Table 1.
Study | Methods of detection | Algorithms of detection | Sources | Samples n | Cancer types n | Estimated frequency | Associated oncogene amplifications | Associated loss of suppressors |
---|---|---|---|---|---|---|---|---|
Cortes-Ciriano et al., Nat Genet 2020-Ref.33 | WGS | ShatterSeq | PCAWG | 2,658 | 38 | 40–60% | 20% | 2% |
Voronina et al., Nat Commun 2020-Ref.35 | WGS, WES | ShatterSeq | NCT/DKTK MASTER | 634 | 28 | 49% | Examples identified, % not reported | |
Rasnic and Linial, Cancers 2021-Ref.36 | CNA | ML based on ShatterSeq | TCGA | 10,728 | 20 | 39% | Examples identified, % not reported | |
Steele et al., Nature 2022-Ref.37 | WGS, WES, SNP6 profiling | NA | TCGA PCAWG | 9,873 | 33 | NA, 5 signatures of chromothripsis | Examples identified, % not reported | |
Bao et al., Nat Cancer 2022-Ref.38 | WGS | Starfish | PCAWG | 2,428 | 37 | 53%, 6 CGR signatures | Examples identified, % not reported |
WGS: whole genome sequencing; WES: whole exome sequencing; CNA: copy number alteration; SNP6: single nucleotide polymorphism (SNP) 6.0 microarrays; ML: machine learning; PCAWG: Pan-Cancer Analysis of Whole Genomes; NCT/DKTK MASTER program: Molecularly Aided Stratification for Tumour Eradication; TCGA: The Cancer Genome Atlas; CGR: Complex genomic rearrangements, NA: not available.