. (2015) suggest that individuals with low working memory ability may benefit more 

from devices with low alteration in how they process acoustic input. If this is true, it would 

indicate that assessing individual differences in working memory ability could play a role in 

clinical decisions about which signal processing algorithms are appropriate for a patient.

The age of the majority of individuals with assistive devices could also play a role. 

Older adults are susceptible to declines in working memory ability regardless of hearing 

status (Luo et al., 2021) and working memory is more closely associated with speech 

recognition accuracy in older adults than in younger adults (Gordon-Salant & Cole, 2016; 

O’Neill et al., 2019). The ability to automatize learned behaviors and thereby bypass the 

cognitive processing bottleneck declines with advancing age (Maquestiaux, 2016), which 

could indicate that older adults are less able to automatically retrieve lexical representations 

from long-term memory when listening to speech and instead tend to engage in slow, 

explicit processing. Overall, it is likely that speech material, listening condition, hearing 

status, experience, age, and cognitive ability all interact to determine individual differences 

in speech recognition accuracy.

Limitations

This relatively small study focused on a small portion of the broad set of cognitive abilities 

and adverse listening conditions that are relevant to speech perception. Thus, while we 

demonstrated convergent validity of the memory tasks used here, we did not demonstrate 

their divergence from related concepts, such as fluid intelligence or attention. A next step 

in this line of research would be to replicate this study using a broader set of cognitive 

tasks, adverse listening conditions, and/or participant populations to identify the boundaries 

at which the results presented here do not generalize.

As described above, the link between PRESTO sentence recognition and working memory 

may arise from the unique properties of the PRESTO sentence task. Many of the sentences 

in this task are long and complex, which could place a particularly heavy demand on 

working memory that may not generalize to shorter sentences or individual words (Heinrich 

& Knight, 2016). This feature of the PRESTO sentences is not inherently undesirable 

because speech recognition outcomes depend on both cognitive and auditory factors 
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(Akeroyd, 2008; Lunner, 2003), but the interpretation of sentence recognition accuracy and 

its relationship to those underlying sources of variability needs to be carefully considered 

when designing assessments and interventions. More generally, the extent to which any 

type of listen-and-repeat task generalizes to meaningful assessment of a listener’s receptive 

communication ability needs to be considered when attempting to identify the latent factors 

that impede real-world communication (Beechey, 2022).

The model of task performance used here is also relatively simplistic compared to what is 

known in the field, as we modeled performance in each task as a set of independent samples 

from a binomial distribution. We also opted to only calculate a single metric from each 

task, although it can be informative to measure several trial-level measures of performance 

(Unsworth et al., 2009) or model trial-level error patterns in addition to modeling the 

probability of a correct response (Oberauer & Lewandowsky, 2019). The use of a relatively 

simple model here ensured it was tractable and provides a baseline to determine how much 

adding complexity to capture known features of working memory and speech recognition 

processes alters the observed relationships between latent factors. Thus, while the models 

proposed here likely require further refinement, our goal was to provide a foundation 

from which to develop our understanding of the latent factors that link speech recognition 

to cognition. The OSF repository associated with this manuscript provides examples to 

facilitate adoption of this approach and direct testing of alternative hypotheses against those 

tested here.

The approach used here also requires more work to develop and validate the proposed 

models. The ability to articulate hypotheses as a set of statistical formulae allows for 

flexibility that is not available with more rigid model fitting frameworks, although that 

flexibility can easily lead to models that are intractable or fail to converge, as we found 

for our initial attempt to fit the model depicted in Figure 5. As an alternative, structural 

equation modeling is an option to test competing hypotheses about the latent structure 

which produced a dataset (e.g. Rosseel, 2012), but is more limited in the types of statistical 

distributions it can model. Packages are available to conduct Bayesian generalized linear 

multi-level modeling (Bürkner, 2017), which enables the use of Bayesian statistical analysis 

without requiring the user to implement their hypothesis in a statistical programming 

language so long as the hypothesis can be articulated as a multi-level model. These 

alternatives should be considered for research questions which conform to their constraints, 

but these constraints do not need to limit the types of questions that can be answered, as 

shown here.

Conclusions

Our results indicate that individual differences in recognition accuracy for vocoded PRESTO 

sentences in the presence of competing speech generalize across target-to-masker ratios 

and strongly associate with individual differences in performance across multiple memory 

tasks. In studies which examine associations between specific cognitive mechanisms and 

speech recognition, multiple tasks should be used to provide convergent measures of the 

constructs of interest and dissociate them from related constructs. These measures should be 

used to test hypotheses about the underlying structure which connects cognition to speech 
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recognition. Identifying the latent factors that link performance across tasks will enable us to 

identify how and under what conditions such cognitive factors enable speech recognition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Performance on working memory and speech tasks. For reading span (top left) and digit 

span (bottom left), edit distance score as a percentage of maximum possible score is shown 

as a function of list length. Thin lines show recall accuracy for each participant, and the 

thick line shows the group average. In-lab participants are depicted with black lines and 

remote participants are depicted with gray lines. For free recall (top right), the number 

of items in each list was fixed, so the average number of items recalled across all lists 

is shown as a bar for each participant. In-lab participants are depicted with black bars 

and remote participants are depicted with gray bars. For speech recognition (bottom right), 

keyword recognition accuracy is shown a as a function of target-to-masker ratio. Thin lines 

show keyword recognition accuracy for each participant, and the thick line shows the group 

average.
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Figure 2. 
Mean PRESTO sentence recognition accuracy across target-to-masker ratios as a function of 

performance in each memory task. Each dot shows data from one individual, and lines show 

standard major axis regression fits (Legendre, 2013) across individuals. All correlations 

were significant (p < 0.05).
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Figure 3. 
The best-fitting latent factor model for speech recognition across target-to-masker ratios. 

(A) Group-level keyword recognition accuracy for each target-to-masker ratio is given as μ 
(reported in log odds), and individual performance varied relative to the group based on the 

product of their individual speech recognition ability η and the amount that individual ability 

contributed to accuracy for each target-to-masker ratio, λ. (B) Each shaded region depicts 

the posterior probability density of speech recognition ability η for one participant.
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Figure 4. 
The best-fitting latent factor model for working memory tasks and across list lengths within 

digit and reading span tasks. (A) Parameters are depicted as in Figure 3, although arrows 

depicting the contribution of each latent factor, η, to accuracy on each task, λ, are omitted 

for clarity. Model parameters λ that had a Bayes Factor greater than 3:1 in favor of lying 

outside of the region of practical equivalence (see text for details) are in bold, parameters 

with Bayes Factors between 3:1 and 1:1 are shown in black, and parameters with Bayes 

Factors less than 1:1 are shown in gray. (B) The two latent working memory factors differ 

across individuals and are not correlated across the group. Most likely values of each latent 

factor for each participant are depicted as circles, and shaded gradients around each most 

likely value depict the corresponding probability density for that participant.
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Figure 5. 
The best-fitting latent factor model linking individual differences in latent working memory 

abilities, η1 and η2, to individual differences in speech recognition ability, ηspeech. (A) The 

parameters linking individual differences in latent factors to performance in each task and 

task condition are depicted as in Figures 3 and 4. In this model, the regression coefficient β1 

was fixed to 1 because preliminary models failed to converge when attempting to approach 

this boundary value. (B) The two latent individual difference factors obtained by this model 

fit are depicted as in Figure 4B for participants who completed both the memory and speech 

tasks.
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Table 1.

Correlation of speech recognition accuracy at each target-to-masker ratio and performance for each memory 

task.

Correlations 10 dB 8 dB 6 dB 4 dB 2 dB 0 dB Reading Span Digit Span Free Recall

10 dB -

8 dB 0.74 -

6 dB 0.70 0.84 -

4 dB 0.71 0.84 0.87 -

2 dB 0.44 0.53 0.70 0.47 -

0 dB 0.48 0.68 0.65 0.56 0.75 -

Reading Span 0.69 0.44 0.37 0.37 0.22 0.35 -

Digit Span 0.64 0.41 0.31 0.40 0.15 0.20 0.50 -

Free Recall 0.68 0.54 0.66 0.55 0.58 0.42 0.44 0.40 -

Pearson’s linear correlation coefficients (r) are reported for each pair of values across participants. Correlation coefficients that have p-values less 
than 0.05 are in bold.
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Table 2.

Comparison of model fits to PRESTO sentence recognition accuracy.

Model ELPDloo ELPDloo SE ploo Ploo SE ΔELPD ΔELPD SE

One Factor −3891.3 48.8 57.1 1.6 - -

Two Factors −3900.5 49.2 87.3 2.4 −9.3 3.3

Expected Log pointwise Predictive Density (ELPDloo), number of effective model parameters (ploo), and the standard errors for both estimates 

(SE) were estimated for both model fits using the LOO package in R (Vehtari et al., 2017). Model fits were compared to obtain an estimated 
difference in expected log posterior density relative to the best-fitting model (ΔELPD) and standard error for the difference. Comparison of model 
fits indicates that the one-factor model has a substantially better fit to the observed data.
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Table 3.

Comparison of model fits to reading span, digit span, and free recall task performance.

Model ELPDloo ELPDloo SE ploo Ploo SE ΔELPD ΔELPD SE

Two Factors −3843.7 62.9 163.4 7.3 - -

Three factors −3846.8 62.8 219.1 9.4 −3.1 4.1

One Factor −3866.1 63.6 99.1 4.6 −22.4 10.4

Model metrics are reported as in Table 2. Comparison of model fits indicates that the two-factor model has a substantially better fit to the observed 
data than the one-factor model and had a marginally better fit than the three-factor model.
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Table 4.

Comparison of model fits to performance on all memory and speech tasks.

Model ELPDloo ELPDloo SE ploo Ploo SE ΔELPD ΔELPD SE

Three factors −7704.7 75.7 254.9 8.9 - -

Two Factors −7706.4 76.0 195.0 6.3 −1.7 6.4

One Factor −7737.1 76.3 153.6 4.8 −32.4 11.8

Model metrics are reported as in Tables 2 and 3. Comparison of model fits indicates that the two-factor and three-factor models have equivalent fit 
to the data and have a substantially better fit to the data than the one-factor model.
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