
Comprehensive genetic study of the insulin resistance marker 
TG:HDL-C in the UK Biobank

Antonino Oliveri1,4, Ryan J Rebernick1,4, Annapurna Kuppa1, Asmita Pant1, Yanhua Chen1, 
Xiaomeng Du1, Kelly C. Cushing1, Hannah N Bell2, Chinmay Raut1, Ponnandy Prabhu1, 
Vincent L. Chen1, Brian D. Halligan1, Elizabeth K. Speliotes1,3,✉

1Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, 
MI, USA.

2Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

3Department of Computational Medicine and Bioinformatics, University of Michigan Medical 
School, Ann Arbor, MI, USA.

4These authors contributed equally: Antonino Oliveri, Ryan Rebernick.

Abstract

Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of 

triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. 

We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans 

within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery 

rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence 

IR-associated loci. Seventy-two of these 114 loci have not been previously associated with 

IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for 

candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. 

We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 

European individuals in the Michigan Genomics Initiative. We identified associations with 
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diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart 

disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes 

critical in IR.

Insulin resistance (IR) is closely linked to numerous cardiometabolic risk factors and 

is thought to be the origin of many metabolic diseases1–3. IR is characterized by a 

diminished cellular response to insulin, leading to dyslipidemia4 and higher circulating 

levels of insulin and glucose5. The gold standard method to measure IR requires the 

usage of glucose clamp—an invasive, expensive, and time-consuming technique that is 

impractical for routine clinical use6. Simpler methods, such as the insulin sensitivity index 

or the homeostatic model assessment for insulin resistance (HOMA-IR), involve the direct 

measurement of insulin and/or glucose levels and have been shown to correlate strongly with 

the gold-standard glucose-clamp technique7,8. These methods have been previously applied 

to identify 130 loci independently associated with IR across several studies9–14. These loci 

have been linked to genes with functions important in insulin receptor signaling (GRB14 
and IRS1), glycogen metabolism (PPP1R3B) and adipogenesis (LYPLAL1 and FAM13A) 

among other pathways. However, these genetic studies of IR have been limited in scale 

when compared to analysis of other traits originating from groups such as the Genetic 

Investigation of Anthropometric Traits (GIANT) Consortium or the UK Biobank (UKBB). 

Although the UKBB did not quantify HOMA-IR or other direct measures of insulin, it 

did collect information on nonfasting lipids including triglycerides (TGs) and high-density 

lipoprotein cholesterol (HDL-C).

The TG:HDL-C ratio has been previously validated as a surrogate measure of IR15–19. To 

further investigate the genetic basis of IR, we performed a genome-wide association study 

(GWAS) of the TG:HDL-C using data from 402,398 Europeans within the UKBB20. Of the 

TG:HDL-C loci reaching genome-wide significance, we specifically focus on the subset of 

high-confidence IR-associated SNPs that reach significance in external studies of IR. These 

high-confidence loci are explored in the context of known insulin biology, interrogated for 

previously uncharacterized roles in IR, and examined for their contribution to disease in 

external datasets. Collectively, this study identifies numerous previously uncharacterized loci 

for IR in the context of metabolic pathways, traits and diseases.

Results

GWAS identifies 369 independent loci for TG:HDL-C

We extracted serum TG and HDL-C levels around the time of enrollment for 402,398 

Europeans from the UKBB (Fig. 1). These values were used to calculate the TG:HDL-C 

ratio (1.07 (0.66, 1.73), median (Q1–Q3); Supplementary Table 1). We then performed 

a GWAS fitting a linear mixed model using Scalable and Accurate Implementation of 

GEneralized mixed model21 (SAIGE). The dependent variable was the rank-based inverse 

normalized TG:HDL-C, and the independent variables were age, age squared, sex and the 

first ten principal components (PCs). The estimated intercept of the linkage disequilibrium 

(LD) score regression for this model was 1.5188. We corrected for this inflation in the 

test statistic. Notably, incorporating 20 PCs into the model did not substantially reduce 
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the value of the LD score regression intercept (1.4622). In total, 32,573 variants reached 

genome-wide significance (P < 5 × 10−8) for TG:HDL-C after the exclusion of insertions 

and deletions (INDELs), multiallelic/ambiguous SNPs and SNPs not available in the 

Michigan Genomics Initiative (MGI). To extract a list of independent SNPs, we then applied 

conditional and joint multiple-SNP analysis (COJO)22. COJO identified 369 genome-wide 

significant SNPs with a minor allele frequency (MAF) ≥0.01 (Supplementary Tables 2 

and 3). For each of these 369 SNPs, we determined the most likely causal gene using 

an algorithm incorporating proximity, Data-driven Expression Prioritization Integration for 

Complex Traits (DEPICT) prioritization, tissue expression and expression quantitative trait 

loci (eQTLs). Twenty-two of these 369 SNPs were nonsynonymous. For the remaining 

347 SNPs, we checked whether they were in high LD with a nonsynonymous variant 

associated with TG:HDL-C at genome-wide significance. Using an r2 > 0.8 and a distance 

criterion of 500 kb as threshold, we identified 35 synonymous and intergenic SNPs in 

high LD with a nonsynonymous variant. To determine whether these 35 nonsynonymous 

loci in high LD with a synonymous or intergenic variant were identified by chance, we 

randomly sampled 347 SNPs with effect allele frequency (EAF) ≥ 0.01 and EAF ≤ 0.99 

and quantified the number of nonsynonymous SNPs with an r2 > 0.8 and within 500 kb. 

Across 100 iterations of this process, we recovered 19.63 (95% confidence interval (CI): 

12.47–28.53) nonsynonymous SNPs on average. This suggests that (1) the likelihood of 

recovering 35 nonsynonymous variants in high LD at random is very low (P < 0.01) and 

(B) that many of these nonsynonymous SNPs are biologically relevant variants. Thus, we 

identified 57 total nonsynonymous loci (Supplementary Table 4). Three of these 57 SNPs 

lie within genes previously identified as likely causal genes through GWAS of other IR 

markers9–14. This includes GCKR, FAM13A and JMJD1C. FAM13A is closely tied to the 

regulation of adipogenesis and adipocyte function23,24. GCKR is known to regulate glucose 

metabolism25. Additionally, many of the identified nonsynonymous variants represent links 

between glucogenic and lipogenic metabolism. APOA4, APOB and PNPLA2 regulate TG 

levels and are directly controlled by insulin26–29. Thus, many of the 57 nonsynonymous loci 

correspond to genes with prominent roles in nutrient metabolism.

Of the 369 independent SNPs, 318 have not been previously reported for IR

To establish which of the 369 identified TG:HDL-C loci have previously unreported 

associations with IR, we carried out a conditional analysis incorporating the 130 variants 

from IR-associated traits reported by the Meta-Analyses of Glucose and Insulin-related 

Traits Consortium (MAGIC) studies (Supplementary Table 5)9–14. We ran SAIGE on the 

inverse normal transformed TG:HDL-C including the MAGIC variants as independent 

variables in the model in addition to the same covariates used in the original analysis. 

The estimated intercept of the LD score regression for this model was 1.4975, and the 

distribution of the test statistic was adjusted accordingly. In total, 322 of the 369 SNPs 

remained genome-wide significant (P < 5 × 10−8) after conditional analysis. To confirm 

none of these 322 SNPs were previously reported for IR, we systematically reviewed 

previous studies of fasting insulin (FI), HOMA-IR, insulin sensitivity, insulin secretion 

or other surrogate measures of IR for the presence of these 322 SNPs. No associations 

were found between 319 of the 322 SNPs, while three SNPs (rs13107325, rs72959041 and 

rs8101064) were reported in the literature (Supplementary Table 6). Furthermore, rs3810291 
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was assumed to be a known signal because we could not verify whether this variant was in 

LD with rs200172871, a variant previously associated with fasting insulin adjusted for body 

mass index (BMI)9. Thus, of the 369 original SNPs reaching genome-wide significance for 

TG:HDL-C, 318 have not been previously reported for IR.

Of 369 independent loci, 114 are high-confidence IR-associated loci

To verify the ability of the TG:HDL-C to capture known IR biology, we tested whether 

the TG:HDL-C encompassed the 130 IR-associated loci previously reported in the MAGIC 

studies9–14 (Supplementary Table 5). Of the 130 loci, 127 were present in the UKBB. 92 

of the 127 (72%) previously reported variants showed a false discovery rate (FDR)-adjusted 

P value < 0.05 in the summary statistics of our study (Supplementary Tables 7 and 8). 

Fifty-seven of 127 variants (45%) reached genome-wide significance (Supplementary Table 

8). Next, we tested whether any of the 369 independent TG:HDL-C variants met an FDR-

adjusted P value < 0.05 in the summary statistics of the MAGIC or Genetics of Insulin 

Sensitivity (GENESIS) consortia studies9–14,30. If a SNP was not available in the summary 

statistics, a proxy was used when available (Supplementary Table 9). In total, 114 of the 

369 independent loci met an FDR-adjusted P value < 0.05 in at least one of the analyzed 

traits related to IR. These 114 SNPs are thus high-confidence IR-associated loci having 

met genome-wide significance (P < 5 × 10−8) for TG:HDL-C and an FDR-adjusted P 
value < 0.05 in at least one independent study of an IR-related trait (Fig. 1a, Fig. 2a 

and Supplementary Table 2). In total, 111 of these 114 high-confidence loci overlapped 

specifically with fasting insulin, fasting insulin adjusted for BMI or HOMA-IR (Fig. 2b and 

Supplementary Tables 7, 10 and 11). Of these 114 loci, 72 have not been previously reported 

for IR.

Predicted causal genes have been previously associated with the constituent traits of 

metabolic syndrome (MetS) including obesity, waist–hip ratio (WHR), dyslipidemia and 

type 2 diabetes (T2D; Supplementary Table 6). Additionally, we examined how many 

of the 114 SNPs had a Bonferroni-adjusted P value < 0.05 in other publicly available 

studies of metabolic traits9,31–38. Over 40% of these SNPs were significantly associated 

with low-density lipoprotein cholesterol (LDL-C, 47/114), T2D (62/114), WHR (69/114), 

ALT (61/114) and systolic blood pressure (SBP, 49/114; Supplementary Table 12). Although 

these 114 high-confidence IR-associated loci reached significance in the summary statistics 

of the MAGIC/GENESIS consortia, the remaining 255 SNPs not meeting significance 

remain promising targets for future study as well, given their association with numerous 

metabolic traits (Supplementary Table 6). Thus, although all 369 SNPs represent promising 

targets for IR biology, the 114 high-confidence IR-associated SNPs were prioritized for 

further analysis.

Phenome-wide association study identifies distinct effects within metabolic traits

Although these 114 high-confidence IR-associated loci are associated with an increased 

TG:HDL-C ratio, whether they display uniform effects on other IR-associated phenotypes 

is unknown. We carried out a Phenome-wide association study (PheWAS) of the 114 SNPs 

on 14 traits related to metabolism, body composition and MetS-associated phenotypes in 

publicly available cohorts9,31–39 (Supplementary Table 12). We then applied unsupervised 
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clustering and found five distinct subgroups of SNPs with variable effects on subsets of 

these traits (Fig. 3a, Supplementary Fig. 1 and Supplementary Tables 2 and 13a,b). The 

biological function of these clusters was interrogated using gene-set enrichment analysis in 

several databases (Supplementary Table 14) and named based on the significant biological 

processes identified.

Next, for each subgroup of SNPs, we created a polygenic-risk score (PRS) summing the 

dosages of the European individuals in the UKBB weighted by the effect sizes of the SNPs 

in MGI. Subsequently, we examined the ability of those PRSs to predict the constituent 

traits in the UKBB (Fig. 3b). We found that the subgroups had different patterns of 

effects on insulin-related traits such as BMI, WHR, serum lipids, NAFLD (measured as 

proton density fat fraction), and estimated glomerular filtration rate (eGFR). All subgroups 

were associated with increased TGs and lowered HDL, which was our primary phenotype. 

The insulin/growth group associated with increased LDL-C, SBP, WHR, T2D and alanine 

aminotransferase (ALT) but decreased BMI. The carbohydrate homeostasis subgroup had 

a similar pattern but associated with decreased T2D risk. The adipogenesis subgroup was 

also similar to the insulin/growth subgroup but had nonsignificant effects on LDL-C and 

WHR. The lipid homeostasis and brain processes subgroups associated with increased BMI, 

T2D and ALT. However, the lipid homeostasis subgroup and brain processes associated with 

increased and decreased WHR, respectively. The differential effects of each variant across 

traits recapitulate the known complexity of disease within insulin-resistant individuals.

High-confidence IR loci enrich for insulin-related biology

The 114 high-confidence IR-associated SNPs were annotated using DEPICT to identify 

the enrichment in tissues, cell types and gene sets (Fig. 4 and Supplementary Table 

15). Consistent with previous findings for SNPs associated with FI9, the 114 loci show 

robust enrichment in adipose tissues (Fig. 4a,b). Enriched physiological systems correspond 

to those traditionally affected by MetS including the cardiovascular system (aortic/

heart valves), digestive system (liver/pancreas), musculoskeletal system (joints/synovial 

membrane) and the female urogenital system (myometrium/uterus/fallopian tubes; Fig. 

4c). Interestingly, unlike previous genetic studies of IR, the liver was identified in tissue 

enrichment. As IR is the result of an altered response of hepatocytes to insulin and IR is 

critical in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), this association 

points toward a shared genetic underpinning.

DEPICT was also used to perform pathway analysis that identified three distinct 

subnetworks related to growth, metabolism and abnormal lipid homeostasis (Fig. 5 

and Supplementary Table 16). Insulin is a key regulator of energy metabolism and 

growth. The growth-related subnetwork is enriched for several pro-growth protein–protein 

interaction networks including EP300, CREBBP, SMAD1, SMAD3, ESR1 and IGF1R. 

Another subnetwork present contains nodes related to the metabolism of proteins and 

phosphorus-containing compounds. Protein synthesis is traditionally promoted by insulin 

in an insulin-sensitive state40. However, this anabolic process can be impaired in individuals 

with obesity41. Finally, the last subnetwork centers on abnormal lipid homeostasis and 

encompasses established links between glucogenic metabolism, lipogenic metabolism and 
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body mass. Collectively, these enrichment studies highlight the biological mechanisms 

underlying IR. Using the 369 TG:HDL-C SNPs provided increased power further 

highlighting enrichment in these pathways and tissues in addition to others (Supplementary 

Tables 15 and 16).

Thirty-one high-confidence loci have sex-specific effects

To evaluate whether any of the 114 high-confidence IR-associated loci displayed sex-

specific effects, we ran GWASs for TG:HDL-C in males and females separately. The 

estimated intercept of the LD score regression was 1.1985 and 1.3047 for males and 

females, respectively.

The relative distributions of the test statistics were adjusted for each sex. The GWAS results 

were then meta-analyzed (Supplementary Table 17). Seventy-six of the 369 independent 

TG:HDL-C loci showed a statistical heterogeneous effect (PHet < 0.05), while 31 of the 

114 high-confidence IR-associated loci met this criterion. Interestingly, 24 of 31 (77%) 

high-confidence IR-associated loci with sex-specific effects displayed a stronger effect on 

TG:HDL-C in females when compared to males. The top loci showed a stronger sex-specific 

effect in females mapped to genes including KLF14, ZCCHC8, LINC01625 and RSPO3. 

Conversely, loci mapping to LPL/SLC18A1, LOC646736, ARL15 and FNIP1 showed a 

stronger effect in males. The 24 SNPs with stronger sex-specific effects in females were 

enriched for loci significantly associated with WHR adjusted for BMI (FDR-adjusted P 
= 7.59 × 10−20). One of these loci (rs10260148) maps to the transcription factor KLF14 

and also shows the strongest sex-specific effect in females. Previous studies of other 

SNPs mapping to KLF14 have reported sex-specific associations with metabolic traits 

including T2D, WHR, TGs, HDL-C and LDL32,33,42–44. The stronger association in females 

is hypothesized to be driven by modulation of KLF14 expression, rather than through 

hormonal means42,45. The mechanisms underlying the sex-specific effects in the remaining 

30 loci are less well characterized. Further study of these sex-specific, high-confidence IR-

associated loci may help explain the observed differences in metabolic phenotypes between 

men and women.

Eleven TG:HDL-C SNPs are identified in non-European ancestries

To determine the role of the 114 high-confidence IR-associated SNPs in non-European 

ancestries, we carried out a GWAS of the TG:HDL-C for individuals of South Asian (SAS), 

African (AFR) and Chinese (CHI) ancestry in the UKBB (Supplementary Table 18). The 

estimated genomic inflation factor was 1.0494 (SAS), 1.0393 (AFR) and 1.0007 (CHI), and 

P values were adjusted accordingly. We identified the independent SNPs using COJO for the 

GWAS results of the SAS and AFR cohorts. As the CHI cohort is below the recommended 

sample size for applying COJO, a distance criterion of 500 kb was used instead. Between 

the three ancestries, we identified 11 total loci (SAS:6, AFR:4 and CHI:1; Supplementary 

Table 19). All the 11 loci identified in non-European ancestries were located within 500 kb 

from one of the 369 independent loci for TG:HDL-C, and 6 of the 11 loci were located 

within 500 kb of one of the high-confidence IR-associated loci. This suggests that these loci 

contribute to IR-associated phenotypes across varied ancestries. The majority (7 of 11) of 

the SNPs identified from non-European ancestries were in LD (r2 > 0.1) with the nearest 
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of the European ancestry-derived independent loci for TG:HDL-C (Supplementary Table 

20). The four loci (rs15285, rs326, rs3135506 and rs12721054) that failed to meet the r2 

threshold for LD did not associate with insulin traits in the MAGIC (P > 0.05), so they do 

not meet the criteria for being high-confidence IR-associated loci. Therefore, there were no 

statistically significant ancestry-specific high-confidence loci identified.

High-confidence IR-associated PRS associates with cardiometabolic traits

To evaluate the joint effect of the high-confidence 114 IR-associated loci overall on the risk 

of disease, we created a PRS and tested its association with Phecodes on 51,550 individuals 

of European ancestry of the MGI (Fig. 6 and Supplementary Table 21). The PRS was 

significantly associated with phenotypes used to identify MetS including hyperglyceridemia 

(Padj = 8.91 × 10−41), hyperlipidemia (Padj= 1.26 × 10−30) and hypertension (Padj= 1.27 

× 10−17). Additionally, the PRS was associated with well-established sequelae of MetS 

including coronary atherosclerosis (Padj = 1.27 × 10−7) and chronic liver disease/cirrhosis 

(Padj = 1.43 × 10−7). Obesity failed to reach significance (P = 1). Other notable associations 

included disorders of lipid metabolism (Padj= 7.01 × 10−31) and T2D Padj = 1.07 × 10−19). 

The association of the PRS with IR and MetS-related sequelae in an independent cohort 

further solidifies the contribution of these loci to metabolic disease and its subsequent 

morbidity.

Discussion

In our study we leveraged the readily measurable IR marker TG:HDL-C to identify 

previously unreported loci, genes and pathways central to IR pathology. Specifically, 

we performed a GWAS of TG:HDL-C in 402,398 Europeans within the UKBB. We 

identified 369 independent SNPs that encompass 51 of 130 loci previously reported for 

IR. Furthermore, 57 of the previously reported IR loci reached genome-wide significance in 

our study and this number increases to 92 if we consider variants with an FDR-adjusted 

P value < 0.05. Of the 369 loci independently associated with TG:HDL-C, 318 have 

not been previously reported for IR, 22 are nonsynonymous and 35 are in high LD 

with a nonsynonymous variant. In total, 114 of these SNPs (72 previously unreported, 6 

nonsynonymous and 9 in high LD with a nonsynonymous variant) met an FDR-adjusted P 
value < 0.05 in at least one other study of a marker of IR, thus making them high-confidence 

IR-associated loci. The 114 high-confidence SNPs explain 3.2% of the variance in TG:HDL-

C levels and associate with IR-related traits in an independent cohort. Furthermore, these 

high-confidence loci enrich for new and established tissues, cell types, pathways and genes 

that are relevant to the patho-physiology of IR. These loci will help guide future studies and 

contribute to the mechanistic understanding of IR.

Consistent with the 2021 study by MAGIC on IR9, our findings confirm relationships 

between IR-associated loci and adipocyte biology, the endocrine system and pathways 

related to growth and cancer. Additionally, our study uncovers relationships with genes 

expressed in the liver and female reproductive system. The liver produces fat from glucose 

in response to insulin and insulin-resistant individuals can produce excess fat leading to 

hepatic steatosis. Liver-related genes represented by the 114 high-confidence IR-associated 
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loci include key metabolic enzymes such as alcohol dehydrogenase (ADH4), apolipoprotein 

H (APOH), ketohexokinase (KHK) and glycogen synthase kinase (GLYCTK). Additionally, 

TM6SF2, a known regulator of lipoprotein excretion, may lead to retention of fat 

in the liver and increased IR when mutated46. Mechanistically, dysregulation of these 

metabolic enzymes may contribute to IR. The association between IR and tissues from 

the female reproductive system is consistent with findings from MAGIC’s pathway 

enrichment highlighting female infertility and reproductive structure development. Genes 

identified by DEPICT as being related to the female reproductive system include many 

regulators of metabolism including alcohol dehydrogenase (ADH5), carbamoylphosphate 

synthetase, aspartate transcarbamoylase, and dihydroorotase (CAD), pyridoxal-dependent 

decarboxylase domain containing 1 (PDXDC1) and phosphoinositide-3-kinase regulatory 

subunit 1 (PIK3R1). As IR is mechanistically linked with polycystic ovarian syndrome 

(PCOS), it is possible that these enzymes may contribute to the pathogenesis of PCOS as 

well.

IR is also closely tied to MetS. Previous genetic studies outside of the UKBB identified 28 

loci associated with MetS47–50. Notably, our 114 high-confidence IR-associated loci capture 

7 of these 28 loci (25%; Supplementary Table 22). Furthermore, 17 of these 28 loci (61%) 

reach genome-wide significance in our analysis (Supplementary Table 23). The 7 MetS loci 

captured within our 114 high-confidence IR-associated loci map to GCKR, LOC157273, 

MLXIPL and LPL. Numerous variants mapping to GCKR have been associated with 

metabolic phenotypes as this gene controls glucose utilization in many tissues. MLXIPL 
encodes the carbohydrate response element-binding protein (ChREBP). ChREBP is a 

transcription factor expressed primarily in the liver that mediates the conversion of glucose 

into lipids51–53. ChREBP also regulates many metabolic enzymes including GCKR51,54. 

Additionally, a study of 291,107 individuals from the UKBB sought to examine loci 

associated with MetS as defined by harmonized National Cholesterol Education Program 

criteria55. Of the 93 loci this study identified, 34 (37%) of these loci overlap with our 

114 high-confidence IR-associated SNPs (Supplementary Table 24). Furthermore, 69 of 

the 93 loci (74%) reach genome-wide significance in our analysis and 90 associate with 

an FDR-adjusted P < 0.05 (Supplementary Table 25). Our 114 high-confidence loci also 

associate with the phenotypes used to diagnose MetS in an external cohort with the notable 

exception of obesity (Fig. 6). This is interesting as (1) healthy weight individuals develop 

MetS and have poor outcomes, (2) not all individuals with obesity develop MetS, and (3) it 

is possible to be both obese and metabolically ‘healthy’56–58. Collectively, the high extent of 

correlation between the TG:HDL-C-associated loci and MetS loci provides further evidence 

for the role of IR in MetS.

Our study also identifies five subgroups of variants with distinct effects across metabolic 

diseases. The ‘insulin/growth’ subgroup includes variants mapping to genes including 

INSR, VEGFA, FGFR2 and BMP7, which are key regulators of growth and development. 
INSR encodes the insulin receptor, which is the primary mediator of the cellular 

response to insulin59. VEGFs are highly conserved proangiogenic factors60. FGFR2/BMP7 
have critical roles in the adipogenesis and the maintenance of adipose tissue61,62. This 

known biology in addition to the positive association with WHR suggests a role for 

these variants in fat distribution. Other variants within the insulin/growth subgroup map 
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to genes including RSPO3, FAM13A and PPARG that when altered may result in 

subcutaneous lipodystrophy63,64. Individuals with subcutaneous lipodystrophy have high 

central deposition of fat, liver fat and cholesterol65. Dysregulating the function of these 

genes impairs the ability to store energy as subcutaneous fat leading to IR at a lower 

BMI. This same pattern but with a decreased risk of T2D and glucose can be seen in 

the ‘carbohydrate homeostasis’ subgroup, with variants mapping to MLXIPL, FGF21 and 

GCKR. MLXIPL and FGF21 may have a role in reducing the deposition of TGs and 

increasing energy metabolism66,67. GCKR encodes glucokinase regulatory protein that 

inhibits glucokinase, the enzyme that phosphorylates glucose to catalyze the first step in 

hepatic glycogen synthesis/glycolysis and β-cell insulin secretion. It has been shown that 

the P446L GCKR variant increases glycolytic flux to decrease serum glucose, increase 

glycolysis and increase hepatic de novo lipogenesis68. GCKR variants have previously 

been shown to confer decreased risk of T2D but increased risk of other metabolic 

sequelae including NAFLD, gout and familial combined hyperlipidemia69. Both the ‘lipid 

homeostasis’ and ‘brain processes’ subgroups decrease LDL-C while increasing BMI, 

T2D and ALT. These groups may represent a diversion of energy from cholesterol to TG 

formation.

Key limitations of our study include (1) that UKBB participants consist of primarily 

middle-aged and older Europeans, and (2) that we use TG:HDL-C ratio as a surrogate 

measure of IR. While the ease of TG:HDL-C measurement facilitates the collection of 

large sample sizes, it is limited by the strength of the relationship between TG:HDL-C 

and the physiological state of IR. Studies examining the correlation between TG:HDL-C 

and IR in different populations have yielded mixed results70–75. Mechanistic studies of IR 

have shown close ties between dyslipidemia and IR4. To account for the likely imperfect 

IR–TG:HDL-C relationship and increase our confidence in capturing true IR pathology, we 

prioritized the 114 SNPs that met significance in other studies of IR markers. These SNPs 

represent high-confidence loci that narrow in on the physiology of IR within the broader 

context of nutrient excess and MetS. As the median age of the primary cohort is 69 and 

the bulk of analyses were performed in individuals of European ancestry, the relevance of 

these loci to younger, non-European individuals may be limited. Our subgroup analyses 

in the non-European individuals of the UKBB were significantly limited in scale and thus 

underpowered in comparison to the European cohort. Thus, future studies should evaluate 

the contribution of these 114 high-confidence IR-associated loci to disease in younger and 

more ancestrally diverse cohorts than are available in the UKBB.

In conclusion, our study leverages data from 402,398 individuals to characterize the genetics 

of IR. We identify numerous loci, pathways and genes that were previously unreported for 

IR. We define groups of genes with variable effects on metabolic traits that better define 

disease subtypes. Future studies of these implicated loci and genes will help us better 

understand the causes of IR and its relationship to other metabolic diseases.
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Methods

Ethics statement

The UKBB protocols were approved by the National Research Ethics Service Committee. 

The MGI protocols were approved by the University of Michigan Medical School 

Institutional Review Board. Analyses in the UKBB were conducted under approved project 

18120 (E.K.S.). Participants signed written informed consent, specifically applicable to 

health-related research. All ethical regulations were followed.

Data and genotyping

The UKBB contains genotype, clinical and demographic data of over 400,000 individuals 

aged 40–69 years at the time of study recruitment. Protocols for participant genotyping, data 

collection and quality control have been described previously20,76. In brief, participants were 

genotyped on one of two purpose-designed arrays (UK BiLEVE Axiom Array (n = 50,520) 

and UKBB Axiom Array (n = 438,692)) with 95% maker overlap. The Haplotype Reference 

Consortium (HRC) was used as a reference panel to phase and impute the data. EasyQC 

(version 9.2) was used for quality using an imputation quality cutoff of 0.85.

The MGI is a hospital-based cohort containing genetic data and clinical phenotypes77. 

Participants were genotyped using the University of Michigan Advanced Genomics Core 

on one of two customized versions of the Illumina Infinium CoreExome-24 bead array 

platform. Imputation has been previously described78. Briefly, genotypes were imputed to 

both the HRC reference panel and the Trans-Omics for Precision Medicine reference panel.

GWAS and COJO

The TG:HDL-C was calculated based on the serum TGs and HDL-C at the time of 

enrollment, respectively, in the European individuals from the UKBB. European ancestry 

was genetically defined. No statistical method was used to predetermine the sample size. 

First, a subgroup of individuals was chosen as European using the field 22006 of the 

UKBB (n1 = 409,605). This subgroup consisted of a list of participants who self-identified 

as ‘White British’ with similar genetic ancestry based on PCs. The individuals of the 

UKBB excluded at the previous step were then projected, based on their genotype data, 

on a common ancestry space together with a reference sample of individuals of different 

ancestries using TRACE79. The application of a k-nearest neighbors algorithm by TRACE 

classified a further subset of individuals as European (n2 = 52,702). Our primary cohort 

consisted of the sum of the two groups (n1 + n2 = 462,307). Europeans were included in 

the analysis if their records did not show any missing information about TGs, HDL-C, age, 

sex and PCs 1–10, and if the genetic data were available (n = 402,398). We fit a linear 

mixed model using SAIGE21 (version 0.29) with rank-based inverse normal transformed 

TG:HDL-C as the dependent variable and age, age squared, sex and PCs 1–10 and SNPs as 

independent variables. The distribution of the TG:HDL-C was normal given the rank-based 

inverse normal transformation. The effects of the SNPs were tested under an additive genetic 

model. We excluded variants with an imputation cutoff <0.85 or minor allele count <3.5. 

The LD score regression intercept was quantified using ldsc80 (version 1.0.1) and used to 

adjust the test statistic of our GWAS for inflation. After excluding multiallelic or ambiguous 
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SNPs, INDELs, variants with a minor allele frequency <0.01 and variants not available in 

the MGI, we ran a COJO analysis22 using GCTA (version 1.91.2) to extract independent 

SNPs having r2 < 0.1. All data are presented for the TG:HDL-C increasing allele. Another 

linear mixed model for the rank-based inverse normal transformed TG:HDL-C was fit using 

the same variables and also including the 11–20 PCs. The LD score regression intercept for 

the latter model was estimated as described above.

Independent synonymous and intergenic SNPs in high LD with nonsynonymous variants

Starting from the results of the GWAS, we filtered out variants 1) having P > 5 × 10−8, 

2) having a distance >500 kb from lead-independent synonymous and intergenic SNPs, 

3) having an imputation cutoff <0.85, and 4) which were multiallelic. We annotated 

the remaining variants using ANNOVAR81 (build hg19, dbSNP150) and calculated the 

r2 between nonsynonymous variants and the lead-independent synonymous or intergenic 

SNPs. Two variants were considered in high LD if r2 > 0.8. In case an independent 

synonymous or intergenic SNP was in high LD with more nonsynonymous variants, only 

the nonsynonymous variant with the highest r2 was reported. To check whether the total 

number of nonsynonymous loci in high LD was due to chance, we randomly sampled a 

number of SNPs throughout the genome equal to the number of intergenic and synonymous 

SNPs in our study 100 times. Rare variants (MAF < 0.01) were excluded. For each iteration, 

we treated the randomly selected SNPs as if they were lead-independent variants, repeated 

the process previously described with the exception of the P value filter and quantified 

the number of nonsynonymous SNPs in high LD. Mean and 2.5 and 97.5 quantiles were 

estimated from the empirical distribution of the number of nonsynonymous SNPs in high 

LD.

Variant and gene annotation

The nearest gene to each variant was assigned using ANNOVAR. We also reported 

prioritized genes by DEPICT (FDR < 0.05), whether the gene is expressed in adipose 

subcutaneous, adipose visceral, adrenal gland, liver, muscle-skeletal, pancreas and uterus, 

whether the SNP had an eQTL with the indicated gene in subcutaneous fat, visceral fat, 

internal mammary artery, liver, aortic wall, skeletal muscle and blood and whether the SNP 

was nonsynonymous (or in high LD with a nonsynonymous variant). A gene was considered 

expressed in a tissue if the median expression of the gene in the tissue was greater than 

twice the median of the expression of the gene across all the tissues. Median expression of 

the genes was obtained by the Genotype-Tissue Expression (GTeX) project82 (v8). A SNP 

was considered in eQTL with a gene in a given tissue if the adjusted P value provided by 

STARNET83 (dbGaP accession phs001203.v1.p1) was less than 0.05.

For each variant, we assigned the most likely causal gene using the following algorithm. 

First, nonsynonymous variants were assigned to their constituent gene. If the SNP was 

synonymous or intergenic and not in LD with a nonsynonymous variant, we constructed 

a candidate list consisting of the nearest gene and the genes prioritized by DEPICT. 

Subsequently, if DEPICT prioritized the nearest gene, this gene was selected. Alternatively, 

each gene within the gene list was assigned 1 point (maximum 16 possible points) for (1) 

expression in adipose subcutaneous, adipose visceral, adrenal gland, liver, muscle-skeletal, 
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pancreas and uterine tissue, or (2) an eQTL in adipose subcutaneous, adipose visceral, 

adrenal gland, liver, muscle-skeletal, aortic wall, blood or internal mammary artery tissue. 

The gene with the most points was selected, and in case of ties, both genes were reported.

Overlap between the variants associated with TG:HDL-C ratio and other genetic studies

To identify high-confidence IR-associated loci, we determined which independent TG:HDL-

C SNPs were associated with insulin-related traits from the MAGIC and GENESIS 

Consortia9–14,30. We chose studies where at least one trait under investigation was a quantity 

related to insulin, IR, insulin sensitivity or insulin secretion, and the summary statistics 

for individuals of European ancestry were available. The analyzed traits were fasting 

insulin12–14, fasting insulin adjusted for BMI9,12,13, HOMA-IR13,14, HOMA-IR adjusted 

for BMI13, insulin sensitivity index11, modified Stumvoll insulin sensitivity index10, insulin 

sensitivity measured by hyperinsulinemic-euglycemic clamp30, insulin sensitivity measured 

by hyperinsulinemic-euglycemic clamp adjusted for BMI30, corrected insulin response11 and 

overall insulin response to glucose estimated as area under the curve for insulin over a total 

area under the curve for glucose11. If a SNP associated with TG:HDL-C was not available 

in the summary statistics of a study, we identified SNPs with an r2 > 0.8 in UKBB and used 

the one with the highest r2 that was also present in the study as a proxy. To verify which 

allele of a proxy paired with the effect allele of a missing SNP, we used LDlink84. Once the 

proxies were identified, the P values of proxies and available SNPs in the summary statistics 

were FDR-adjusted. A SNP was considered to overlap with a trait of the other study if its 

FDR-adjusted P value was less than 0.05 in the other study.

Overlap between the reported variants related to insulin in the MAGIC studies and the 
SNPs associated with TG:HDL-C

To check whether the previously reported insulin-related variants9–14 from the MAGIC 

Consortium associated with TG:HDL-C, we examined the summary statistics of those 

variants in our GWAS. Because the reported variants of the GENESIS Consortium study 

did not reach genome-wide significance, the GENESIS Consortium study was excluded. 

All other reported variants were available except for rs73343765, rs200172871 and 

rs200678953, which were derived from ref. 9, a multi-ancestry meta-analysis. No proxy 

SNPs were found through LDlink; therefore, we continued the analysis with the remaining 

127. We extracted the summary statistics of the available variants from our GWAS results 

and then adjusted the P values using FDR. A variant was considered to overlap with the 

TG:HDL-C if its FDR-adjusted P value in our GWAS was less than 0.05.

Review of the unreported SNPs for IR traits in previous studies

We carried out a conditional analysis of the inverse normal transformed TG:HDL-C for the 

TG:HDL-C independent SNPs running SAIGE (version 0.29), where we included age, age 

squared, sex, PCs 1–10 and the dosages of the 127 previous reported variants associated 

with fasting insulin, HOMA-IR or any other index used to measure IR, insulin sensitivity or 

insulin secretion from the MAGIC9–14 as independent variables of the model. The reported 

variants of the GENESIS Consortium study were not included as none of them reached 

genome-wide significance. The independent SNPs reaching genome-wide significance after 

the conditional analysis were considered potential unreported loci for IR. To confirm the 
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SNPs were unreported, we systematically reviewed previous studies of fasting insulin, 

HOMA-IR, insulin sensitivity, insulin secretion or other surrogate measures of IR for the 

presence of those SNPs and the nonsynonymous SNPs with an r2 > 0.8 to the lead SNPs.

Enrichment analysis of the high-confidence SNPs associated with the TG:HDL-C

The high-confidence IR-associated loci were analyzed using DEPICT (version 1, release 

173) to highlight the enrichment of tissues, cell types and gene sets and carry out a pathway 

analysis. Tissue and gene-set enrichments with an FDR < 0.20 and pathways with a P value 

< 1 × 10−4 were considered statistically significant. The results of the pathway analysis were 

plotted using Cytoscape85 (version 3.7.1).

Associations between the high-confidence SNPs and cardiometabolic traits

We assessed whether the high-confidence IR-associated variants associated with 

cardiometabolic traits related to IR. We chose the Global Lipids Genetics Consortium 

(GLGC)31 for TG, HDL-C and LDL-C; the GIANT32 Consortium for BMI and WHR 

adjusted for BMI; the GOLDPlus38 Consortium for NAFLD measured as PDFF; the 

DIAGRAM33 Consortium for T2D; the MAGIC9 for fasting glucose adjusted for BMI 

(glucose) and FI adjusted for BMI (insulin) and the summary statistics from refs. 34–37,39, 

respectively, for alanine aminotransferase (ALT), myocardial infarction (MI), SBP, eGFR 

and PCOS. We calculated a z score for all the available variants in a study. If a variant was 

not available, we set the z score equal to 0. To cluster variants, we applied complete-linkage 

hierarchical clustering using Pearson correlation as distance metric. We ran a GWAS for 

the rank-based inverse normal transformed TG:HDL-C in MGI to extract the effect sizes 

for the 114 high-confidence loci using SAIGE. Age, age squared, sex and 1–10 PCs were 

included in the model. For each cluster of variants, a PRS was created summing the dosages 

of the unrelated European individuals of the UKBB weighted by the effect sizes from MGI. 

In case of relatedness, only one participant per family was randomly chosen to create the 

PRS. Relatedness up to the second degree was estimated using KING86 (version 2.2.6). 

Individuals were subdivided based on the quartiles of PRS, and only the participants in the 

top quartile were compared to the bottom quartile for associations with traits adjusted for 

sex, age, age squared and PCs 1–10. Outcomes were reported in s.d. and log odds ratio for 

continuous and binary traits, respectively. A gene-set enrichment analysis was performed on 

the genes of each cluster using FUMA87 and used to assign a name to each cluster. Only the 

relevant databases for the name assignments were reported.

TG:HDL-C PRS in the MGI

The high-confidence IR-associated SNPs were combined in a PRS, which was calculated 

by summing the dosages of 51,550 unrelated individuals of European ancestry from 

MGI weighted by the effect sizes of the loci from UKBB. A rank-based inverse normal 

transformation was applied to the PRS. We studied the association between the PRS and 

the Phecodes in MGI fitting Firth’s logistic regression model using the PheWAS R package 

(version 0.99.5). The Phecodes were created from International Classification of Diseases 

(ICD) codes. Age, age squared, sex and the first ten PCs were included as predictors. An 

association was considered significant using a Bonferroni level significance adjusted for the 

number of traits tested (α* = 0.05/1,659 = 3 × 10−5).
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Variance explained by PRS in MGI

To estimate the percentage of variance explained by the high-confidence TG:HDL-C loci, 

we fit a linear regression with inverse normal transformed TG:HDL-C as the outcome and 

the inverse normal transformed 114 SNP PRS from above and PCs 1–10 as the predictors. 

The adjusted r2 of the model was used as an estimate of the explained variance.

Sex-specific analysis

To verify whether the SNPs might have a heterogeneous effect between male and female 

individuals, we carried out a sex-stratified GWAS separately for males (n = 185,749) and 

females (n = 216,649) in the UKBB using SAIGE. The outcome of the models was the 

inverse normal transformed TG:HDL-C, and the predictors were age, age squared and the 

1–10 PCs. In both the GWASes, the intercept from the LD score regression was used to 

adjust the P values for population stratification. The results were then meta-analyzed using 

METAL88 (28 August 2018 release). A SNP was considered to have a heterogeneous effect 

if the heterogeneous P value of Cochran’s Q test was less than 0.05. The genes of the SNPs 

that showed sex-heterogeneous effect were annotated separately by sex using FUMA87.

Non-European ancestry analysis in the UKBB

We carried out a GWAS of the TG:HDL-C for the individuals of SAS (n = 8,158), AFR 

(n = 6,632) and CHI (n = 1,300) ancestries in the UKBB. We used the same outcome and 

predictors described for the GWAS of the Europeans, and the same quality control was 

applied for both the individuals and the variants. For each GWAS, we estimated the genomic 

inflation factor and used it to adjust the P values. The independent SNPs for the SAS and 

AFR ancestries were extracted using COJO. The independent SNPs for the CHI ancestry 

were extracted using a 500 kb distance criterion, given that the small sample size of the 

cohort (n < 4,000) did not meet the recommended size to apply COJO. The r2 was calculated 

among the independent SNPs having a distance <500 kb across the different ancestries using 

LDlink. When more independent SNPs had a distance <500 kb within the same ancestry, 

the closest SNP to the hits of the other ancestries was chosen. LD between two SNPs was 

defined as r2 > 0.1.

Statistics and reproducibility

All significant variants in a UKBB cohort reached genome-wide significance (P < 5 × 10−8). 

To be reported as significant in a non-UKBB study, a variant must reach an FDR-adjusted 

P value < 0.05. We adjusted the P values using the Benjamini–Hochberg FDR procedure. Z 
scores were used to visualize the significance of variants in external studies. Z scores were 

calculated from unadjusted P values across all reported variants. PRSs were calculated for 

the UKBB as described in the Methods section. The effect size for each PRS represents 

the association in s.d. and log odds ratio for continuous and binary traits, respectively. PRS 

significance in the UKBB was determined using linear and logistic regression models. To 

identify significant tissues, cell types and pathways, an FDR-adjusted cutoff of 0.20 was 

used. A cutoff of P < 1 × 10−4 was used for DEPICT-enriched gene sets. A PRS was 

calculated for the MGI, as described in the Methods. Associations between the PRS and 

MGI Phecodes were assessed using Firth’s logistic regression model. A Bonferroni-adjusted 

Oliveri et al. Page 14

Nat Genet. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cutoff (α = 3 × 10−5) on a −log10 scale was used to assess significance. Please see the 

Methods section for more comprehensive descriptions of the statistical methods used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Study design: TG:HDL-C in the UK Biobank.
Inclusion and exclusion criteria for individuals, variants and selection of the 114 high-

confidence IR-associated loci. Includes information on previously unreported genes and 

nonsynonymous variants. The term ‘covariates’ includes age, sex and 1–10 PCs. Variants 

were excluded from the study if they had an imputation score >0.85, were multiallelic or 

ambiguous or were available in the UKBB but not in the MGI. V = variants; n = sample size.
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Fig. 2 |. Overlap of the 114 high-confidence IR-associated loci with insulin-related traits.
a, Overlap of each SNP with insulin traits and annotations. Fasting insulin and fasting 

insulin adjusted for BMI (PMID: 34059833, 22581228, 22885924 and 20081858) were 

represented in the category ‘FIN’; HOMA-IR and HOMA-IR adjusted for BMI (PMID: 

22581228 and 20081858) were represented in the category ‘HIR’; the modified Stumvoll 

insulin sensitivity index (PMID: 27416945) was represented in the category ‘SEN’. Points in 

black indicate the SNP is nonsynonymous or in high LD (r2 > 0.8) with a nonsynonymous 

variant. Gene labels in black indicate the SNP has been previously reported for IR in 

literature. Gene labels in red indicate the SNP has not been previously reported for IR. 

Binarized expression of each loci’s predicted causal gene is shown for the following seven 

tissues: SAT, VAT, PAN, AGL, MUL, LIV and UTE. An expressed value corresponds to 

Oliveri et al. Page 21

Nat Genet. Author manuscript; available in PMC 2024 March 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



meeting a threshold of twice the median expression for all other GTEx tissues. b, Overlap 

of high-confidence 114 high-confidence IR-associated loci with insulin-related traits in 

an aggregate form. FIN, fasting insulin; SEN, insulin sensitivity; HIR, HOMA-IR; SAT, 

subcutaneous adipose tissue; VAT, visceral adipose tissue; PAN, pancreas; AGL, adrenal 

gland; MUL, musculoskeletal; LIV, liver; UTE, uterus.
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Fig. 3 |. Effects of 114 high-confidence IR-associated loci with IR-related traits.
a, Heatmap and clustering of two-tailed z scores of high-confidence variants for metabolic 

(T2D, fasting insulin* and fasting glucose*), body composition (WHR* and BMI), 

endocrine (PCOS), kidney function (eGFR), cardiovascular (TGs, LDL-C, MI, SBP and 

HDL-C) and liver (ALT and NAFLD) traits from public GWASes. Traits marked with an 

asterisk are adjusted for BMI. Nominal values for the associations are shown. Associations 

with a P value < 1 × 10−8 (|z| > 5.73) were all represented with the same color, dark red 

and dark blue for positive and negative associations, respectively. b, Forest plots showing 

the association of a subgroup’s PRS and IR-related traits among individuals in the top and 

bottom quartile of the PRS distribution. Effect size represents the association in s.d. and log 

odds ratio for continuous and binary traits, respectively. Vertical bars represent an effect size 

equal to 0. Horizontal bars represent the 95% CI of the effect size. Significant negative and 

positive effect sizes are represented in blue and red, respectively. Nonsignificant effect sizes 

are represented in black. Please refer to Supplementary Table 13 for the sample sizes of the 

numeric and binary traits.
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Fig. 4 |. Tissue, cell type, and physiological system enrichment of the 114 high-confidence IR-
associated loci.
a–c, DEPICT enrichment for high-confidence IR-associated loci for cell types (a), tissues 

(b) and physiological systems (c). The x axis represents the MeSH terms that were analyzed 

by DEPICT, also shown in Supplementary Table 15. The y axis represents the nominal 

P value of the association presented on a −log10 scale. Associations used two-tailed z 
scores adjusted with the FDR procedure. Orange and yellow bars represent associations with 

an FDR less than 0.05 and between 0.05 and 0.20, respectively. MeSH, medical subject 

heading.
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Fig. 5 |. Gene-set enrichment of the 114 high-confidence IR-associated loci.
Gene sets reaching statistical significance (P < 1 × 10−4) in the gene-set enrichment 

analysis of the 114 high-confidence IR-associated loci. Associations used two-tailed z scores 

adjusted with the FDR procedure. A darker color was used to highlight the node(s) with the 

most edges within each group. Edges represent Pearson’s correlation between two nodes. 

Nodes with a rectangular shape have a P value of association between 1 × 10−4 and 1 × 

10−5; nodes with a diamond shape have a P value of association between 1 × 10−5 and 1 × 

10−6. Please refer to Supplementary Table 16 for the exact P values of association.
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Fig. 6 |. PRS analysis in the MGI using the 114 high-confidence IR-associated loci.
PheWAS Manhattan plot showing the association between the 114 SNP PRS and traits in 

the MGI using Firth’s logistic regression model. Points are colored based on the different 

phenotype categories. The blue and the red lines represent the suggestive (α = 0.05) and 

Bonferroni-adjusted (α = 3 × 10−5) significance threshold on a −log10 scale, respectively. 

Traits with borderline Bonferroni significance threshold were also reported.
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