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Abstract

Methane is a potent greenhouse gas that contributes significantly to climate change and is 

primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as 

their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of 

methane to methanol is a chemically difficult transformation, accomplished in methanotrophs 

by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or 

copper metallocofactors and have been the subject of detailed investigation. While the structure, 

function, and active site architecture of the copper-dependent particulate methane monooxygenase 

(pMMO) have been investigated extensively, its putative quaternary interactions, regulation, 

requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane 

monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, 

and, for the most part, mechanistically. Here, we review the history of MMO research, focusing 

on recent developments and providing an outlook for future directions of the field. Engineered 

biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with 

a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing 

the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, 

inorganic chemistry, microbiology, computational biology, and engineering.
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1. INTRODUCTION

Methane is the second most abundant greenhouse gas next to carbon dioxide and has 

a global warming potential 84 times that of carbon dioxide over a 20-year period.1 

Atmospheric methane levels have increased rapidly in recent years with global methane 

emissions for 2008–2017 being 576 teragrams (Tg) yr−1 (1 Tg = 1 million metric tons), 

exceeding those of the previous decade by 29 Tg yr−1.2 The largest yearly increase in 

atmospheric methane since recording began in 1983 was ~17 ppb in 2021.3,4 Approximately 

60% of these record methane emissions are anthropogenic, attributable to fossil fuel 

production and use, livestock, rice cultivation, landfills and wastewater, and biomass 

burning.2,4 Of particularly high profile are frequent instances of methane leakage from oil 

and natural gas (composed primarily of methane) harvesting and handling systems. These 

increases put Earth on track for global temperature increases of >3 °C by the end of the 

century.2 Methane is removed from the atmosphere primarily via reaction with hydroxyl 

radicals to form carbon dioxide and water. Because of its short perturbation lifetime (how 

long it takes to decay back to the original level after an emissions increase) of ~12 years, 

reducing methane emissions would have an immediate impact on climate change.1,5,6

Conversion of methane to liquid fuels and chemicals would couple mitigating climate 

change with meeting rising energy demands, but gas-to-liquid conversion processes require 

steam reforming of methane to syngas (a mixture of carbon monoxide and hydrogen) 

followed by conversion to methanol or long chain hydrocarbons via Fischer-Tropsch 

synthesis. These indirect, technically demanding processes are carried out in large scale 

facilities and entail significant capital and operating expenses.7,8 Direct conversion of 

methane to methanol is highly desirable, since methanol is used to generate the gasoline 

additive methyl tert-butyl ether, for substitution into the gasoline pool and as a feedstock for 

production of olefins, formaldehyde, and acetic acid.9 However, development of high yield 

homogeneous or heterogeneous catalysts for direct methane conversion is challenging for 

two reasons.10 First, methane has an unusually high C–H bond strength of 105 kcal/mol, 

rendering it less reactive than other alkanes.11 Second, methanol is more reactive than 
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methane and thus prone to further oxidation to CO2. As such, direct methane oxidation has 

been referred to as one of the “Holy Grails” of catalysis.12

An alternative approach to homogeneous and heterogeneous catalysis is biological catalysis 

using microorganisms or their isolated enzymes to oxidize methane to methanol under 

ambient conditions. Microbial oxidation of methane occurs in both aerobic and anaerobic 

environments. Aerobic methane oxidation is performed by methanotrophs,13 bacteria that 

consume ~30 Tg yr−1 of atmospheric methane.2,14 Methanotrophs convert methane to 

methanol in the first step of their metabolic pathway using methane monooxygenase 

(MMO) enzymes, which react with methane and dioxygen to form methanol and water. 

Two evolutionarily distinct MMOs can catalyze this chemically difficult reaction: a soluble 

enzyme (sMMO) that uses a dinuclear iron catalytic site and a membrane-bound or 

particulate enzyme (pMMO) whose activity is dependent on copper.15–17 In between aerobic 

and anaerobic methane oxidation is “intra-aerobic” methane oxidation carried out by the 

bacterial phylum NC10. These bacteria couple oxygen generation by nitrite reduction to 

methane oxidation by the pMMO system.18,19 Finally, entirely anaerobic methane oxidation 

occurs in anaerobic methanotrophic archaea (ANME) via reverse methanogenesis with 

sulfate, nitrate, or metal ions as electron acceptors.20 In contrast to aerobic methanotrophs, 

ANME and NC10 bacteria have not been isolated in pure culture, precluding biochemical 

studies. These anaerobic methane-oxidizing microbes also play a major role in offsetting 

methane emissions from soil and marine environments.21,22

In this review, we focus on the enzymatic oxidation of methane by aerobic methanotrophs. 

Recent reviews have addressed methanotroph physiology, engineering, and applications23–

27 and the biochemistry, structure, and spectroscopy of MMOs.15–17,28,29 Here we 

address both the biology and chemistry of MMOs, spanning the history of MMO 

research, while highlighting recent developments and providing an outlook on unresolved 

questions. Progress toward understanding the molecular complexity of MMOs has required 

the use of a diverse scientific toolbox, involving methods in biochemistry, molecular 

biology, computational inorganic chemistry, spectroscopy, and structural biology. Structural 

approaches, in particular, have paved the way toward understanding biological methane 

oxidation, with recent applications of state-of-the-art methods, including cryoelectron 

microscopy (cryoEM) and X-ray free electron laser (XFEL) crystallography. We first 

address the ecology and biology of methanotrophs, focusing on the central role of copper 

in their physiology. We then review pMMO, addressing its molecular structure, metal 

centers, activity, active site, and proposed protein interaction partners. Finally, we discuss 

the structure, mechanism, and protein component interactions of sMMO. We also cover 

recent progress toward engineering both MMOs, which will be essential to their deployment 

in climate bioremediation and biological gas-to-liquid conversion processes.

2. BIOLOGY OF METHANOTROPHS

2.1. Taxonomy and Metabolism

Methanotrophs are gram-negative bacteria that live on methane gas as their source of 

carbon and energy. They were first reported in 1906,30 but initial characterization did 

not happen until 50 years later with the isolation of Pseudomonas (Methylomonas) 
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methanica,31 Methanomonas methanoooxidans,32,33 and Methylococcus capsulatus,34 which 

would become a workhorse strain for studies of methanotroph biochemistry. It was also 

established early on that the oxygen atom in methanol derives from dioxygen,35,36 setting 

the stage for studies of MMO reaction chemistry. Methanotrophs were subsequently 

classified into types I, II, and X (a subset of type I) on the basis of their metabolic 

pathways, membrane lipid contents, cell morphologies, 16s rRNA sequences, and genomic 

characteristics,37,38 with multiple revisions over the years.39–41 All methanotrophs were 

long thought to be obligate, meaning that they can only live on one-carbon sources 

(primarily methane, but also possibly methanol, formate, formaldehyde and methylamines), 

but facultative methanotrophs that utilize multicarbon substrates such as acetate or ethanol 

have been isolated and characterized.42,43

Another important early observation was the presence of prominent intracytoplasmic 

membranes (ICMs), which were also used for classification, with the type I methanotrophs 

exhibiting membranes shaped like vesicular discs (Figure 1a) and the type II methanotrophs 

exhibiting paired membranes around the cell perimeter37,44 (Figure 1b). Thermoacidophilic 

methanotrophs, referred to as group III, were discovered much later45–47 and have been 

the subject of much interest due to their growth requirement for rare earth elements.48 

The type I and type II methanotrophs are synonymous with the Gammaproteobacteria and 

Alphaproteobacteria classes of the Proteobacteria phylum, respectively, while the type III 

methanotrophs belong to the Methylacidiphilae class of the Verruocmicrobia phylum.49,50 

Methanotrophs are found in diverse environments, including soil, rice paddies, freshwater 

lakes, oceans, tundra wetlands, landfills, and volcanic mudpots.13,51,52

The first step in methanotroph metabolism is the oxidation of methane to methanol by 

MMOs. Methanol is then oxidized to formaldehyde by methanol dehydrogenase (MDH). 

The next steps diverge depending on the type of methanotroph. In Gammaproteobacteria, 

carbon is assimilated at the stage of formaldehyde by the ribulose monophosphate 

pathway, whereas in Alphaproteobacteria, carbon is assimilated as formate via the serine 

pathway39,53,54 (Figure 2). Verrucomicrobial methanotrophs fix CO2 using the Calvin-

Benson-Bassham cycle.55,56 The proteobacterial assimilatory pathways have been targeted 

for metabolic engineering to produce a range of fuels and chemicals, including lactate 

and 2,3-butanediol (reviewed in refs 23 and 26). However, further advances will require 

increased rates of methane conversion to methanol,28 which cannot be accomplished without 

a detailed understanding of MMO chemistry and regulation.

2.2. Copper Acquisition

2.2.1. Methanobactins.—As a required cofactor for pMMO activity57–60 and 

an inducer of ICM formation,61–63 copper is central to methanotroph physiology. 

Methanotrophs have several specialized copper acquisition systems. Some methanotrophs 

produce natural products called methanobactins (Mbns) under conditions of copper 

starvation.64–66 Mbns are ribosomally synthesized, post-translationally modified peptide 

natural products that bind Cu(I) with particularly high affinity. The copper binding site 

consists of two nitrogen and two sulfur ligands provided by nitrogen-containing heterocycles 

and neighboring thioamide groups (Figure 3). Genes encoding the Mbn precursor peptide 
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MbnA, biosynthetic enzymes, transporters, and other associated proteins are found in Mbn 

operons,67 which are coregulated with the genes encoding sMMO.68 All Mbn operons 

encode the MbnB/MbnC heterodimeric complex that uses a mixed valent Fe(II)Fe(III) site 

in MbnB to convert two cysteines in MbnA to oxazolone/thioamide groups.69,70 Additional 

modifying enzymes present in some Mbn operons include the aminotransferase MbnN,71 

a predicted flavin-dependent oxidoreductase, MbnF, a predicted sulfotransferase, MbnS, a 

predicted TauD-like nonheme iron enzyme, MbnD, and a protein related to MbnB called 

MbnX. Variations in MbnA sequences combined with the presence of different modifying 

enzymes lead to a diversity of Mbn structures (Figure 3).72–76 Notably, Mbn operons are 

also found in a wide range of non-methanotrophic bacteria, suggesting a broader function in 

bacterial metal homeostasis.

Under copper starvation conditions, methanotrophs secrete the apo (metal free) form of 

Mbn, which is then reinternalized in its copper-bound form (Figure 4).77 Addition of 

copper-loaded Mbn to methanotrophs can promote methane oxidation activity and the 

copper switch between sMMO and pMMO (section 2.3).78,79 Due to its high affinity for 

Cu(I), Mbn not only binds copper in solution but can also extract copper from mineral 

sources or glass.78,80,81 The mechanism of Mbn secretion has not been established but 

is proposed to involve MbnM, a member of the multidrug and toxic compound extrusion 

family.67,82 Uptake of copper-loaded Mbn is an active transport process mediated by the 

outer membrane TonB-dependent transporter MbnT, which is encoded both within Mbn 

operons and elsewhere in the methanotroph genomes.82–85 After intact copper-loaded Mbn 

enters the cell,77 it may interact with periplasmic proteins such as MbnE82 or MbnP, 

followed by import to the cytoplasm, perhaps by ABC transporters (Figure 4). MbnP was 

recently shown to bind Cu(I) using a kynurenine residue that is generated by the diheme 

enzyme MbnH.86–88 The MbnP and MbnH genes are typically found adjacent to genes 

encoding MbnT. It is not known how copper is then delivered to pMMO or cytoplasmic 

cellular targets, including transcription factors.

2.2.2. MopE and Csp Proteins.—Not all methanotrophs possess the ability to 

manufacture Mbn. There is evidence that methanotrophs can take up non-native Mbns, but 

so far, this Mbn piracy only involves other Mbn producers.82,84,85 Some methanotrophs 

instead produce copper-binding proteins belonging the MopE/CorA family. The M. 
capsulatus (Bath) MopE protein is truncated and modified to contain a copper-binding 

kynurenine residue (MopE*) and then secreted. The surface-associated CorA from 

Methylomicrobium album BG8 also binds Cu(I) with kynurenine.89–91 MopE* and CorA 

differ in overall structure and in the details of copper coordination from MbnP, which also 

has a kynurenine ligand.87 In MopE* and CorA, the Cu(I) is ligated by two histidines, 

a kynurenine, and a water molecule, whereas the Cu(I) in MbnP is coordinated by one 

histidine, one methionine, a kynurenine, and a water molecule. Copper downregulates 

expression of MopE, CorA, and a Methylotuvimicrobium alcaliphilum comb. nov. 20Z 

(20Z) homolog, suggesting that these proteins function in copper acquisition.91–93 How 

copper bound to these proteins is mobilized remains unclear.

Finally, members of the copper storage protein (Csp) family have been proposed to play 

a role in methanotroph copper handling.94,95 The M. trichosporium OB3b Csp1 and Csp2 
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proteins are predicted to be secreted from the cytoplasm to the periplasm in a copper-bound 

form, which for Csp1 includes binding 13 Cu(I) ions using primarily cysteine residues 

housed in the interior of a four-helix bundle.96 While the copper-binding properties of these 

proteins have been investigated in detail, their cellular localization in methanotrophs and 

evidence for a specific role in methane oxidation have not been reported. Disruption of the 

genes encoding both Csp1 and Csp2 led to a modest increase in sMMO iron-dependent 

activity, which could be consistent with a role in copper storage for pMMO.96 Csp3, which 

does not have a signal sequence and thus should reside in the cytoplasm, binds 19 Cu(I) 

ions, also within a four-helix bundle, and is widespread in non-methanotrophic bacteria.97,98

2.3. The Copper Switch

While the sMMO and pMMO genes were initially cloned in the late 1980s and early 

1990s,99,100 numerous genomes from all types of methanotrophs are now available.23,101,102 

The sMMO genes are encoded in the mmoXYBZDC operon, with mmoX, mmoY, and 

mmoZ encoding three subunits of the hydroxylase protein (MMOH), mmoB encoding 

the regulatory protein (MMOB), and mmoC encoding the reductase (MMOR) (Figure 

5a).103 The pMMO genes include pmoA, pmoB, and pmoC, encoding the PmoA, PmoB, 

and PmoC subunits of pMMO, respectively. Methanotroph genomes contain up to three 

copies of the pMMO genes, depending on the species,100,104–113 along with up to two 

additional copies of the pmoC gene sometimes referred to as PmoC singletons.110,114 

In alphaproteobacterial methanotrophs, the pmoD gene is found adjacent to the other 

genes (Figure 5b).115 Many methanotrophs, including the Verrucomicrobia, only contain 

the pMMO genes, while a few species from the Methylocella42,116 and Methyloferula117 

genera only possess the sMMO genes.41 Notably, the pmo operon is similar to that encoding 

ammonia monooxygenase (AMO),118,119 the only enzyme besides pMMO and sMMO 

known to oxidize methane.120,121 AMO converts ammonia to hydroxylamine in ammonia-

oxidizing bacteria and ammonia-oxidizing archaea.122–125 These nitrifying microbes also 

contribute to global warming by producing nitrous oxide, which is the third most important 

greenhouse gas next to carbon dioxide and methane.5

A large subset of methanotrophs encodes both sMMO and pMMO in their genomes and 

can switch between them depending on copper-to-biomass ratios.41 This “copper switch” 

was discovered ~40 years ago with the observation that MMO activity was differentially 

associated with the membrane (particulate) or soluble fractions as a function of copper 

availability and that copper and particulate fraction activity are associated with ICM 

formation (Figure 1).61–63 In these methanotroph strains, sMMO is prevalent at copper 

concentrations <1 μM, and pMMO becomes predominant at copper concentrations >5 

μM. The copper-induced biogenesis of ICMs is not well understood despite their being 

imaged extensively by electron63,68,126,127 and fluorescence128 micros-copies as well as 

cryoelectron tomography (cryoET).129,130 These imaging studies indicate that the ICMs 

are continuous with the cytoplasmic inner membrane and form by invagination of this 

membrane.128,130,131

In the well-studied M. capsulatus (Bath) and M. trichosporium OB3b strains, transcription of 

the sMMO genes is downregulated by copper.132 While the copper switch has been referred 
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to as “reciprocal regulation”, pMMO is in fact expressed constitutively133–135 and only 

mildly upregulated in the presence of copper.132,136 Recent time-dependent qRT-PCR data 

showed less than an order of magnitude of upregulation of pMMO expression over 24 h of 

exposure to copper while sMMO expression is downregulated by 2–3 orders of magnitude 

within 24 h of exposure to copper.68 Some studies have reported a more pronounced 

increase in pMMO expression,80,137 but the consensus seems to be mild upregulation. This 

constitutive expression of pMMO raises the questions of whether it is actually present under 

low copper conditions and, if so, where it is localized and whether it contains copper.

It remains unclear how copper mediates the differential expression of the two MMOs. 

Several proteins encoded in the mmo operon, including the transcription factor MMOR 

and the GroEL homolog MmoG (Figure 5a), are essential for sMMO expression.135,138 A 

two component system found in M. capsulatus (Bath) (Figure 5a), MmoQ/MmoS, may also 

play a role in sMMO regulation. Of these four proteins, only the soluble sensor domain of 

MmoS has been biochemically characterized, and it does not bind copper.139 No regulatory 

factors for pMMO have been identified. The MMOD protein, which forms a complex with 

and inhibits the sMMO MMOH component (section 4.1),140,141 has been proposed to bind 

copper and then to both repress pMMO expression and upregulate sMMO expression.137,142 

This model is based on characterization of an M. trichosporium OB3b mutant in which 

mmoXYBZD and the first three codons of mmoC are deleted (SMDM mutant).143 For this 

mutant, pmoA expression decreases in the presence of copper as opposed to increasing in 

the wildtype strain. Since mmoD is the only disrupted gene in the SMDM mutant with 

an unclear function, it was suggested to mediate the copper switch.137 However, mmoD is 

regulated with the rest of the sMMO genes, which is inconsistent with a regulatory role. 

Also incompatible with this model, MMOD has no DNA binding or metal binding motifs,141 

does not bind copper, and does not bind to a heparin column,68 often used as a diagnostic for 

DNA binding.

Several other strains of M. trichosporium OB3b have broken copper switches in that they 

constitutively express sMMO.127 These mutants were generated by treatment with the 

mutagen dichloromethane and exhibit reduced intracellular copper levels.144 Further studies 

of one of these mutants, the PP358 strain, showed that copper neither downregulates sMMO 

nor stimulates ICM formation. The PP358 genome has been sequenced, and of potential 

relevance to the copper switch, a frameshift deletion in the copD gene was detected.68 

The copD gene neighbors (Figure 5b) and is coregulated with the pmo genes in M. 
trichosporium OB3b. Since CopDs are putative copper importers,145–148 a CopD disruption 

in Ms. trichosporium OB3b could prevent copper from reaching transcription factors in the 

cytoplasm (Figure 4). However, disruption of copD and the neighboring copC gene, which 

encodes a periplasmic copper binding protein,149 does not affect the copper switch when 

tested at copper concentrations of 0 and 1 μM.150 It is not known whether a partial deletion 

in copD, as found in the PP358 strain,68 would have the same lack of phenotype. It is 

also possible that a phenotype would be observed using different conditions and copper 

concentrations.
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3. PARTICULATE METHANE MONOOXYGENASE

3.1. Enzyme Structure

pMMO comprises three subunits, PmoB, PmoA, and PmoC, arranged in an α3β3γ3 

trimer (Figure 6a, b). All structurally characterized pMMOs, which include those from 

M. capsulatus (Bath),60,151 M. trichosporium OB3b,152 Methylocystis species strain (sp.) 

M,153 Methylocystis sp. Rockwell,59,60 and M. alcaliphilum 20Z60,154 (Table 1), form 

this trimer, and dissociation of the subunits or alternative oligomerization states have not 

been observed. One third of this trimer is typically referred to as the pMMO protomer. 

PmoB (42 kDa) consists of an N-terminal cupredoxin-like domain, two transmembrane 

helices, and a C-terminal cupredoxin-like domain. All PmoB subunits are predicted to 

have this architecture, although the related AmoB from the archaeal AMO system only 

contains one cupredoxin-like domain followed by a single transmembrane helix.155–157 

The cupredoxin-like domains face the periplasm and constitute the only soluble regions 

of pMMO. PmoA (24 kDa) comprises seven transmembrane helices, along with a small 

β hairpin that protrudes into the PmoB periplasmic domain. PmoA has a similar fold to 

the S components of bacterial energy-coupling factor (ECF) ABC transporters, which are 

responsible for uptake of vitamins such as riboflavin, thiamin, and biotin.158,159 However, 

PmoA lacks a pocket equivalent to the ligand binding site in the S components.

PmoC (22 kDa) consists of six transmembrane helices. Part of PmoC, spanning residues 

225–253 in M. capsulatus (Bath) pMMO, is unmodeled in all the crystal structures due to a 

lack of electron density (Figure 7a). This region was finally resolved in the high resolution 

(up to 2.14 Å) cryoelectron microscopy (cryoEM) structures of pMMO reconstituted into 

nanodiscs (phospholipid bilayer discs surrounded by a membrane scaffold protein belt)160 

with native methanotroph lipids (Figure 7b).60 These residues, which correspond to the 

most highly conserved part of the PmoC sequence, face the interior of the trimer and are 

stabilized by interactions with phospholipids. In the 2.6 Å resolution cryoEM structure 

of M. capsulatus (Bath) pMMO in n-dodecyl-β-d-maltoside (DDM) detergent, only PmoC 

residues 108–157 and 258–286 were modeled (Figure 7c),161 providing a less complete 

model than the crystal structures. The presence of lipids also stabilizes PmoA residues 

192–212 (M. capsulatus (Bath) numbering).60 These residues were not modeled in the M. 
capsulatus (Bath) crystal structure151 or a cryoEM structure of M. capsulatus (Bath) pMMO 

in DDM.161

In the crystal and cryoEM structures of pMMOs from the Alphaproteobacteria (M. 
trichosporium OB3b,152 M. sp. M,153 M. sp. Rockwell),59,60 strong density corresponding 

to an unidentified helix (helix X) is observed adjacent to a large groove in the surface of 

PmoC (Figure 6b). While helix X neighbors the PmoC N-terminus, ~15 residues of which 

are not modeled, its position and length are not consistent with it being connected to PmoC. 

Helix X could not be identified using mass spectrometry59 and has been modeled as up 

to 25 alanine residues, extending from the periplasm (N-terminus) toward the cytoplasm 

(C-terminus). In M. sp. Rockwell pMMO, lipids located between helix X and PmoC interact 

with two conserved arginine residues in PmoC, Arg 102 and Arg 171.59,60 Since all pMMO 

samples for structural characterization have been isolated directly from methanotrophs, it is 
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likely that helix X represents a biologically relevant interaction partner. One possibility is 

that helix X corresponds to the transmembrane helix of PmoD (section 3.6), but attempts to 

model its side chain density with the PmoD sequence have not been successful. Regardless 

of helix X’s identity, the deep groove in the surface of PmoC is striking and is a likely 

binding site for either a protein partner or a large ligand. For example, an unusually shaped 

cryoEM density in this groove has been suggested to correspond to a quinone.60

Recent serial cryo-focused ion beam (cryoFIB) milling/scanning electron microscope (SEM) 

volume imaging and cryoelectron tomography (cryoET) studies of pMMO in M. capsulatus 
(Bath) cells have revealed that the pMMO trimers assemble into higher order array 

structures.130 The pMMO trimer in the intact cell was observed at 15 Å resolution in the 

subtomogram averaged map, and a 4.8 Å resolution map of a pMMO trimer surrounded by 

six lower resolution trimers was obtained by imaging isolated membranes.130 The overall 

architecture agrees well with the crystal and cryoEM structures, and several intertrimer 

contacts involving the PmoB subunit were predicted from molecular dynamics simulations. 

Further studies, including simulations within a lipid bilayer, are needed to assess the 

molecular basis for array formation and may also shed light on the mechanisms of ICM 

biogenesis.

3.2. Metal Centers

While a 2007 study suggested that pMMO contains a catalytic diiron center similar to that 

in sMMO,162 iron detected in other preparations was attributed to heme from contaminating 

cytochromes, identifiable by optical, electron paramagnetic resonance (EPR), and X-ray 

absorption spectroscopies.163 No further evidence for a diiron center has been obtained since 

the original report.162 Instead, pMMO is widely believed to contain copper active sites, 

consistent with observations that copper restores activity to pMMO samples that have been 

metal depleted by treatment with potassium cyanide.57–60 The copper stoichiometries of 

purified pMMO from M. capsulatus (Bath) (the only pMMO studied by multiple research 

groups) over the past 20 years are in the range of either 2–3 copper ions or 13–15 copper 

ions per 100 kDa pMMO protomer.41,164–166 As detailed below, 2–3 copper ions are 

consistent with the structural data obtained over the same time period, while the higher 

copper content, still favored by Chan and co-workers,167,168 is not.

3.2.1. Metal Binding Sites in the PmoB Subunit.—The structures reveal two 

mononuclear copper centers in the PmoB subunit, in contrast to claims that PmoB is a 

“copper sponge” that can bind ~10 Cu(I) ions.161,169,170 The first copper center, denoted 

the bis-His site, is coordinated by His48 and His72 (M. capsulatus (Bath) numbering) and 

is observed in the crystal151 and cryoEM60,161 structures of M. capsulatus (Bath) pMMO 

(Figure 8a). This site is not present in the structures of pMMO from M. trichosporium 
OB3b,152 M. sp. M,153 and M. sp. Rockwell59,60 because His48 is replaced with asparagine 

in these alphaproteobacterial PmoB sequences (Figure 8b). Notably, His48 is conserved in 

M. alcaliphilum 20Z PmoB, but the site is devoid of metal.154 Given that EPR spectra of 

pMMOs from alphaproteobacterial and gammaproteobacterial methanotrophs are virtually 

identical, this site in M. capsulatus (Bath) pMMO has been assigned as Cu(I).171,172 Since 
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this site is not conserved and not always occupied, it is unlikely to play a critical functional 

role.

The second site in the PmoB subunit, denoted CuB, has been the subject of much discussion 

in the literature. In the original M. capsulatus (Bath) pMMO crystal structure, this site 

was modeled with two copper ions, one coordinated by His137 and His139 and the other 

by the side chain of His33 as well as the amino terminal group of His33, which is the 

first residue in the PmoB subunit.151 The first 32 residues constitute the predicted signal 

sequence that is presumably removed upon export to the periplasm100 and are not present 

in any pMMO preparation. The dicopper site model was influenced by extended X-ray 

absorption fine structure (EXAFS) data indicating the presence of a short (~2.5 Å) Cu–Cu 

interaction,163,173 and a similar model was proposed for M. trichosporium OB3b pMMO152 

and for one protomer of M. sp. M pMMO.153 However, higher resolution, better quality 

crystallographic data obtained for pMMOs from M. sp. Rockwell59 and M. alcaliphilum 
20Z154 (Table 1) were more consistent with a monocopper site in this location, as was 

quantum refinement174 and high-energy-resolution fluorescence detected (HERFD) EXAFS 

analysis.175 The crystal structure of the soluble portion of AmoB from the ammonia 

oxidizing archaeon Nitrosocaldus yellowstonii also revealed a single copper ion, although 

the amino terminal histidine was disordered in this structure.156

The question of the CuB nuclearity was resolved through EPR studies of M. capsulatus 
(Bath) whole cells cultivated in the presence of 15N and 63Cu.171 Consistent with 

prior whole cell EPR studies,176,177 a single type 2 Cu(II) signal was observed with 

superhyperfine splitting indicative of four equatorial nitrogen ligands (Figure 9). Three of 

these four nitrogen ligands were assigned to histidine side chains on the basis of electron 

nuclear double resonance (ENDOR) spectroscopic analysis. The only location in the pMMO 

structure with three histidines positioned to coordinate copper is the CuB site, so this EPR 

signal is attributable to CuB, which must be a mononuclear Cu(II) site. The same results 

were obtained for M. sp. Rockwell pMMO.172 In addition, 17O and 1H ENDOR data 

indicate the presence of an axially bound water molecule,171,172 and 1H ENDOR signals 

attributable to the bound amino group are observed.172 The EPR parameters of the CuB site 

are the same in whole cells, isolated membranes, and purified pMMO in detergent, bicelles, 

and nanodiscs prepared with both synthetic and native lipids.154,171,172,178

Further support for a mononuclear CuB site is derived from native top-down mass 

spectrometry (nTDMS) of pMMO.179 In these studies, M. alcaliphilum 20Z PmoB ejected 

from a detergent micelle exhibited a mass consistent with the presence of a single Cu(II) 

ion, as did M. sp. Rockwell PmoB ejected from micelles. In contrast to the typical metal 

analysis of pMMO by inductively coupled plasma mass spectrometry (ICP-MS) or optical 

emission spectroscopy (ICP-OES), nTDMS enables subunit-specific localization of bound 

metal ions. Finally, the significantly higher resolution cryoEM structures of pMMO from M. 
capsulatus (Bath) (Figure 10), M. sp. Rockwell, and M. alcaliphilum 20Z (Table 1) provided 

unequivocal evidence for a mononuclear CuB site.60

3.2.2. Metal Binding Sites in the PmoC Subunit.—The pMMO crystal structures 

revealed one metal binding site in the PmoC subunit adjacent to the disordered region, 
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denoted CuC and coordinated by Asp156, His160, and His173 (M. capsulatus (Bath) 

numbering) (Figure 11a). In the structures of pMMO from M. capsulatus (Bath)151 and 

M. sp. M,153 this site is occupied by zinc, identified by analysis of anomalous diffraction 

data. Both of these pMMOs were crystallized in the presence of excess ZnSO4, which not 

only occupies this site but also binds to the protein surface and mediates crystal lattice 

contacts. Zinc was not required for crystallization of M. trichosporium OB3b152 and M. sp. 

Rockwell59 pMMOs, and the site is occupied by copper in these structures (Figure 11b). 

Soaking of M. sp. Rockwell crystals in CuSO4 significantly increases the occupancy of the 

CuC site, while treatment with ZnSO4 results in occupancy with zinc and ordering of 10 

additional residues, including a glutamic acid coordinated to the zinc ion.59

Surprisingly, the CuC site is unoccupied in the cryoEM structures of M. capsulatus (Bath) 

pMMO in native lipid nanodiscs. Instead, another metal binding site is apparent ~5.7 Å from 

the CuC site location, with ligands Asn227, His231, and His245, all derived from the PmoC 

region that was not observed in the crystal structures (Figure 11c).60 Unlike crystallography, 

there is no method to directly identify metal ions in cryoEM density maps, but structures 

of samples depleted of metals by potassium cyanide treatment59 and then reloaded with 

CuSO4 indicate that this site, denoted CuD, is indeed occupied by copper.60,178 Instead of 

a metal ion in the CuC site, the M. capsulatus (Bath) pMMO cryoEM maps contain density 

assigned as a water molecule within hydrogen bonding distance of CuC ligands Asp156, 

His160, and His173 (Figure 11c). The CuC site is occupied in the cryoEM map of one 

sample of M. capsulatus (Bath) pMMO as well as in the cryoEM maps of pMMOs from 

M. alcaliphilum 20Z and M. sp. Rockwell. In these maps, the residues surrounding the CuD 

site are poorly ordered.60 Thus, occupancy of CuC appears to correlate with disorder in the 

highly conserved region spanning residues 225–253 (M. capsulatus (Bath) numbering).

While whole cells exhibit a single Cu(II) EPR signal attributed to CuB (section 3.2.1), 

isolated membranes and purified pMMO exhibit a second Cu(II) EPR signal (Figure 9) 

that was initially assigned to CuC using Cu–Cu distances determined from double electron-

electron resonance (DEER) spectroscopic analysis.171 15N ENDOR experiments performed 

at fields where this signal does not overlap with that of CuB indicate that the Cu(II) ion 

is coordinated by two histidine ligands, consistent with assignment to CuC. An axial water 

molecule was also detected by 1H ENDOR at a distance of ~3 Å from the Cu(II) ion. Similar 

results were obtained for pMMO reconstituted into 1-palmitoyl-2-oleoylphosphatidylcholine 

(POPC) nanodiscs, although the axial water was not present.172

The cryoEM structures60 raised the question of whether this EPR signal might instead derive 

from the CuD site given that both CuC and CuD have two histidine nitrogen ligands and one 

oxygen ligand, with the only difference being the presence of asparagine instead of aspartic 

acid in CuD (Figure 11c). To address this question, parallel samples of M. capsulatus (Bath) 

pMMO in native lipid nanodiscs were interrogated by EPR and used for cryoEM structure 

determination. These enzymatically active samples exhibited the same two Cu(II) signals 

and showed occupancy only of CuD in the cryoEM structure.178 Therefore, the second EPR 

signal is attributable to CuD in native nanodisc samples and perhaps in isolated membranes 

as well. It remains unclear whether this signal in detergent-solubilized pMMO arises from 

CuC, CuD, or some combination of the two sites, which are separated by ~5.7 Å. Regardless, 
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since this EPR signal is not observed in whole cells, the corresponding site must be Cu(I) in 

vivo.

3.3. Enzymatic Activity

3.3.1. Delivery of Electrons.—The activity of pMMO is measured by monitoring 

either propylene epoxidation or methane oxidation. Propylene epoxidation, which may 

occur by a different mechanism than that of methane oxidation, is used for whole cell 

activity assays, as methanol is further metabolized by downstream enzymes and thus 

not detectable. Methane oxidation by isolated membranes and solubilized or purified 

pMMO are most accurately measured using 13C-labeled methane, which ensures that 

all detected methanol product derives from pMMO activity.154 pMMO activity assays 

require a reductant, typically formate for whole cells, NADH or duroquinol for isolated 

membranes, and duroquinol for purified enzyme.173,180–182 Duroquinol is a synthetic analog 

of ubiquinol, and while ubiquinol is produced by methanotrophs,183,184 duroquinol is not a 

native cofactor, despite being included in some computational studies.185,186

Although these reductants are effective in vitro, the physiological source of electrons for 

pMMO remains unresolved, with several models under consideration. In the first model, 

NADH is proposed to reduce ubiquinol via a type 2 NADH:quinone oxidoreductase 

followed by the transfer of electrons from ubiquinol to pMMO.136,187 This scenario, which 

is consistent with the use of NADH and duroquinol in vitro, is referred to as the “redox 

arm” model (Figure 12).188 The second model, denoted “direct coupling”, involves transfer 

of electrons from MDH to pMMO via a cytochrome c electron shuttle (Figure 12).189 

A number of metabolic modeling studies have attempted to distinguish between these 

pathways by correlating growth parameters and other experimental data with flux balance 

analysis. Depending on the methanotroph species, these studies indicate that either pathway 

or a combination of the two, termed “uphill electron transfer”, could be operational.188,190–

195

3.3.2. Activity of Isolated pMMO Preparations.—The specific activity of pMMO 

decreases upon isolation of the membranes and is significantly reduced or completely 

abrogated after detergent solubilization and purification (Table 2). The lack of activity 

upon purification for crystallization was suggested by Chan and co-workers to result 

from the loss of as many as 12 copper ions.168,196 However, reconstitution of pMMO 

into bicelles (phospholipid bilayer discs surrounded by detergent)197 recovered activity 

without altering the copper content or EPR spectroscopic signature, indicating that removal 

from the membrane, rather than massive copper loss, adversely affects pMMO activity.154 

Reconstitution into nanodiscs in the presence of copper also recovers activity.60,179 The 

activity of M. capsulatus (Bath) pMMO nanodiscs was tested using several different lipids, 

including 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), POPC, and native lipids 

isolated directly from M. capsulatus (Bath) cells, of which the latter conferred the most 

activity (Table 2). The native lipids include a mixture of phosphatidylethanolamine (PE), 

phosphatidylcholine (PC), phosphatidylglycerol (PG), and cardiolipin (CL), as well as a 

significant fraction (~20%) of unidentified lipids.60 It is not clear why the native lipids 

confer higher activity to pMMO in nanodiscs, as lipid densities in cryoEM structures of 
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pMMO in native lipid nanodiscs resemble those in POPC nanodiscs in the same locations, 

suggesting that most of the lipids observed are PCs or native lipids that remain stably bound 

regardless of the peripheral lipid environment.60

The level of recovered activity in membrane mimetic systems approaches that of the isolated 

membranes but is still significantly less than that of whole cells (Table 2). In whole 

cells, pMMO is densely packed in the ICMs, forming hexagonal arrays (Figure 13).130,198 

These array structures can be recapitulated to some extent in nanodiscs by altering the 

reconstitution conditions, and these higher order pMMO nanodisc arrays exhibit increased 

activity compared to single particle nanodiscs.130 Thus, pMMO activity may be enhanced in 

vivo by the properties of these ordered membrane structures and perhaps by protein-protein, 

protein-lipid, or protein-quinol interactions within these arrays. Overall, the issues with 

retaining activity have precluded using isolated pMMO for biotechnological applications, 

although one promising study demonstrated that a stable and reusable catalytic material 

could be generated by embedding pMMO-containing membranes in polymer hydrogels.199

Besides methane and propylene, pMMO can oxidize C1–C5 n-alkanes and terminal 

alkenes to 2-alcohols and 1,2-epoxides, but it does not react with aromatic and cyclic 

hydrocarbons.180,181,200–202 pMMO can also oxidize ammonia, the substrate of the 

homologous enzyme AMO, to nitrite.203 Inhibitors of pMMO activity include metal 

chelating agents, alkynes, and excess copper.57,203–206 Notably, inhibition by excess copper 

can be reversed by removal with potassium cyanide and reconstitution with stoichiometric 

amounts of copper.57 Zinc is also an inhibitor, with excess zinc completely inhibiting 

activity207 and stoichiometric amounts leading to 40–60% inhibition.59 Loading of apo 

pMMO with zinc almost completely abolishes activity in membranes. Zinc may occupy the 

copper active site and has also been proposed to interfere with proton transfer.59

3.4. Assignment of the Active Site

3.4.1. Proposed Tricopper Site.—Models for the pMMO active site have evolved as 

new spectroscopic and structural data have been obtained. One model proposed prior to the 

first crystal structures and perpetuated in the literature involves a trinuclear copper center in 

the PmoA subunit.165,196,208 However, no metal binding sites were observed in PmoA in any 

of the crystal structures. Three copper ions were modeled in PmoA in the cryoEM structure 

of M. capsulatus (Bath) pMMO in detergent,161 but the cryoEM structures of M. capsulatus 
(Bath) pMMO in native lipid nanodiscs clearly show that this region is occupied by a water 

molecule and a glutamate residue60 (Figure 14). While the absence of the tricopper center 

in the crystal structures was ascribed to the loss of activity in the crystallized samples,208 its 

absence in the cryoEM structure of active pMMO in native nanodiscs60 indicates that it is 

not a viable candidate for the active site.

3.4.2. CuB Site.—The CuB site somewhat resembles the catalytic center of lytic 

polysaccharide monooxygenases (LPMOs), which hydroxylate and cleave glycosidic bonds 

of polysaccharides.209,210 The LPMO active site consists of a Cu(I) ion coordinated by 

the side chain and amino group of an N-terminal histidine and the side chain of a second 

histidine, together called a histidine brace. By contrast, the CuB site binds Cu(II) with three, 
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not two, histidines, and differs in some details of coordination. In particular, the LPMO 

non-amino terminal histidine coordinates copper with its ε nitrogen atom while one of the 

non-amino terminal histidine residues in CuB uses its δ nitrogen atom. Nevertheless, the 

ability of LPMOs to activate strong C–H bonds led to the suggestion that CuB could be 

the site of methane oxidation.211 In support of this model, a soluble fragment of PmoB 

comprising the two periplasmic domains connected by a flexible linker (spmoB)57 or by 

monomers of apo ferritin185 ostensibly exhibited methane oxidation activity. However, 

further investigation of spmoB and variants thereof indicated that the activity was not from 

the CuB site but instead was likely attributable to reactions of the reductant duroquinol with 

O2.171 Consistent with this conclusion, the activity of the apo ferritin PmoB constructs was 

highly dependent on the presence of duroquinol.185

A number of additional observations are incompatible with CuB being the active 

site. First, the three histidine ligands are not conserved in the PmoB sequences of 

verrucomicrobial pMMOs, which instead contain methionine, proline, and glycine at these 

positions.113,212,213 Second, CuB is always present as Cu(II), even in whole cells,171 

and is coordinatively saturated with four nitrogen ligands. Binding and activation of O2 

would require reduction and the presence of an open coordination site. Relatedly, there are 

members of the LPMO family that have saturated copper coordination and do not exhibit 

LPMO activity.214 Third, CuB is exposed at the protein surface, and there is no obvious 

hydrophobic pocket for substrate binding. Finally, mutation of one of the CuB ligands in a 

related hydrocarbon monooxygenase from Mycobacterium strain NBB4 did not completely 

abolish activity.215

3.4.3. CuC Site.—In contrast to CuB, several lines of evidence suggest CuC as the likely 

active site. First, all the ligands to the CuC site are strictly conserved, including in the 

verrucomicrobial PmoC sequences. Second, an increase in the methane oxidation activity 

of M. sp. Rockwell pMMO nanodiscs observed upon copper supplementation is correlated 

with increased copper in the PmoC subunit as measured by nTDMS. This experiment, while 

not specifically pinpointing CuC, demonstrated that copper bound to PmoC is critical for 

activity.179 Third, the EPR signal attributed to CuC in purified pMMO is perturbed by the 

addition of 15N NO2
−, and ENDOR data are consistent with NO2

− binding to Cu(II) via 

its oxygen atom(s).171 This finding is significant, as NO2
− inhibits methane oxidation216,217 

and is therefore likely to bind at the active site. While there is no apparent substrate 

binding cavity near CuC in the crystal structures, a hydrophobic pocket adjacent to CuC 

and CuD is present in the cryoEM structures (section 3.4.4). Finally, mutation of any of 

the three residues corresponding to the CuC ligands in the M. strain NBB4 hydrocarbon 

monooxygenase completely abrogated activity.215

3.4.4. CuD Site.—When the full architecture of the region adjacent to CuC and the 

presence of CuD were revealed by the cryoEM structures of active pMMO in native lipid 

nanodiscs (sections 3.1 and 3.2.2), the CuC active site model was revised. The cryoEM 

maps of active samples, including M. capsulatus (Bath) pMMO in both native and POPC 

nanodiscs, revealed an occupied CuD site whereas the maps of samples with no activity, 

including M. alcaliphilum 20Z and M. sp. Rockwell pMMOs in POPC nanodiscs, exhibit an 
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occupied CuC site and disorder at the CuD site.60 Thus, CuD occupancy appears to correlate 

with activity. Another key finding from the cryoEM structures in native nanodiscs is the 

presence of a hydrophobic cavity lined by residues from PmoA and PmoC, including three 

invariant phenylalanines from PmoC.60 Prior to these structures, there was no sign of a 

potential substrate binding cavity in pMMO.

The possibility of a CuD active site was further investigated by parallel ENDOR and cryoEM 

studies of M. capsulatus (Bath) pMMO in native nanodiscs in the presence of the inhibitor 

2,2,2-trifluorethanol (TFE).178 Analysis of 19F ENDOR data revealed 19F couplings (Figure 

15a) attributable to TFE interacting with the CuD site in an axial fashion with respect to the 

CuD ligand plane, with the fluorine-nuclei centroid ~5 Å away from the Cu(II) ion (Figure 

15b). Modeling TFE bound with this Cu–F distance placed the TFE oxygen atom ~2 Å from 

CuD. CryoEM maps of the same samples showed new density connected to CuD, which 

was modeled well as TFE (Figure 15c). The average Cu–F distance is ~4.8 Å, consistent 

with the geometric information yielded by ENDOR analysis, and the TFE is situated in 

the aforementioned hydrophobic cavity, tilted axially out of plane with respect to the 

CuD-coordinating ligands. Similar experiments with 4,4,4-trifluorobutanol (TFB) showed 
19F couplings to CuD via ENDOR with a larger density, modeled as TFB, connected to CuD 

in the cryoEM map. These combined data strongly support a model in which CuD and the 

surrounding cavity is the site of substrate binding and product formation. The possibility 

that CuC and CuD, separated by 5.7 Å, could be occupied by copper simultaneously in some 

form of pMMO remains open and is an important area for future investigation.

3.5. Interaction with Methanol Dehydrogenase

MDHs are dimeric enzymes that use a pyrroloquinoline quinone (PQQ)/calcium ion cofactor 

to convert methanol to formaldehyde. The MxaFI MDHs consist of two subunits, MxaF 

(64 kDa), which houses the PQQ cofactor, and MxaI (8.5 kDa), of which the function 

is not known, arranged in an α2β2 dimer (Figure 16a).218–220 A second type of MDH, 

XoxF, forms an α2 dimer of a single subunit and utilizes lanthanide ions instead of calcium 

(Figure 16b).221,222 In methanotrophs that possess both MDHs, expression is regulated by 

the presence of lanthanides, which repress transcription of MxaFI and activate transcription 

of XoxF.223–226 The verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV 

only possesses XoxF, and the presence of lanthanides is essential for its growth.45,48 Crystal 

structures of several methanotroph MDHs have been determined, including M. capsulatus 
(Bath) MxaFI,227 Methylotuvimicrobium buryatense 5GBC1 XoxF with lanthanum,228 and 

M. fumariolicum SolV XoxF in the presence of cerium,48 europium,229 and neodymium.230

Several lines of evidence suggest that pMMO interacts directly with MDH. First, MDH, 

despite being a periplasmic enzyme, is typically associated with the ICMs.231–233 Second, 

transient interactions between M. capsulatus (Bath) pMMO and its cognate MxaFI as 

well as between M. buryatense 5GBC1 pMMO and its cognate XoxF have been detected 

by biolayer interferometry with KD values of ~9 and ~50 μM, respectively.227,228 An 

interaction between M. capsulatus (Bath) MxaFI and the spmoB protein was also detected, 

consistent with the location of MxaFI in the periplasm.227 Such interactions would facilitate 
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channeling of the pMMO product methanol to the MDH active site and are consistent with 

the direct coupling model for electron transfer (section 3.3.1).

However, a stable pMMO-MDH complex has not been isolated by size exclusion 

chromatography or by reconstitution of purified proteins.227,228 A putative supercomplex 

between M. capsulatus (Bath) pMMO and its cognate MxaFI was reported based on a 16 

Å resolution 3D volume acquired by cryoEM, but three MxaFI monomers were fit to the 

density,234 inconsistent with the dimeric structure of M. capsulatus (Bath) MxaFI. More 

recently, attempts to reproduce this result or determine the high resolution structure of 

a pMMO-MDH complex using improved cryoEM technology have been unsuccessful. It 

may be that pMMO-MDH complexes can only assemble on the membrane in the context 

of the pMMO arrays present in cells.130 On the basis of crystal packing interactions 

and the presence of multiple lysine residues, the small MxaI subunit was proposed to 

mediate interactions with negatively charged phospholipid headgroups in the membrane.227 

This model is not generalizable to the XoxFs though, as these enzymes lack the second 

subunit. Nevertheless, support for the direct coupling electron transfer model, at least in 

type I methanotrophs,188,190,191,194 and longstanding evidence of MDH association with the 

membranes231–233 underscore the importance of pMMO-MDH interactions as an area for 

future study.

3.6. The PmoD Protein

The PmoD and AmoD/AmoE proteins belong to a unique protein family found only 

in methanotrophs and ammonia-oxidizing bacteria, suggesting that they are functionally 

linked to pMMO and AMO.115 In type II methanotrophs, including the Methylosinus and 

Methylocystis genera, and in gammaproteobacterial ammonia oxidizers, the pmoD/amoD 
gene is located directly adjacent to pmoB (Figure 5a).115,119,235 In betaproteobacterial 

ammonia oxidizers, amoE and amoD follow the pmo genes. Type I methanotrophs have 

genes encoding PmoD located elsewhere in the genome, typically adjacent to genes 

encoding multicopper oxidases or CopC proteins (Figure 5a).115,235 Notably, the genomes 

of methanotrophs and ammonia oxidizers contain multiple copies (2–11) of pmoD/amoD 
genes. In support of a function related to pMMO, M. trichosporium OB3b pmoD expression 

is coregulated with that of the pMMO subunits.68 Furthermore, its genetic disruption leads 

to a growth defect under pMMO-utilizing conditions, while growth under sMMO-utilizing 

(copper-starvation) conditions is not affected.115

PmoD proteins are predicted to comprise an N-terminal periplasmic domain followed by a 

transmembrane helix (Figure 4). The N-terminal domain of the PmoD protein encoded in the 

Mc. sp. Rockwell pmo operon has been biochemically and structurally characterized.115,236 

In the presence of copper, this domain forms a dimeric species with optical and EPR 

spectroscopic features (Figure 17a) characteristic of a CuA site.237 Mutagenesis data indicate 

that unlike typical CuA sites, the ligands derive from two monomers, resulting in a 

symmetric site with distinct electronic properties (Figure 17b). The crystal structure of the 

CuA-bridged dimer has not been determined, but that of a monomeric species115 reveals key 
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differences in the regions that provide the ligands in typical CuA domains (Figure 17c).238–

240 The PmoD CuA site is also unusually unstable, decaying slowly to form two type 2 

Cu(II) sites.236

Formation of the CuA site is associated with the presence of a Cx7MxHxnC motif, which is 

characteristic of PmoDs encoded within pmo operons. PmoD homologs encoded in different 

genomic neighborhoods contain a variety of other potential metal binding motifs and also 

bind copper but do not form CuA sites.115 Full-length PmoD, including the C-terminal 

transmembrane helix, has not been biochemically characterized, so it remains unclear 

whether the CuA site or any type of copper site forms when PmoD is embedded in the 

membrane. Further, it is not known whether in vitro copper binding or CuA formation is 

related to the growth phenotype upon disruption of the pmo operon copy of the PmoD gene 

in the M. trichosporium OB3b.115 While PmoD has been proposed to play a role in pMMO 

copper loading, catalytic activity, and/or stabilization,115,236 further investigation is needed 

to elucidate its functional significance.

3.7. Mechanisms of Dioxygen and Methane C–H Bond Activation

Despite the continually evolving picture of the pMMO copper active site, computational 

chemists have attempted to elucidate its mechanism of O2 activation, with a number of 

intermediates under consideration. Early studies by Yoshizawa and co-workers utilized the 

CuB site as a model, albeit with an oxygen atom from a nearby glutamic acid rather 

than the amino terminal group as a fourth ligand. Their calculated reaction pathways 

for M. capsulatus (Bath) pMMO involved conversion of a μ-η2:η2-peroxo-Cu(II)Cu(II) 

or a μ-η1:η2-peroxo-Cu(I)-Cu(II) species to a reactive bis(μ-oxo)Cu(II)Cu(III) or (μ-oxo)(μ-

hydroxo)Cu(II)Cu(III) species (Figure 18) capable of methane oxidation.241–243 Formation 

of the latter species was proposed to occur via homolytic cleavage of the O–H bond 

in a nearby tyrosine residue, Tyr 374, followed by proton transfer to the μ-η2:η2-peroxo-

Cu(II)Cu(II) core, yielding a μ-η1:η2 hydroperoxo-Cu(I)Cu(II) species that is converted 

to the (μ-oxo)(μ-hydroxo)-Cu(II)Cu(III) species.243 This mechanism was revisited more 

recently, this time suggesting that the nearby glutamic acid, Glu35, receives the proton from 

Tyr374, followed by transfer to the dicopper core.244 While Tyr374 is not strictly conserved, 

all the pMMO structures have a tyrosine near the CuB site. Since CuB is not dinuclear and no 

longer believed to be the site of methane oxidation (sections 3.2.1 and 3.4.2), these studies 

are likely not relevant. However, some of the proposed dicopper intermediates could be of 

interest in a scenario with CuC and CuD occupied simultaneously, assuming that a Cu–Cu 

distance significantly less than the 5.7 Å indicated by the cryoEM structures60 could be 

achieved via conformational changes.

The reactivity of O2 with a monocopper center has also been investigated computationally. 

Using the bis-His site, which is not conserved and unlikely to bind O2, as a model, 

Yoshizawa and co-workers suggested that a Cu(III)-O (Cu(II)-O•) (Figure 18) species 

might be able to oxidize methane.241 Later studies by Ryde and co-workers using the 

mononuclear CuB site also suggested that a Cu(III)-O species can activate the methane 

C–H bond,174 though Cu(III) has yet to be detected in any biological system.245–247 A 

mechanism that does not invoke Cu(III) was proposed recently by Wang and co-workers.186 
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In this calculated mechanism, duroquinol binds at the CuC site, forming a Cu(II) duroquinol 

anion species. The duroquinol anion is then replaced by O2, coupled with electron transfer 

from O2 to the duroquinol anion to yield a Cu(II)-O2
•− species and a duroquinol radical. 

A sequence of hydrogen atom abstraction and electron transfer steps involving a second 

duroquinol molecule then results in a Cu(II)-O reactive intermediate that reacts with 

methane. This mechanism is unlikely to be relevant to pMMO activity in vivo because 

duroquinol is not the physiological reductant of pMMO. Duroquinol is a synthetic analog 

of ubiquinol, which is too large to dock at the CuC site and thus could not participate in 

this mechanism. While the larger plastoquinol could be docked at the CuC site in this study, 

the structure used for docking lacked the crystallographically disordered region of PmoC 

and the CuD site, creating an artificial cavity.186 A well-folded PmoC subunit would likely 

preclude the binding of quinols at the CuC or CuD sites. Another recent study simulated 

ubiquinol binding directly at the CuD site,248 which, while more biologically plausible than 

the binding of synthetic duroquinol at this site, might be precluded by amino acid side 

chains and lipids blocking access to this cavity.

Several studies have employed different substrates to experimentally address the mechanism 

of C–H activation by pMMO. The reaction of membrane-bound pMMO with chiral 

ethane gave an intramolecular kinetic isotope effect kH/kD of 5.2–5.5 and was completely 

stereoselective, eliminating a mechanism involving alkyl radicals or cations and instead 

suggesting a concerted mechanism with a pentacoordinate hydrocarbon intermediate.249 

Enantioselective hydroxylation was also observed for other substrates such as n-pentane, 

n-butane, and alkenes, albeit with less stereoselectivity, especially for the alkenes, as 

compared to ethane.200,201,250–252 No 12C/13C carbon kinetic isotope effect was detected 

using propane as a substrate, consistent with a concerted mechanism.253 Such studies should 

be interpreted cautiously, since sMMO is known to react with different substrates via 

different mechanisms (section 4.5).

3.8. Overexpression and Engineering

Heterologous expression of pMMO has had limited success, with no laboratory ever 

obtaining expression of all three subunits in E. coli. Soluble proteins corresponding to 

one or both of the PmoB periplasmic domains have been expressed in E. coli, but these 

proteins require refolding or the presence of fusion proteins and do not exhibit methane 

oxidation activity (section 3.4.2).57,170,171,185 The periplasmic domain of AmoB from the 

ammonia-oxidizing archaeon N. yellowstonii was expressed solubly without fusion tags but 

did not exhibit methane oxidation activity.156 There is one report of heterologous expression 

of M. trichosporium OB3b pMMO in Rhodococcus erythropolis LSSE8–1, but the whole 

cell activity is 2 orders of magnitude less than that of M. trichosporium OB3b, and the 

protein expression levels were not reported.28,254 Initial steps toward expression of the 

pMMO genes in plants have been reported, but evidence for assembly of pMMO or activity 

was not obtained.255 Finally, the hydrocarbon monooxygenase from M. strain NBB4, 

which is related to pMMO and oxidizes C2–C4 alkanes, was expressed in Mycobacterium 
smegmatis, conferring ethane, propane, and butane monooxygenase activity256 and allowing 

interrogation of several site-specific mutants,215 but further work with this system has not 
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been reported. Thus, standard site-directed mutagenesis studies of pMMO have not been 

possible.

Another option for producing pMMO variants is genetic manipulation of native 

methanotrophs. Protocols for methanotroph gene disruption have been developed, providing 

insight into the functions of several proteins and facilitating metabolic engineering.26,257 

Efforts to alter pMMO specifically are complicated by the presence of multiple pmo operons 

in most methanotroph genomes. Genetic tools exist for M. buryatense 5GB1C, which 

contains a single pmo operon,258,259 and site-directed mutagenesis should be possible in 

this strain. While growth under sMMO-utilizing conditions ought to be a viable strategy 

for obtaining pMMO variants, such efforts have not been successful. One possibility 

is that pMMO is still required for cell viability under copper-starvation conditions. In 

support of this idea, M. trichosporium OB3b pMMO is expressed constitutively and only 

mildly upregulated upon copper addition.68 Another strategy for generating point mutants 

is CRISPR-Cas9 genome editing, which can be performed with ~10% efficiency in M. 
capsulatus (Bath).257,260 The feasibility of this approach for site-directed mutagenesis of 

pMMO remains unproven, however.

Cell free protein synthesis (CFPS) represents a way to circumvent both difficulties with 

heterologous expression and the possibility that mutants with impaired pMMO viability 

will not grow under sMMO-utilizing conditions. In CFPS, the transcription and translation 

machinery is isolated from the cell,261 obviating the need for a functional pMMO for 

methanotroph cell viability. In recent work, M. capsulatus (Bath) pMMO was expressed in 

an E. coli lysate system directly into POPC nanodiscs.262 To generate the amino terminal 

histidine residue of the PmoB subunit, the native signal sequence was replaced by a 

SUMO fusion protein, and expression was conducted in the presence of SUMO protease. 

Remarkably, the pMMO trimer was assembled as demonstrated by negative stain EM and 

2D class averaging. Activity assays on the cell-free reaction mixtures as well as on pMMO 

isolated from the mixture yielded no measurable methane oxidation, however. Nevertheless, 

this promising approach should be revisited as CFPS technology develops and more factors 

important for pMMO activity are elucidated.

4. SOLUBLE METHANE MONOOXYGENASE

4.1. Enzyme Structure

Three different proteins are required for methane oxidation by sMMO.16,263,264 The diiron 

active site is located in the multisubunit hydroxylase protein (MMOH). A reductase, 

MMOR, transfers two electrons from NADH to the MMOH diiron site via its two 

cofactors, FAD and a [2Fe-2S] cluster. The third component, MMOB, binds to MMOH 

and significantly increases its activity, as evidenced by a 1000-fold increase in reaction rate 

with dioxygen and a 150-fold increase in turnover number.265–267 A fourth protein encoded 

in the sMMO operon (Figure 5a), MMOD, inhibits sMMO activity.140,268 As noted above 

(section 2.3), MMOD has also been proposed to function in the copper switch,137,142 but its 

structure141 and biochemical properties68 are not consistent with this role. Another proposed 

role is iron loading of MMOH, but MMOD instead prevents reconstitution of apo MMOH 

with iron140 and reduces the rate of iron removal from MMOH.268

Tucci and Rosenzweig Page 19

Chem Rev. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Components of sMMO from both M. capsulatus (Bath) and M. trichosporium OB3b have 

been structurally characterized (Table 3). The hydroxylase (MMOH), characterized first by 

crystallography269–271 and visualized 30 years later by cryoEM,272 comprises two copies 

each of the α, β, and γ subunits arranged in a 245 kDa α2β2γ2 dimer (Figure 19a). The 

α and β subunits are primarily α-helical and form a dimeric heart-shaped structure, similar 

to that of the R2 subunit of ribonucleotide reductase.273 The α subunit houses the diiron 

center in a four-helix bundle formed by helices labeled B, C, E, and F. The N-terminus 

of the β subunit comprises a helix that docks on the α subunit followed by a loop region 

that connects to the rest of the subunit. The two γ subunits, also helical, are found on 

opposite sides of the dimeric structure. NMR structures of MMOB (Figure 19b)274,275 

and of the individual FAD/NADH binding and [2Fe-2S] cluster-containing domains of 

MMOR276–278 (Figure 19c) have been determined as well. The N-terminal 35 residues of 

MMOB are disordered in the NMR structures but were shown through NMR274 and DEER 

spectroscopies279 to interact with MMOH.

Crystal structures of protein-protein complexes are also available (Table 3). The structures 

of both M. capsulatus (Bath)280,281 and M. trichosporium OB3b282 MMOH in complex 

with MMOB show that two molecules of MMOB bind symmetrically to the MMOH dimer, 

altering the conformations of α subunit helices E, F, and H (Figure 20a). The N-terminal 

35 residues of MMOB order into a ring-like structure on the surface of MMOH, explaining 

why removal of the N-terminus obviates or significantly reduces sMMO activity280,283,284 

and why mutation of specific N-terminal residues affects steps in the catalytic cycle.285 

The MMOB C-terminus also becomes more ordered upon complexation, consistent with its 

truncation decreasing the MMOH turnover number.286 While a structure is not available for 

the MMOH-MMOR complex, hydrogen-deuterium exchange coupled to mass spectrometry 

analysis287 and chemical cross-linking data288 indicate that MMOR binds to the same region 

of MMOH as MMOB, specifically with its [2Fe-2S] cluster-containing domain occupying 

the MMOB binding site. Finally, a structure of the MMOH-MMOD complex from 

Methylosinus sporium strain 5 shows that MMOD binds in the same site as MMOB (Figure 

20b), rationalizing its inhibitory effect in vitro.141 MMOD consists of four antiparallel 

β strands and a C-terminal α helix followed by an unstructured region comprising ~35 

residues. Notably, MMOD displaces the N-terminal helix of the MMOH β subunit, causing 

helices B and C in the α subunit to shift position, thereby altering the geometry of the diiron 

active site.141

4.2. Active Site Structure

The diiron active site of sMMO, first identified by EPR, Mössbauer, and EXAFS 

spectroscopies, consists of two iron ions, Fe1 and Fe2, which are antiferromagnetically 

coupled in the Fe(III)Fe(III) state and weakly ferromagnetically coupled in the Fe(II)Fe(II) 

state.289–293 A mixed valent Fe(II)Fe(III) state can be generated, but it is not part of the 

catalytic cycle. MMOH has been crystallographically characterized in all three of these 

oxidation states (Table 3). In the Fe(III)Fe(III) state, the two iron ions are separated by 3.1 

Å. Fe1 is coordinated by Glu114, His147, and a solvent molecule, while Fe2 is coordinated 

by Glu209, Glu243, and His246 (M. capsulatus (Bath) MMOH numbering). The two iron 

ions are bridged by two hydroxides and Glu144 (Figure 21a).269–271,294 In the Fe(II)Fe(II) 

Tucci and Rosenzweig Page 20

Chem Rev. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



state, the Fe–Fe distance increases to 3.3 Å, and Glu243 shifts to bridge Fe1 and Fe2, 

displacing a bridging a hydroxide and adopting a bidentate coordination to Fe2 (Figure 

21b).282,295 In the Fe(II)Fe(III) state, the Fe–Fe distance increases to 3.3–3.4 Å and Glu144 

no longer coordinates Fe2 (Figure 21c).294 MMOH has also been crystallized in the apo, 

Co(II)Co(II), and Mn(II)Mn(II) forms (Table 3).268 The latter two structures exhibit metal 

coordination geometries similar to that of reduced Fe(II)Fe(II) MMOH. In the MMOH-

MMOB complex from M. capsulatus (Bath), Glu243 adopts coordination more similar to 

that of reduced MMOH.280 By contrast, the M. trichosporium OB3b MMOH-MMOB X-ray 

free electron laser (XFEL) structure determined at room temperature reveals a coordination 

similar to that of oxidized MMOH, suggesting that photoreduction occurred in the M. 
capsulatus (Bath) structure and that MMOB binding does not perturb Glu243.282

Multiple structures of MMOH with substrates, substrate analogs, products, and product 

analogs bound at the diiron site are available (Table 3). The substrates dibromomethane 

and iodomethane and the substrate mimic xenon, often used to probe for O2 binding sites, 

bind in cavities extending from the diiron site to the surface (section 4.3),296 as do a 

range of halogenated product analogs.297 The products methanol, ethanol, 2-bromoethanol, 

3-chloropropanol, 6-bromohexanol, and 3-bromo-3-butenol bind at the diiron site with the 

oxygen atom bridging the two iron ions.297,298 These structures are consistent with EPR 

and ENDOR data showing the binding of methanol, ethanol, DMSO, and TFE to the diiron 

center.291,299–301

4.3. Substrate Access to the Active Site

4.3.1. Chain of Cavities.—Possible pathways for substrate access to the MMOH diiron 

site have been investigated extensively. There are three hydrophobic cavities extending 

from the active site to the protein surface, denoted cavities 1, 2, and 3, as well as a 

pore connecting cavity 1 directly to the surface.269,302 Binding of substrate and product 

molecules in cavities 2 and 3 as well as at the diiron site-housing cavity 1 suggested that 

these pockets provide a route for methane and O2 entry.296–298 In particular, residues Phe188 

and Leu110 form a gate, which is closed in oxidized M. capsulatus (Bath) MMOH and was 

proposed to control access to the diiron site from cavities 2 and 3.270,297 In support of this 

gating model, these two residues shift in the M. capsulatus (Bath) MMOH-MMOB complex, 

connecting the two cavities (Figure 22a).280

Different results were obtained for M. trichosporium OB3b MMOH: the gate is open in 

both oxidized MMOH and the oxidized MMOH-MMOB complex.303 Further complicating 

the interpretation, the gate is closed in both the oxidized and the reduced M. trichosporium 
OB3b MMOH-MMOB XFEL structures determined at room temperature.282 Thus, it seems 

that MMOB may serve to close, rather than open, the gate. Interestingly, the gate is open in 

structures of M. trichosporium OB3b MMOH-MMOB with bound benzoate and succinate, 

and further examination of the M. capsulatus (Bath) MMOH-MMOB complex electron 

density map suggests that an unmodeled substrate molecule might be present and perturb 

the gate in that structure.303 Another issue with this pathway is that the reaction kinetics 

are not consistent with methane accessing the diiron site from the 35–40 Å chain of cavities 

1–3.16,304,305 In particular, the linear decay rate of reactive intermediate Q (section 4.4) with 
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substrate concentration266,306 is inconsistent with the cavities filling with methane prior to 

reaction.

4.3.2. W308 Tunnels.—There are two possible alternatives to the cavity path. First, 

direct entry to the active site might be available through the pore region. However, binding 

of MMOB covers this region and blocks the diiron center.280,303 Second, a narrow tunnel, 

denoted W308 tunnel 1 (Figure 22b), has been identified recently using a probe with a 

solvent radius of 1.1 Å as opposed to the typically used water solvent radius of 1.4 Å. This 

tunnel is gated by residues Pro215 and Trp208 and is lined with conserved hydrophobic 

residues. The tunnel is closed in the structure of reduced MMOH but open in the reduced 

MMOH-MMOB complex from M. trichosporium OB3b.303,307 The binding of MMOB 

leads to organization of a dome of hydrophobic residues at the tunnel entrance, proposed to 

facilitate O2 entry.303 The tunnel is also adjacent to a number of MMOB residues shown 

by mutagenesis to be important for catalysis.284,304 Notably, replacement of MMOB residue 

Val41, located at the tunnel entry to the α subunit, with arginine and other bulky residues 

almost completely abrogated enzymatic activity.303 While both the chain of cavities (section 

4.3.1) and W308 tunnel 1 have been proposed as access routes for both methane and O2, 

recent work suggests that a different, related path exists for methane access. This path, 

denoted W308 tunnel 2, is widened in the complex between MMOH and a double mutant of 

MMOB, S109A/T111A,308 consistent with this MMOB variant exhibiting increased rates of 

reactivity with larger substrates.309

4.4. Mechanism of Dioxygen Activation

Activation of O2 by sMMO has been studied extensively, with the first iron-oxygen 

intermediates reported 30 years ago.266,310 Single-turnover kinetic and spectroscopic studies 

of reduced MMOH with O2 in the presence of MMOB have established a detailed reaction 

cycle (Figure 23).15,16,285,311 The first intermediate, O, is an Fe(II)Fe(II) species that is 

proposed to have O2 bound to the protein but not at the diiron center, as it exhibits the same 

optical and EPR spectroscopic features as reduced MMOH.266,267,312,313 Intermediate O 

forms irreversibly, and its existence explains why formation of the subsequent intermediates 

does not depend on the O2 concentration.

The binding of O2 to the diiron center then yields intermediate P* followed by intermediate 

P. For M. capsulatus (Bath) MMOH, intermediate P* was proposed to be an Fe(III)Fe(III) 

species differing from the subsequent intermediate P in the protonation of a coordinating 

ligand or solvent molecule.314 Intermediate P* in the M. trichosporium MMOH reaction 

cycle was also originally proposed to be an Fe(III)Fe(III) species, but Mössbauer data 

indicate that it is actually an Fe(II)Fe(II) species.315,316 These studies of M. trichosporium 
MMOH P* were facilitated by using the MMOB His33Ala variant, which slows the 

decay of P*.304,316 Intermediate P is an Fe(III)Fe(III) peroxo species, identified by its 

optical and Mössbauer spectra, which are consistent with a cis or trans μ−1,2 bridging 

coordination.306,311,315 The formation and decay of P depends on pH, and kinetic solvent 

isotope effects are observed in D2O, indicating that proton transfer, likely involving a bound 

solvent molecule or one of the carboxylate ligands, is involved.314,315
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In the next step, the O–O bond is cleaved to form Q, the intermediate that reacts 

directly with methane. Intermediate Q is an antiferromagnetically coupled Fe(IV)Fe(IV) 

species,266,312,317 of which the exact structure has been the subject of ongoing debate 

(Figure 23). On the basis of Mössbauer parameters and EXAFS data fit with a short 2.46 Å 

Fe–Fe interaction, Q was proposed to have a diamond core structure,317,318 an assignment 

later supported by time-resolved resonance Raman data.319,320 However, difficulties 

reproducing the short Fe–Fe distance computationally321 and reactivity comparisons 

of biomimetic diamond and open core model compounds322 suggested that alternative 

structures might be plausible. Using HERFD XAS, it was possible to compare the pre-edge 

energy of Q with those of a range of Fe(IV)Fe(IV) model complexes. Combined with 

calculations, these data led to the conclusion that Q is better described as an open core 

structure.323,324 A comparison of newly acquired HERFD EXAFS data with the prior partial 

fluorescent yield (PFY) EXAFS results further indicated that the 2.46 Å Fe–Fe distance 

could derive from background contamination, and gave a revised Fe–Fe distance of 3.30–

3.34 Å, which is more consistent with an open core.325 The tide then turned back, with 

a systematic nuclear resonance vibrational spectroscopic (NRVS) study supporting only 

closed core models.326 In addition, DFT calculations predict that concerted motions of 

the two oxo bridges in the closed core structure provide the reactivity necessary to break 

the methane C–H bond.326 Once Q reacts with methane (section 4.5), an oxo-bridged 

Fe(III)Fe(III) product complex with an oxygen atom derived from O2,319 intermediate T, 

is formed. Finally, methanol is released, regenerating the resting Fe(III)Fe(III) state (Figure 

23).

4.5. Mechanism of C–H Activation

The reaction of intermediate Q with methane has been studied by a range of experimental 

and computational approaches. In contrast to pMMO (section 3.7), reactions with 

chiral ethane and chiral butane yield some inversion of stereochemistry, consistent with 

hydrogen abstraction by Q producing a short-lived radical intermediate.327–331 Radical 

clock substrates have also been employed as probes, including substituted cyclopropanes, 

methylcubane, and norcarane.332–337 In these studies, rearrangement of the probe substrate 

upon reaction with Q can inform upon the existence and lifetime of transient intermediates. 

The overall results are consistent with the involvement of a short-lived radical but suggest 

that different substrates are oxidized by different mechanisms, rendering it difficult to draw 

conclusions regarding methane oxidation.16,321,338,339

Kinetic isotope effect (KIE) measurements have also provided insight into the sMMO 

mechanism. A remarkably large KIE is obtained for the reaction of deuterated methane 

with intermediate Q, 50 for M. trichosporium OB3b sMMO and 28 for M. capsulatus 
(Bath) sMMO, while no KIE is measured using other substrates.306,340,341 Analysis of the 

temperature dependence of the KIE for methane is consistent with significant quantum 

tunneling,309 which is facilitated by interactions with MMOB. Using the MMOB quad 

variant (N107G/S109A/S110A/T111A), which increases the decay rate of Q with larger 

substrates presumably by increasing the size of the entry pathway (pore or other),304 reduces 

the methane KIE to 6. This result indicates that conformational changes upon interaction 

with MMOB are not only relevant to substrate access and methane specificity but also 
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important for tunneling.341 Thus, MMOB facilitates selectivity for methane, despite it 

having the highest C–H bond strength, both by modulating substrate access and by enabling 

quantum tunneling.

4.6. Interplay between MMOR and MMOB Binding

The role of MMOR in providing electrons to MMOH is clear and the ways in which 

MMOB regulates substrate access and steps in the catalytic cycle have emerged over the 

years, but how the binding of these two proteins is orchestrated has been the subject of 

debate. MMOB is believed to prevent further reduction of intermediate Q by MMOR before 

it can react with methane. In support of this role, reduced MMOH in the presence of 

MMOR, but not MMOB, exhibits significantly less activity.342 As summarized recently, 

several distinct models for regulation of electron transfer from MMOR to MMOH have 

been proposed.343 In one scenario, MMOR and MMOB bind to MMOH simultaneously 

using separate binding sites, consistent with cross-linking data suggesting formation of a 

ternary complex.344 Alternatively, only one component can interact with MMOH at a time. 

This model is supported by hydrogen-deuterium exchange coupled to mass spectrometry 

analysis showing that the binding sites overlap and fluorescence anisotropy measurements 

indicating that the MMOR [2Fe-2S] domain can displace MMOB from MMOH.287 In this 

scenario, MMOR reduces MMOH and is then replaced by MMOB, which might remain 

loosely associated via its N-terminal region or might dissociate completely.

Displacement of MMOR from reduced MMOH by MMOB is consistent with fluorescence 

anisotropy data showing that M. capsulatus (Bath) MMOB has a higher affinity for reduced 

MMOH than for oxidized MMOH.279 The increased affinity of MMOB for reduced 

MMOH contradicts early reports that MMOB decreases the MMOH redox potential,345,346 

which would mean it binds oxidized MMOH with higher affinity. Initial studies of 

M. trichosporium OB3b MMOB and MMOH using fluorescent probes did indicate a 

higher affinity for the oxidized form,347 but recent reinvestigation of the affinity of 

M. trichosporium OB3b MMOB for MMOH using 19F NMR gave different results.343 

Instead of attaching large probes to cysteine residues in MMOB as done previously, two 

tryptophan residues in MMOB and one in MMOR were replaced with 5-fluorotryptophan. 

In addition, an MMOB variant labeled with 3-bromo-1,1,1-trifluoroacetone was generated. 

The combined use of these less disruptive labels and the sensitivity of 19F NMR 

provided new insight into the interactions between the components. In particular, the same 

binding constants were measured for the interactions of both oxidized and reduced M. 
trichosporium OB3b MMOH with MMOB. The observed effect of MMOB on the MMOH 

redox potential345,346 is not consistent with this finding but may be due to experimental 

considerations in the redox titration.343

The 19F NMR study also showed that the affinity of MMOR for MMOH is similar to that of 

MMOB for MMOH, regardless of the MMOH oxidation state. These observations suggest 

that there is an equilibrium and that MMOR can completely displace MMOB, ruling out 

the simultaneous binding mechanism. Thus, a third model was proposed in which MMOB 

and MMOR compete for the binding site on MMOH regardless of oxidation state (Figure 

24).343 In this dynamic equilibrium model, irreversible reaction steps, including reduction 
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of MMOH while in complex with MMOR and subsequent reactions with O2 and methane 

while in complex with MMOB, pull the reaction forward. The slow kinetics of MMOB 

dissociation from MMOH are proposed to protect intermediate Q from unproductive 

reduction by MMOR before it can react with methane.

4.7. Overexpression and Engineering

Many studies of the MMOH mechanism and its interactions with MMOB and MMOR 

were facilitated by the ability to heterologously express MMOB in E. coli and produce 

site-specific and truncated variants. It has proven much more difficult to generate variants 

of MMOH. Expression of MMOH, MMOB, and MMOR in Pseudomonas strains has been 

reported, and Pseudomonas putida expressing sMMO degrades trichloroethylene (TCE) at 

12.5% of the rate of TCE degradation by M. trichosporium OB3b.28,348,349 TCE oxidation 

was also observed for strains of Agrobacterium tumefaciens and Rhizobium meliloti 
expressing sMMO,350 but none of these systems were reported to oxidize methane.

More recently, attempts to express sMMO have focused on coexpression with the E. coli 
chaperone proteins GroES and GroEL. Coexpression of the Methylomonas methanica MC09 

sMMO operon with E. coli GroEL and GroES led to assembly of the MMOH dimer as 

detected by native PAGE.351 This MMOH exhibited nitrobenzene oxidation activity at about 

half the level of M. trichosporium OB3b sMMO and an EPR signal consistent with the 

presence of a mixed valent Fe(II)Fe(III) center. While the sMMO operon encodes a GroEL 

homolog, MmoG (Figure 5a), it is unclear whether it interacts with a GroES homolog 

and MmoG alone is not sufficient to yield soluble MMOH. In a preprint report, screening 

and directed evolution yielded soluble M. capsulatus (Bath) MMOH upon coexpression 

with a GroEL/GroES pair from M. capsulatus (Bath). Methane conversion to methanol 

was observed in the E. coli cells expressing sMMO, and further metabolic engineering 

to produce acetone was successful.352 In addition, mutations that enhance activity, likely 

by enhancing solubility, were identified using directed evolution. Overall, this approach is 

promising both for biochemical studies and for biotechnological applications.

Another strategy for generating MMOH variants is homologous expression in 

methanotrophs. Site-directed mutagenesis of M. trichosporium OB3b MMOH has been 

performed by introducing genes with mutations into a strain lacking part of the sMMO 

operon. Unlike pMMO (section 3.8), sMMO is not required for cell viability, and these 

strains can be cultivated under pMMO-utilizing conditions followed by expression of 

sMMO variants as copper levels are lowered.143,353–355 This system has been used to 

alter several residues near the diiron center, including Cys151 and Thr213,353 as well 

as a leucine, Leu110, separating the active site from cavity 2.143 Two Cys151 variants, 

Cys151Glu and Cys151Tyr, could not be produced at high levels, while a Thr213Ser variant 

was purified and exhibited diminished propylene oxidation activity.353 Mutation of Leu110 

to glycine, cysteine, arginine, and tyrosine resulted in differences in regioselectivity,143 as 

did alterations to Phe192, which resides close to the diiron center and to Arg98, which is 

part of a hydrogen bonding network proposed to modulate access to the cavity pathway.356 

Despite these promising results over the past 20 years, this approach has yet to be deployed 

on large scale, likely due to limitations in working with methanotrophs. Finally, as noted 
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above (section 3.8), CRISPR-Cas9 gene editing can be performed with ~10% efficiency in 

M. capsulatus (Bath),257,260 but its efficacy in producing point mutants has not yet been 

demonstrated.

5. CONCLUSIONS AND OUTLOOK

Within the time of preparing this article, the climate crisis has intensified, as manifested 

in dangerous air and water temperatures, wildfires and accompanying air pollution, and 

extreme weather. As an abundant yet short-lived greenhouse gas, methane is a prime target 

for immediate mitigation efforts, and methanotrophs and MMOs present a promising route 

forward. While significant progress has been made toward an atomic level understanding 

of both pMMO and sMMO function, important questions remain unanswered. The picture 

of pMMO has been revised multiple times, with the most recent studies indicating that the 

active site is located at the PmoC CuD site, with the possibility that CuD and CuC can 

be occupied simultaneously still on the table. Activity and structural studies of pMMO in 

membranes and native lipid nanodiscs have underscored the importance of studying the 

enzyme in its native environment, and future work should prioritize in situ characterization. 

Protein-protein interactions with candidates such as PmoD and MDH may only be 

detectable in situ and have the potential to shed light on the physiological reductant(s). 

The state of the field is more advanced for sMMO, with an established catalytic cycle and a 

detailed model of interactions between MMOH and its partner proteins MMOR and MMOB. 

Regulation of intermediate Q formation, methane selectivity, and active site access are also 

well understood. The nature of Q remains controversial, but the continual application of 

advanced techniques should resolve this debate in the near future. While computational 

studies have indicated that a pMMO monocopper site could oxidize methane, experimental 

evidence for reactive intermediates analogous to sMMO intermediate Q has not yet been 

obtained. It is likely that pMMO also has specific mechanisms for preventing inactivation of 

intermediates and the enzyme subunits themselves. Engineering of both MMOs is nascent, 

with progress in heterologous and homologous expression, cell free protein synthesis, and 

CRISPR-Cas9 gene editing over the past few years. Further efforts will be required to 

establish robust systems that will ultimately be scalable to a commercially viable level. 

Such systems will require a deep understanding of methanotroph physiology, particularly 

as pertains to the copper switch, metal acquisition, and ICM formation. In the future, 

biochemists and structural biologists will need to interface closely with microbiologists, 

synthetic biologists, and engineers to leverage the full potential of these remarkable bacteria 

and enzymes for the sake of our planet.
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Figure 1. 
Micrographs of type I and type II methanotrophs. (a) Section of a type I Methylococcus 
strain magnified ×80,000. (b) Section of a type II Methylosinus strain magnified ×80,000. 

Adapted with permission from ref 37, copyright 1970, Society for General Microbiology.
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Figure 2. 
Methanotroph metabolic pathways. The pMMO trimer is colored by protomer, showing its 

C3 symmetrical organization. sMMO is colored by subunits that comprise the complex, 

along with the MMO regulatory protein B (MMOB) bound (indigo) on the front and back 

(dashed line) sides of sMMO. MDH, methanol dehydrogenase; ICMs, intracytoplasmic 

membranes; PFLAs, phospholipid fatty acids; RuMP, ribulose monophosphate; CBB, 

Calvin-Benson-Bassham; H4MPT, tetrahydromethanopterin pathway; H4F, tetrahydrofolate 

pathway; FDH, formate dehydrogenase; SHMT, serine hydroxymethyltransferase; Hps, 

hexulose 6-phosphate synthase; RuBisCo, ribulose 1,5-bisphosphate carboxylase.
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Figure 3. 
Structures of methanobactin from Methylosinus trichosporium OB3b and Methylosinus sp. 

LW3. The oxazolone moieties are highlighted in purple, and the pyrazinedione group is 

shown in green.
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Figure 4. 
Model for copper homeostasis in the type II methanotroph Methylosinus trichosporium 
OB3b.
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Figure 5. 
MMO operons. The operons encoding sMMO in (a) M. capsulatus (Bath) and (b) M. 
trichosporium OB3b and pMMO in (c) M. capsulatus (Bath) and (d) M. trichosporium OB3b 

are shown.
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Figure 6. 
Trimeric structure of pMMO. (a) CryoEM structure of M. capsulatus (Bath) pMMO in 

native lipid nanodiscs (PDB ID: 7S4H). One protomer comprising PmoB (dark purple), 

PmoA (wheat), and PmoC (light purple) is highlighted. (b) CryoEM structure of M. sp. 

Rockwell pMMO in POPC nanodiscs (PDB ID: 7S4M). One protomer comprising PmoB 

(dark blue), PmoA (blue), PmoC (sky blue), and helix X (yellow) is highlighted.
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Figure 7. 
Structures of M. capsulatus (Bath) pMMO protomers showing PmoC (light purple), PmoA 

(wheat), PmoB (dark purple), copper ions (cyan), and zinc ions (gray) as modeled. (a) 

Crystal structure of pMMO showing PmoC and PmoA subunits with missing regions 

(PDB ID: 3RGB). (b) CryoEM structure of pMMO in native lipid nanodiscs showing the 

stabilized PmoC and PmoA architectures (PDB ID: 7S4H). (c) CryoEM structure of pMMO 

in detergent with perturbed PmoC and PmoA subunits (PDB ID: 7EV9).

Tucci and Rosenzweig Page 53

Chem Rev. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
(a) The bis-His site in the PmoB subunit of M. capsulatus (Bath) (PDB ID: 7S4H) and 

(b) the corresponding residues in the PmoB subunit of M. sp. Rockwell pMMO (PDB ID: 

7S4M).
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Figure 9. 
EPR spectra of pMMO from M. capsulatus (Bath) (adapted from refs 171 and 178). (a) 

pMMO in M. capsulatus (Bath) whole cells showing a Cu(II) EPR signature corresponding 

to the CuB(II) site. Asterisk indicates an organic radical signal. (b) pMMO in isolated 

membranes showing signals corresponding to the CuB(II) site and to the CuC/D(II) site, 

which exists as Cu(I) in vivo but is oxidized to Cu(II) upon membrane isolation. (c) 

pMMO solubilized in DDM and purified shows signals for the CuB(II) and CuC/D(II) 

sites. (d) pMMO in native lipid nanodiscs exhibits signals for the CuB(II) and CuD(II) 

sites as supported by cryoEM. (e) KCN-treated pMMO in native lipid nanodiscs shows an 
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attenuated Cu(II) EPR spectrum with only a weak signal corresponding to partial loading of 

the CuB(II) site, consistent with metal depletion and supported by cryoEM. (f) KCN-treated, 

then copper-reloaded pMMO in native lipid nanodiscs shows recovered signals for the 

CuB(II) and CuD(II) sites, as supported by cryoEM.
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Figure 10. 
The CuB site in the cryoEM structure of M. capsulatus (Bath) pMMO in native lipid 

nanodiscs (PDB ID: 7S4H). The cryoEM density is shown as a transparent surface 

contoured at (a) 6σ and (b) 5σ.
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Figure 11. 
Metal binding sites in the PmoC subunit. (a) Crystal structure of M. capsulatus (Bath) 

pMMO (PDB ID: 3RGB) showing a zinc ion in the CuC site. (b) Crystal structure of M. 

sp. Rockwell pMMO (PDB ID: 4PI0) showing a copper ion in the CuC site. (c) CryoEM 

structure of M. capsulatus (Bath) pMMO in native lipid nanodiscs (PDB ID: 7S4H) showing 

an empty CuC site and a copper ion in the CuD site.
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Figure 12. 
Proposed models for electron delivery to pMMO. The direct coupling model may also 

include the transfer of methanol from the pMMO active site to the MDH active site in a 

proposed supercomplex.
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Figure 13. 
Negative stain micrograph showing pMMO in isolated membranes. The inset shows a 

magnified view of the isolated membranes with a single pMMO trimer circled.
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Figure 14. 
Proposed tricopper center in the PmoA subunit. (a) CryoEM structure of M. capsulatus 
(Bath) pMMO in native lipid nanodiscs showing the proposed tricopper center ligands and 

the corresponding density (PDB ID: 7S4H). (b) CryoEM structure of M. capsulatus (Bath) 

pMMO in DDM with copper ions and ligands shown as modeled with the corresponding 

density superimposed (PDB ID: 7EV9).
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Figure 15. 
Product analog binding at the CuD site. (a) Q-band 1H/19F Mims pulsed ENDOR of M. 
capsulatus (Bath) pMMO in native lipid nanodiscs with (light purple) and without (dark 

purple) the addition of 20× TFE at g|| = 2.14 (~11200 G). (b) Model for the binding of TFE 

to Cu(II) based on the ENDOR-derived Cu(II)–F distance of ~5 Å. (c) Model of TFE bound 

at the CuD site based on the 2.19 Å resolution cryoEM map of M. capsulatus (Bath) pMMO 

in native lipid nanodiscs with 20× TFE added (PDB ID: 8OYI).
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Figure 16. 
General architecture of methanol dehydrogenases and their active sites. (a) The calcium-

dependent M. capsulatus (Bath) MDH shown with one αβ protomer highlighted (PDB ID: 

4TQO). The MxaF subunit is shown in purple, and the MxaI subunit is shown in wheat. 

The inset shows the calcium (green) and the PQQ cofactor (purple) binding site. (b) The 

lanthanide-dependent XoxF MDH from M. fumariolicum SolV shown with one subunit of 

the homodimer highlighted in green (PDB ID: 4MAE). The inset shows the cerium (silver) 

and PQQ cofactor (green) binding site.
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Figure 17. 
Structure of PmoD and a model for CuA site formation. (a) CW X-band (~9.5 GHz) EPR 

spectrum of the CuA of PmoD. Brackets indicate hyperfine splitting Az (adapted from ref 

115). (b) Crystal structure of the PmoD soluble domain from M. sp. Rockwell (PDB ID: 

6CPD) showing potential CuA-forming residues. (c) Model of CuA site formation between 

two PmoD proteins.
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Figure 18. 
Copper-oxygen species proposed on the basis of computational studies to mediate methane 

oxidation by pMMO.
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Figure 19. 
Structures of the sMMO proteins. (a) Overall structure of MMOH highlighting one protomer 

of the α2β2γ2 dimer (PDB ID: 1MTY). The α subunit is shown in light purple, the β subunit 

is shown in dark purple, and the γ subunit is shown in wheat. (b) Structure of MMOB 

(green, PDB ID: 4GAM). (c) Structure of the MMOR ferredoxin domain (light pink, PDB 

ID: 1JQ4) and the MMOR FAD domain (salmon, PDB ID: 1TVC).
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Figure 20. 
Structures of MMOH protein-protein complexes. (a) Structure of the M. capsulatus (Bath) 

MMOH-MMOB complex with MMOB shown in green (PDB ID: 4GAM). (b) Structure of 

the M. sporium MMOH-MMOD complex with MMOD shown in pink (PDB ID: 6D7K). 

The α subunits are shown in light purple, the β subunits are shown in dark purple, and the γ 
subunits are shown in wheat.
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Figure 21. 
Active site of sMMO from M. capsulatus (Bath) with helices B, C, E, and F labeled. (a) The 

diiron cluster in the oxidized Fe(III)Fe(III) state (PDB ID: 1MTY). (b) The diiron cluster in 

the reduced Fe(II)Fe(II) state (PDB ID: 1FYZ). (c) The diiron cluster in the mixed valent 

Fe(II)Fe(III) state (PDB ID: 1FZ0).
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Figure 22. 
Proposed channels to and from the sMMO active site (PDB ID: 6YDI). (a) Substrate 

delivery channel to the hydrophobic pocket. (b) W308 tunnel 1 shown with key gating 

residues.
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Figure 23. 
sMMO reaction cycle. All of the intermediates, with the exception of R, have been detected 

directly.
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Figure 24. 
Model for regulation of electron transfer and substrate binding in sMMO adapted with 

permission from ref 343.
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Table 1.

pMMO Structures

Resolution (Å) PDB code

X-ray

M. capsulatus (Bath) pMMO 2.80 1YEW

M. capsulatus (Bath) pMMO 2.80 3RGBa

M. trichosporium OB3b pMMO 3.90 3CHX

M. sp. M pMMO 2.68 3RFR

M. sp. Rockwell pMMO 2.59 4PHZ

M. sp. Rockwell pMMO Cu(II) soaked 3.15 4PI0

M. sp. Rockwell pMMO Zn(II) soaked 3.33 4PI2

M. alcaliphilum 20Z pMMO 2.70 6CXH

CryoEM

M. capsulatus (Bath) pMMO in native lipid nanodisc 2.14 7S4H

M. capsulatus (Bath) pMMO in native lipid nanodisc 2.16 7S4J

M. capsulatus (Bath) pMMO in native lipid nanodisc 2.26 7S4I

M. capsulatus (Bath) pMMO in native lipid nanodisc 2.34 7S4K

M. capsulatus (Bath) pMMO in native lipid nanodisc + CN 3.65 7T4O

M. capsulatus (Bath) pMMO in native lipid nanodisc + CN and Cu 3.62 7T4P

M. capsulatus (Bath) pMMO in DDM 2.60 7EV9

M. capsulatus (Bath) pMMO in native lipid nanodisc + CN 3.21 8SR5

M. capsulatus (Bath) pMMO in native lipid nanodisc + CN and Cu 3.12 8SR4

M. capsulatus (Bath) pMMO in native lipid nanodisc + 20x TFE 2.19 8OYI

M. capsulatus (Bath) pMMO in native lipid nanodisc xlinked + 20x TFE 2.16 8SQW

M. capsulatus (Bath) pMMO in native lipid nanodisc + 20x TFB 2.36 8SR2

M. capsulatus (Bath) pMMO in native lipid nanodisc xlinked + 20x TFB 2.18 8SR1

M. sp. Rockwell pMMO in POPC nanodisc 2.42 7S4M

M. alcaliphilum 20Z pMMO in POPC nanodisc 2.46 7S4L

CryoET

M. capsulatus (Bath) pMMO 4.80 7YZY

a
PDB 3RGB is an improved version of structure 1YEW and should be used as the M. capsulatus (Bath) pMMO model; 1YEW is obsolete.
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Table 3.

sMMO Structures

M. capsulatus (Bath) MMOH (hydroxylase) Resolution (Å) PDB code

oxidized 4 °C 2.20 1MMO

oxidized 1.96 1FZ1

oxidized 1.70 1MTY

reduced in crystal 2.15 1FYZ

anaerobically grown reduced 2.40 1FZ5

mixed valent, reduced in crystal 2.15 1FZ2

anaerobically grown mixed valent 2.07 1FZ0

methanol soaked 2.05 1FZ6

ethanol soaked 1.96 1FZ7

Xe pressurized 3.30 1FZI

Xe pressurized 2.60 1FZH

dibromomethane grown 2.10 1FZ8

iodoethane grown 2.30 1FZ9

pH 8.5 soaked 2.38 1FZ4

pH 6.2 soaked 2.03 1FZ3

Mn(II) soaked 2.32 1XMF

apo (metal free) 2.10 1XMG

Co(II) reconstituted 2.32 1XMH

phenol soaked 1.96 1XU5

6-bromohexanol soaked 1.80 1XVB

8-bromooctanol soaked 2.00 1XVC

4-fluorophenol soaked 2.30 1XVD

3-bromo-3-butenol soaked 2.40 1XVE

chloropropanol soaked 2.00 1XVF

bromoethanol soaked 1.96 1XVG

bromophenol soaked 2.30 1XU3

cryoEM structure using graphene 2.40 7TC8

cryoEM structure using quantifoil 2.90 7TC9

M. trichosporium OB3b MMOH (hydroxylase) Resolution (Å) PDB code

oxidized 2.00 1MHY

oxidized 2.70 1MHZ

oxidized 1.52 6VK6

reduced in crystal 2.12 6VK7

MMOB, MMOR, and protein-protein complexes Resolution (Å) PDB code

M. capsulatus (Bath) MMOB NMR 1CKV

M. trichosporium OB3b MMOB NMR 2MOB

M. capsulatus (Bath) MMOR [2Fe-2S] domain NMR 1JQ4

M. capsulatus (Bath) MMOR FAD/NADH binding domain NMR 1TVC

M. sporium MMOR FAD/NADH binding domain 1.50 6L2U
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MMOB, MMOR, and protein-protein complexes Resolution (Å) PDB code

M. capsulatus (Bath) MMOH-MMOB complex 2.90 4GAM

M. trichosporium OB3b MMOH-MMOB with benzoate 1.86 6VK5

M. trichosporium OB3b MMOH-MMOB with succinate 2.03 6VK8

M. trichosporium OB3b MMOH-MMOB with one site reduced 2.35 6VK4

M. trichosporium OB3b MMOH-MMOB 5FW 2.80 7M8Q

M. trichosporium OB3b MMOH-MMOB BTFA/K15C/5FW 2.20 7M8R

M. trichosporium OB3b MMOH-MMOB S109A/T111A form 1 1.96 7S6Q

M. trichosporium OB3b MMOH-MMOB S109A/T111A form 2 2.40 7S7H

M. trichosporium OB3b MMOH-MMOB H5A 1.89 7S6R

M. trichosporium OB3b MMOH-MMOB N107G/S110A 1.98 7S6S

M. trichosporium OB3b MMOH-MMOB H33A 1.82 7S6T

M. trichosporium OB3b diferric MMOH-MMOB XFEL 1.95 6YD0

M. trichosporium OB3b diferrous MMOH-MMOB XFEL 1.95 6YDI

M. trichosporium OB3b reoxidized MMOH-MMOB XFEL 1.95 6YDU

M. trichosporium OB3b diferrous MMOH-MMOB t = 0 XFELa 2.00 6YY3

M. sporium MMOH-MMOD 2.60 67DK

a
Treated the same as 6YDU but exposed to helium rather than O2.
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