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Abstract

Cryptococcus neoformans is a fungal pathogen that can cause life-threatening brain infections 

in immunocompromised individuals. Unlike other fungal pathogens, it possesses a protective 

polysaccharide capsule that is crucial for its virulence. During infections, Cryptococcus cells 

release copious amounts of extracellular polysaccharides (exo-PS) that interfere with host immune 

responses. Both exo-PS and capsular-PS play pivotal roles in Cryptococcus infections and serve as 

essential targets for disease diagnosis and vaccine development strategies. However, understanding 

their structure is complicated by their polydispersity, complexity, sensitivity to sample isolation 

and processing, and scarcity of methods capable of isolating and analyzing them while preserving 

their native structure. In this study, we employ small-angle neutron scattering (SANS) and 

ultra-small angle neutron scattering (USANS) for the first time to investigate both fungal cell 

suspensions and extracellular polysaccharides in solution. Our data suggests that exo-PS in 

solution exhibits collapsed chain-like behavior and demonstrates mass fractal properties that 

indicate a relatively condensed pore structure in aqueous environments. This observation is also 

supported by scanning electron microscopy (SEM). The local structure of the polysaccharide is 

characterized as a rigid rod, with a length-scale corresponding to 3 to 4 repeating units. This 

research not only unveils insights into exo-PS and capsular-PS structures but also demonstrates the 
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potential of USANS for studying changes in cell dimensions and the promise of contrast variation 

in future neutron scattering studies.
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INTRODUCTION

Cryptococcal meningitis is a deadly fungal infection caused by Cryptococcus neoformans, 

one of the leading causes of death in HIV/AIDS patients in sub-Saharan Africa1,2. Within 

brain tissues, the fungus secretes copious amounts of polysaccharide (exo-PS) to the 

cerebrospinal fluid, believed to cause elevated intracranial pressure and disruption of an 

effective immune response2,3. The fungal cell is encased by a thick capsule composed of 

polysaccharide (capsular-PS), which protects from the host’s immune defense mechanisms4. 

Both the exo-PS and capsular-PS are mainly comprised of glucuronoxylomannan (GXM), 

which is formed by an α-1,3-linked mannan backbone with β-1,2-linked glucuronic acid 

and β-1,2- or β-1,4-linked xylose as its branching residues that contribute to serological 

diversity. GXM molecules are assembled from six structural units (M1-6), referred to as 

triads, featuring a glucuronic acid residue every third mannose along with varying xylose 

substitutions (Figure 1). Due to its high water-content (over 95% of total mass and volume), 

the PS capsule is highly susceptible to the dehydration steps employed in high-resolution 

microscopy or lyophilization, which disturbs the native structure5,6.

C. neoformans exo-PS and capsular-PS are key virulence determinants and targets for the 

immune system, vaccine design, and monoclonal antibody (mAb) treatments. Diagnosis of 

Cryptococcus infection primarily relies on culturing the organism and antigen detection 

of shed PS7,8. Although both exo-PS and capsular-PS are predominantly composed of 

GXM, they exhibit distinct physicochemical properties and mAb reactivity8. Despite their 

significance in disease and diagnosis and the known chemical composition of the GXM, 

the macro- and supramolecular assembly of the Cryptococcal PS and the corresponding 
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effects on epitope binding by antibodies remain largely unknown. Studying the correlation 

between nanoscale structure and macroscopic properties of the PS, and how both natural and 

experimental environments can trigger different assembly characteristics, is crucial for the 

design of diagnostic assays and strategies for vaccine development.

The large and complex PS heteropolymers display physicochemical characteristics that 

vary based on nutrient availability, chemical and physical environment, and cell age8,9. 

Consequently, experimental biases can be introduced by sample preparation protocols and 

the inherent limitations of measurement techniques. Previous research has primarily focused 

on PS isolated from culture supernatants using hexadecyltrimethylammonium bromide 

(CTAB) precipitation or filtration, and capsular-PS extracted via dimethylsulfoxide (DMSO) 

extraction and ionizing radiation-induced PS ablation, leading to nominally de-capsulated 

cells (residual capsular-PS may remain). A variety of techniques, such as static (SLS) 

and dynamic light scattering (DLS), zeta potential measurements, optical tweezers-based 

elastic modulus assessments, and solution viscosity analyses, have been employed to 

investigate exo-PS and capsular-PS structure10,11. SLS and DLS analyses suggest that the 

polysaccharide molecules are branched, a characteristic that influences immune reactivity 

and modulation12–15. Existing experimental data is consistent with capsular-PS polymers 

in molar mass ranges of 1–7 MDa, radii of gyration (Rg) ranging from 150–500 nm, 

hydrodynamic radii (Rh) ranging spanning 570–2000 nm, contingent on the specific 

experimental method used10,13,16,17. Encapsulated and nominally de-capsulated cells were 

previously investigated by powder X-ray diffraction, where broad peaks in the range 

of 1.46 Å−1–1.51 Å−1 of momentum transfer vector q, were attributed to a repeating 

structural motif arising from inter-molecular interactions mediated by divalent metals and 

glucuronic acid residues, and/or possibly gelated PS organization18. To achieve a detailed 

characterization of the relationship between the structures of exo-PS and capsular-PS and 

their corresponding functions at different stages of infection, measurement capabilities that 

preserve PS conformation are necessary.

In this study, we used neutron scattering analyses, light microscopy, and scanning electron 

microscopy to probe the structure of exo-PS, intact fungal cells, and gamma-irradiated 

nominally de-capsulated cells in solution (Figure 2). Neutron scattering accesses a broad 

range of structural features without causing radiation damage, enabling data collection 

on the same samples across small-angle (SANS) and ultra-small angle (USANS) neutron 

scattering regimes at various temperatures and concentrations. This approach has been 

previously used for studies of polysaccharides, such as arabinoxylans by Yu et al.22, and 

minimizes sample discrepancies, while the use of varying percentages of D2O in buffers 

allows for contrast variation. Given the considerable size of the cells (micrometers in 

diameter), the USANS regime is crucial, whereas the analysis of intrachain structures is 

conducted within the SANS regime.

MATERIALS AND METHODS

Fungal Growth.

Cryptococcus neoformans Serotype A strain H99 was inoculated in 20 mL of Sabouraud 

dextrose broth and grown with agitation (120 rpm) for 2 days at 30 °C. The cells were 
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pelleted by centrifuging for 10 minutes at 3000 rpm, and resuspended in minimal media (15 

mM dextrose, 10 mM MgSO4, 29.3 mM KH2PO4, 13 mM glycine, and 3 μM thiamine-HCl, 

adjusted to pH 5.5 using KOH; where “M” represents the SI unit mol/L). The washing 

process was repeated three times, and the cells were finally resuspended in minimal 

media to a density of 1×106 cells/mL. Subsequently, the cells were inoculated into a 1 

L culture of minimal media and incubated at 30 °C for 7 days. The cells were harvested via 

centrifugation at 4,000 rpm for 20 minutes. The supernatant was filtered using a 0.22 µm 

Millipore.

Capsular-PS was removed by exposing the whole cells to 40 minutes of gamma irradiation, 

using the method demonstrated by Maxson et al.23. The ionizing radiation was demonstrated 

to be effective in removing the capsular-PS24.

Exo-PS Isolation.

The exo-PS was isolated from the cell-free supernatant as previously described25. The 

supernatant was sequentially filtered with an Amicon membrane filter (100 kDa nominal 

molar mass cutoff) and the flow-through was then filtered using a 10 kDa membrane 

filter. The exo-PS accumulated on the 10 kDa membrane surface as a clear gel and was 

collected and dialyzed extensively against MilliQ-grade H2O or D2O (Cambridge Isotope 

Labs, 99.9% D). The H2O solutions provide scattering profiles at an additional contrast, 

while the samples prepared in D2O are expected to minimize the incoherent neutron 

scattering background contribution to the measured intensity profiles. Following dialysis, the 

exo-PS concentration was determined using a phenol sulfuric colorimetry assay26. Sample 

solutions were centrifuged for 2 minutes at 10,000 rpm to remove any debris. This process 

resulted in 10mg/mL exo-PS samples with a hydrodynamic radius Rh of 550–600 nm and 

relatively low polydispersity, quantified as 0.355 (Figure S1) by DLS coupled with a 90Plus/

BI-MAS Multi-Angle Particle Sizing analyzer (Brookhaven Instruments Corp., NY, USA), 

as described by Frases et al.16. The prepared exo-PS was also resuspended at 1 mg/mL and 

5 mg/mL. Based on the equation derived by Vadillo et al.27 (c*≈ 1.46/[η]) and the intrinsic 

viscosity ([η]) of PS from strain H99 in minimal media determined by Cordero et al.13, the 

overlap concentration c* for exo-PS is estimated as 5 mg/mL28.

SANS and USANS Data Collection and Reduction.

Neutron scattering data were collected at the National Institute of Standards and Technology 

(NIST) Center for Neutron Research (NCNR; Gaithersburg, Maryland USA). All samples 

were degassed for 10 minutes before data collection. SANS data were obtained from 

the 30-meter instruments NG7 and NGB, using a neutron wavelength λ of 6 Å and a 

wavelength spread Δλ/λ of 12.5 % for three sample-to-detector distances, to measure 

scattered intensities over a range of momentum transfer defined as:

q = 4π sin θ
λ

(1)
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where 2θ is the scattering angle measured. Focusing lenses were used for the longer 

wavelengths (8.4 Å on NGB, and 8.09 Å on NG7) to extend the lower q range to 0.001 Å−1 

in the SANS regime29. Scattered neutrons were detected with a 64 cm × 64 cm 2D position-

sensitive detector with 128 pixels × 128 pixels at a resolution of 0.508 cm/pixel. SANS 

data measured for solutions in H2O at concentrations of exo-PS up to 10 mg/mL show a 

flat intensity profile in the q range measured, indicative of insufficient contrast to provide 

a measurable signal above the strong incoherent scattering background from the hydrogen 

atoms in the buffer (Figure S2). SANS measurements were carried out on 1 mg/mL, 5 

mg/mL, and 10 mg/mL of exo-PS solutions in D2O at three temperatures (22 °C, 30 °C, and 

37 °C), controlled by a Peltier-driven sample changer, with 30 minutes of pre-equilibration 

at the desired temperature before data collection. The temperatures chosen include typical 

ambient experimental environments (22 °C), as well as the C. neoformans optimal growth 

(30 °C), and physiological temperatures (37 °C). No significant differences were observed 

between the SANS profiles of exo-PS solutions at the three measured temperatures (data 

not shown): the profiles overlapped well, within experimental error. A temperature of 30 °C 

was therefore chosen for data collection on the whole cells and gamma-irradiated cells in 

the SANS and USANS regime, to maintain consistency with the growth temperature of the 

whole fungal cells.

Slit-smeared USANS data were collected at the double-crystal diffractometer (Bonse-Hart) 

BT5 at the NCNR (λ = 2.4 Å, Δλ/λ = 6%)30, to cover a q range of 0.00003 Å−1 to 0.003 

Å−1. USANS measurements were carried out on 10 mg/mL exo-PS in D2O at 30 °C to probe 

the presence of aggregates or finite size clusters or aggregates in the micrometer to hundreds 

of nanometers size range. USANS data were also collected on D2O and H2O solutions of the 

whole fungal cells, and gamma irradiated cells at the concentration of 1 × 108 cells/mL.

SANS and USANS data were reduced using the macro-routines developed for IGOR Pro 

at the NCNR31. Raw counts were normalized to a common neutron monitor count and 

corrected for empty cell counts, ambient background counts, and nonuniform detector 

response. The data obtained from the samples were placed on an absolute scale by 

normalizing the scattered intensity to the incident beam flux. Buffer-only reduced data were 

subtracted from SANS data on samples containing exo-PS or capsular-PS.

Neutron Scattering Data Fitting.

The SANS data for the exo-PS solutions in D2O were fitted using a modified empirical 

correlation length function that calculates scattering intensities as:

I q = A
qn + C

1 + qξ m + B

(2)

where the first term describes Porod scattering from pore clusters (exponent n) and the 

second term is a Lorentzian function describing scattering from the PS polymer chains 

(exponent m)32. The second term characterizes the PS/solvent interactions, and the two 

multiplicative factors A and C are, respectively, the Porod scale and the Lorentz scale. 
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ξ is a correlation length for the PS chains, and B is a q-independent incoherent neutron 

scattering intensity background contribution to I q . The calculated intensities from the 

correlation length model were smeared to match the instrumental pinhole smearing read 

from the reduced experimental data file. The exo-PS volume fraction and the B parameter 

were kept fixed throughout the fits. The fitting parameters and relevant information on the 

goodness-of-fit are available in the supporting information for the interested reader (Table 

S1). It was assumed that the entanglement of overlapping PS chains did not contribute 

significantly towards the SANS profiles.

Light Microscopy.

To measure the cell and capsule dimensions, whole cells and gamma-irradiated cells in D2O 

and H2O at 1 × 108 cells/mL were imaged with an Olympus AX70 microscope, using the 

QCapture Suite V2.46 software for Windows. Cryptococcal cells were suspended in India 

Ink, which is excluded by the PS so that the capsule region will appear to be bright/empty. 

Cell dimensions were measured with ImageJ in pixels, and then converted to µm (152 pixels 

correspond to 50 µm for 40× magnification objective with 2×2 binning). Statistical analyses 

were performed using GraphPad Prism version 9.5.1 for Mac OS X, GraphPad Software, 

Boston, Massachusetts USA. Unpaired statistical analyses t-tests were done for the cell 

diameters and capsule thickness comparisons; the corresponding significance was stratified 

based on the probability that the results occur by chance, quantified as a probability through 

a percentage p-value, where 5% is equivalent to p = 0.05.

Scanning Electron Microscopy.

SEM of encapsulated C. neoformans yeast cells was done as previously described13. Briefly, 

the cells were fixed using a solution containing glutaraldehyde, sodium Cacodylate, sucrose, 

and MgCl2. After dehydration with ethanol, critical point drying was performed using 

liquid carbon dioxide. The dried samples were then sputter-coated with gold-palladium 

for improved conductivity. Finally, the prepared samples were visualized using a JEOL 

JSM6400 Scanning Electron Microscope at an accelerating voltage of 10 kV, enabling 

high-resolution imaging of the yeast cells. To analyze the fractal dimension of SEM 

images of whole cells and capsular-PS structures, we utilized the FracLac plugin of ImageJ 

(http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/Introduction.htm). The FracLac algorithm 

quantifies the complexity of patterns in digital images, providing fractal dimensions data. 

The algorithm works by scanning the input micrographs using a shifting grid algorithm, 

which allows multiple scans from different locations on each image.

RESULTS AND DISCUSSION

SANS Analysis of Exo-PS Solutions.

Based solely on the water-free composition, the neutron scattering length density (SLD) of 

polysaccharides in H O is expected to range from 1×10−6 Å−2 to 2×10−6 Å−2 (the SLD of 

pure H O is −0.56×10−6 Å−2)33. The flat scattering profiles observed in the exo-PS samples 

measured in H2O are consistent with a high hydration state and a significant contribution 

of incoherent scattering originating from the hydrogen atoms within the samples (Figure 

S2). In the case of exo-PS solutions in D2O, there is still a relatively strong incoherent 
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neutron scattering background observed in the reduced SANS data due to the non-liable 

hydrogen atoms (Figure 3). The predominant M2 motif expected in our sample consists of 

three mannoses, two xyloses, and one glucuronic acid20, containing a significant number of 

labile hydrogens that can exchange against D2O during dialysis. However, non-labile and 

solvent-inaccessible hydrogen atoms that remain at varying concentrations are responsible 

for the differences in background intensities observed at high q in the SANS data for 

samples at 1 mg/mL, 5 mg/mL, and 10 mg/mL exo-PS (Figure 3).

At low q values, the SANS data for the 10 mg/mL exo-PS in D2O extend down to 0.001 

Å−1 and exhibit a q-dependent intensity profile that reasonably matches the USANS data 

profile. This indicates the reliability of the desmearing process (a correction applied to 

the experimental data to account for the slit-smearing effects of the Bonse-Hart USANS 

instrument) and underscores the consistency between the data collected for the sample in the 

two scattering regimes34.

For q values below 0.003 Å−1, the SANS scattered intensities of the exo-PS samples at 5 

mg/mL and 10 mg/mL display a very similar q−n dependency characteristic of mass fractals 

(refer to the Porod exponents in Table S1), with n ≈ 2.9 reflecting a compact gel structure. 

An increase in inter-cluster interactions is observed for the 5 mg/mL and 10 mg/mL exo-PS 

solutions, as indicated by the larger Porod scales compared to those at 1 mg/mL exo-PS.

The fitting of the exo-PS SANS data produced a consistent correlation length for all 

concentrations measured (48.9 ± 7.8 Å for 1 mg/mL exo-PS), which is approximately 

equivalent to the length of four M2 triads (Figure 4C). The gelation of exo-PS contributes 

to the viscosity of the solutions and yields a relatively small correlation length35. While 

the presence of negatively charged glucuronic acid (GlcA) residues can lead to chain-

swelling due to electrostatic repulsion, the occurrence of other interactions can stabilize 

polymer collapse and interchain interactions23,36,37. Namely, hydrogen bonds, van der 

Waals interactions, and ionic bridging which can be promoted by the presence of the 

divalent cations Mg2+ and Ca2+ in the culture media24. The impact of ionic bridging in 

polysaccharide structure can be observed by the change in the SAXS profile of exo-PS H2O 

solutions treated with a chelating agent (see Figure S3).

For the 1 mg/mL exo-PS solution, below the overlap concentration, the fit to the SANS data 

generated a Porod exponent of 3.28 ± 0.16, consistent with a roughness or irregularity of 

the pores within the gel network, as illustrated by the schematic drawing in Figure 4D and 

supported by the SEM data at a similar length scale.

For the 5 mg/mL and 10 mg/mL exo-PS solutions, a discernable change in the q−n 

dependency of the SANS scattering intensities is observed at q values around 0.006 Å−1 

and beyond, where n increases in its value (Figure 3 inset). In the case of the 1 mg/mL 

exo-PS solution, however, due to the poorer signal-to-noise ratio, such a transition is not as 

precisely defined.

The q-dependency of the SANS intensity was analyzed at various length scales for the 

1 mg/mL exo-PS solution in Figure 5. The Porod region (Figure 5A) covers a q-range 

of approximately 0.003 Å−1–0.015 Å−1, corresponding to structural dimensions within the 
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range of (2π/q) ≈ 420 Å-2090 Å. This is followed by the Lorentz region, characterized by 

a q-dependency of q−1. The standard Kratky plot (Figure 5B) shows that at higher q ranges, 

the profile shifts at q* ≈ 0.045 Å−1, indicating a rigid rod behavior on a local scale. At this 

length scale, the PS chain is expected to exhibit rigid rod-like behavior without reorientation 

or branching39,40. The persistence length l can be calculated for an ideal Gaussian chain 

using the formula:

l = D
q *

(3)

where D is a constant with a value of 6/π ≈ 1.9140. Applying this approximation to the 

exo-PS polymer in this local regime, the estimated persistence length is ≈ 42 Å. This length 

is consistent with that of three or four M2 units, suggesting a rigid rod-like behavior with no 

interruption between triads within each block.

Optical Microscopy, SANS, and USANS Analysis of Whole Fungal Cells.

Figure 6 and Table S2 present microscopy of C. neoformans H99 cells in different solutions. 

The microscopic images reveal a relatively high degree of variation in terms of both cell size 

and capsule thickness for the whole cell and gamma-irradiated cell suspensions. Without 

gamma irradiation, the average cell diameter was 13.9 ± 2.9 µm in D2O and 13.2 ± 3.3 

µm in H2O, while cells subjected to gamma irradiation had an average cell diameter of 

6.4 ± 2.7 µm in D2O and 7.2 ± 2.9 µm in H2O. The average capsule thickness before 

gamma-irradiation was also measured: 4.0 ± 1.4 µm in D2O and 3.6 ± 1.5 µm in H2O. Based 

on the microscopy data, the choice of solvents did not significantly affect cell di ameter or 

capsule thickness (unpaired t-test, P > 0.05, ns). However, gamma irradiation removed most 

of the capsular-PS (unpaired t-test, P < 0.0001, ****).

SANS and USANS data on whole and irradiated cells are presented in Figure 7, showing 

good agreement between the desmeared USANS data and the SANS data. In H2O, the 

scattering intensities gradually decay with increasing q both for irradiated and whole cell 

samples, reaching similar incoherent scattering background intensities of approximately 

0.07 Å−1–0.08 Å−1, dominated by contributions to incoherent scattering from the hydrogen 

atoms present. In contrast, D2O samples exhibit a substantially lower incoherent neutron 

scattering background, allowing a discernable difference in the SANS profiles to emerge at 

q > 0.1 Å−1. This range corresponds to the expected contribution of the M2 triads towards 

scattering. Notably, at these higher q values, gamma-irradiated samples display a distinct 

profile with a decrease in scattering intensities. This observation is consistent with the 

disruption of the M2 triads that SANS detects for whole cells in D2O, but not in H2O where 

it was observed that the exo-PS scattering length density is matched out. Differences are also 

evident in the Kratky plots for samples measured in D2O, as present in Figure S5 in the 

supporting information.

Given the high polydispersity of the samples, USANS data fitting was not attempted, as 

neutron scattering probes a significant amount of bulk sample compared to the images 

in Figure 6. Additionally, unknown contributions to the scattering profile from cellular 

Wang et al. Page 8

Biomacromolecules. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



components such as the nucleus or the cell wall further complicate data fitting. The 

difference in size between whole and gamma-irradiated cells is apparent from the USANS 

profiles for both H2O and D2O samples, where the scattering profiles show a maximum 

intensity plateau at q < 0.00005 Å−1, as the intensities reach the Guinier regime. The 

calculated radii of gyration for irradiated cell samples, derived from Guinier analysis (Figure 

S4 and Table S3), are consistent with the dimensions observed by optical microscopy. 

For non-irradiated samples, insufficient data points were collected in the Guinier regime, 

preventing an unambiguous calculation of the corresponding larger cell radii of gyration.

Since exo-PS in H2O solutions did not exhibit measurable contrast in the SANS regime, 

even at concentrations of 10 mg/mL, the discernible discrepancies in cell size between 

whole and gamma-irradiated cells in H2O indicate differentiation between the exo-PS and 

capsular-PS. This is consistent with a gradient of PS densities in the pristine whole cells, 

ranging from an outer, more hydrated layer to an inner, denser layer closer to the cell wall, 

which is less solvent accessible and more resistant to ablation23.

In the USANS data for H2O solutions, there is an inflection point at q ≈ 0.0001 Å−1 

that is absent in the samples containing D2O. Considering that no significant increase in 

polydispersity was detected by optical microscopy for the samples in D2O compared to 

H2O, the absence of inflection in D2O solutions is not consistent with a resolution effect. 

Instead, the data may reflect a structural characteristic of the fungal cell body for which the 

solutions in H2O provide better SLD contrast. Given the complexity of the fungal cell and 

the unknown SLD of the different cell components, no specific structure or organelle can be 

objectively assigned to this area of the USANS profile.

Fractal Analysis of Scanning Electron Micrographs.

Image analysis of encapsulated whole cells and capsular structures reveals fractal patterns 

with dimensions ranging from 1.6 to 1.85 (Figure 8). Despite these samples undergoing 

dehydration during SEM processing and thus not being in their native state, the presence 

of fractal patterns in the polysaccharides is consistent with the neutron scattering data in 

solution. Moreover, this fractal pattern was observed even after capsule dehydration and 

the coalescing of PS molecules into thick fibrils. This suggests a connection between 

the hydrated and dehydrated structures of polysaccharides, possibly reflecting a residual 

capsular resistance to dehydrating conditions.

CONCLUSIONS

This study demonstrates the effective use of neutron scattering and different neutron 

scattering contrasts (utilizing solutions with 0% and 100% D2O) to gain insights into 

the structural characteristics of both C. neoformans exo-PS and cells under their native 

conditions. Our findings present compelling evidence that exo-PS inherently exhibits mass 

fractal characteristics, representing a self-similar branched system or network spanning a 

wide range of size scales. While the presence of fractals in certain polysaccharides is not 

uncommon, the specific characteristics of these fractals, such as fractal dimension, can vary 

widely due to multiple factors, such as molecular composition, surrounding environment, 

and processing conditions6,22.
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The SANS results from exo-PS scattering are consistent with a collapsed chain-like 

behavior stabilized by interchain and intrachain interactions, including divalent cation 

bridges between negatively charged glucuronic acid residues, a phenomenon previously 

reported in the presence of water molecules25. Future SANS and USANS studies should 

address the concentration effects of exo-PS on hydrogen-to-deuterium exchange levels and 

buffer accessibility (including chelating agents if used to further investigate the role of 

cation bridging in the structuring of the polysaccharide). High concentrations are likely to 

impact solvent buffer accessibility to the polysaccharide, while lower concentrations may 

favor more uniformly chain-hydrated states and minimize scattering effects arising from 

overlapping and entanglement.

The observed rigid rod behavior of exo-PS at local scales, with an estimated persistence 

length of approximately 42 Å, suggests that the arrangement of three to four GXM triads, 

particularly the M2 motif, involves short repeats where the chain direction may change at the 

end of each repeat, resulting in an overall semi-flexible structure. This local-scale rigidity 

of exo-PS agrees with molecular modeling studies, which propose that, at least within six 

GXM motifs, the ends of the chain do not bend into close proximity41.

As a dominant virulence factor often targeted for antibody treatment, exo-PS plays a crucial 

role in infection. Recent research has identified decasaccharide (serotype A) as a possible 

minimal size for effective neutralizing mAb recognition, but our data offer a broader range 

of oligosaccharide sizes suitable for testing immune responses42. To better characterize the 

exo-PS secreted in humans during infection, similar studies on exo-PS secreted by isolated 

infecting fungal cells cultured in media with the cation compositions of human fluids should 

be conducted to explore the effects of different types and concentrations of counterions.

It is important to note that sample preparation protocols can influence the measured 

structural properties, as previously suggested10. The experimental data reflects only the 

structural features of the selected sample and it is likely that the parameters measured here 

would vary with different types of preparations. Varying molar mass cutoffs during filtration 

can result in significant differences in the USANS regime (data not shown) and previous 

studies have shown that C. neoformans GXM fractions of different molar masses are 

functionally distinct43. Further work is needed to systematically characterize USANS and 

microscopy data for exo-PS chains representing the range of molar masses found in vivo. 

Lastly, future SANS studies could utilize isotope-labeled dextrose or specific precursors to 

enhance the contributions of capsular-PS to the overall scattering profiles measured from 

whole cells, with the goal of further elucidating the differences between capsular-PS and 

exo-PS10.

In summary, the application of neutron scattering to C. neoformans polysaccharide provides 

important new insights into its structure, including evidence for a fractal-like structure 

arising from intermolecular interactions of semi-rigid PS segments. This arrangement forms 

a mesh that emerges as the capsular structure observable in the macromolecular world. This 

in turn raises the exciting possibility that the capsule emerges from perhaps a few local 

interactions between polysaccharide molecules, guided by specific local rules, resulting 

in the magnificence that is the visible cryptococcal capsule. The capsule is a highly 
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hydrated structure that is difficult to study directly using available techniques. Therefore, 

our understanding of the capsule is derived from synthesizing information gathered from 

techniques at differing scales, spanning from microscopic observations to neutron scattering 

and the chemistry of the individual sugars, in the creation of testable models. In this regard, 

the addition of neutron scattering to the methodologies used for studying cryptococcal 
polysaccharide introduces a new and welcomed analytical tool.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The six Glucuronoxylomannan (GXM) motifs that build up fungal exo-PS and capsular-PS. 

GXM is composed of a combination of six repeating units (M1-6), defined by a glucuronic 

acid (GlcA) residue every 3rd mannose with varying xylose substitutions. These 6 motifs of 

GXM in various combinations correlate to different serotype activities19. C. neoformans 
H99 serotype A has a dominant M2 motif in exo- and capsular-PS20. Polysaccharide 

molecules can be heteropolymers composed of more than one triad17. Image created with 

DrawGlycan-SNFG21.
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Figure 2. 
Schematic diagram of the samples investigated: exo-PS, cryptococcal cell, and gamma-

irradiated de-capsulated cell. Exo-PS refers to the secreted polysaccharide, while capsular-

PS refers to the highly hydrated polysaccharide surrounding the capsule of the intact 

cell. Gamma-irradiated capsular-PS refers to the remaining polysaccharide thin capsule 

surrounding the irradiated cells. Image created with BioRender.com.
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Figure 3. 
Background-subtracted, reduced SANS, and USANS data for the exo-PS solutions in D2O 

at varying concentrations. The USANS data shown has been desmeared using the macro-

routines for Igor provided by the NCNR to account for the slit-smearing effects of the 

BT5 instrument on the experimental data. The solid lines depict SANS data fits for the 

solutions at 1 mg/mL (green), 5 mg/mL (orange), and 10 mg/mL (red) exo-PS; it should 

be noted that the small discontinuities in the line fit at q ≈ 0.03 Å−1 and q ≈ 0.09 Å−1 

are a resolution artifact related to the instrumental configurations used for data collection 

and are not indicative of a sample-related scattering characteristic. The inset provides an 

enlarged view of the SANS data to highlight the distinctions observed between different 

concentrations. The error bars represent standard errors derived from counting statistics and, 

when not visibly discernible, are smaller than the corresponding data markers.
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Figure 4. 
Schematic representation of M2 motif and exo-PS in water for one M2 (A), three M2 

(B), and four M2 (C) triads, drawn and energy minimized using GLYCAM38. Residues 

are represented by their symbol nomenclature: green sphere for mannose, orange start for 

xylose, and blue diamond for GlcA. The distance between the two furthest oxygens that 

connect mannoses was measured to determine the approximate length of one (12.3 Å), three 

(38.2 Å), or four (50.9 Å) triads, respectively. (D) The exo-PS in water is drawn in 2D to 

suggest a compatible arrangement of the exo-PS structure, where each circle (except gray 

circles that represent divalent cations) represents one triad, and three exemplar chains are 

represented with different colors. A potential pattern of intra- and inter-chain ionic bridging 

by the divalent cations such as Mg2+ and Ca2+ (represented by gray circles) present in the 

cell culture media. The corresponding estimated persistence length (length of the region with 

rigid rod behavior) is approximately 42 Å. Image created with BioRender.com.
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Figure 5. 
SANS data for 1 mg/mL exo-PS solution in D2O, are shown as (A) Porod exponent-

weighted intensities and (B) a standard Kratky plot.
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Figure 6. 
Microscopy of C. neoformans H99 cells in water and the effect of gamma irradiation on 

cellular and capsular dimensions. Samples were counterstained with India Ink particles, 

which are excluded by the dense PS capsule. Cells without gamma irradiation were 

resuspended in D2O (A) and H2O (B), and cells treated with 40 minutes of gamma 

irradiation were resuspended in D2O (C) and H2O (D) as well. The cell diameters of all 

four samples were estimated (E), and capsule thickness for whole cells was obtained as the 

differences between the radii of cells and cell bodies (F). The t-test analyses are labeled 

based on their p-value (p > 0.05: ns; p < 0.05: *; p < 0.01: **; p < 0.001: ***; p < 0.0001: 

****).
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Figure 7. 
Reduced SANS (buffer subtracted) and USANS data collected for fungal cells in D2O and 

H2O solutions, for both intact and gamma-irradiated cells. The desmeared USANS data 

displayed compensates for the slit-smearing effects on the experimental data, allowing direct 

comparison with the SANS data for each sample. Error bars represent standard errors from 

counting statistics and are smaller than the corresponding data marker when not visible.
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Figure 8. 
Fractal analysis of SEM micrographs of whole encapsulated cells and capsular-PS 

structures. (A) Representative whole encapsulated C. neoformans cells and (B) capsular-PS 

structures, showing the fractal structure and the presence of an irregular pore network. Scale 

bars represent 2 and 1 micrometers, respectively. (C) Fractal dimensions of 27 micrographs 

were analyzed using the FracLac plugin in ImageJ.
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