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ABSTRACT Multidrug-resistant tuberculosis (MDR-TB) management has become a 
serious global health challenge. Understanding its epidemic determinants on the 
regional level is crucial for developing effective control measures. We used whole 
genome sequencing data of 238 of Mycobacterium tuberculosis complex (MTBC) strains 
to determine drug resistance profiles, phylogeny, and transmission dynamics of MDR/
rifampicin-resistant (RR) MTBC strains from Sierra Leone. Forty-two strains were classified 
as RR, 196 as MDR, 5 were resistant to bedaquiline (BDQ) and clofazimine (CFZ), but none 
was found to be resistant to fluoroquinolones. Sixty-one (26%) strains were resistant 
to all first-line drugs, three of which had additional resistance to BDQ/CFZ. The strains 
were classified into six major MTBC lineages (L), with strains of L4 being the most 
prevalent, 62% (n = 147), followed by L6 (Mycobacterium africanum) strains, (21%, n = 
50). The overall clustering rate (using ≤d12 single-nucleotide polymorphism threshold) 
was 44%, stratified into 31 clusters ranging from 2 to 16 strains. The largest cluster (n 
= 16) was formed by sublineage 2.2.1 Beijing Ancestral 3 strains, which developed MDR 
several times. Meanwhile, 10 of the L6 strains had a primary MDR transmission. We 
observed a high diversity of drug resistance mutations, including borderline resistance 
mutations to isoniazid and rifampicin, and mutations were not detected by commercial 
assays. In conclusion, one in five strains investigated was resistant to all first-line drugs, 
three of which had evidence of BDQ/CFZ resistance. Implementation of interventions 
such as rapid diagnostics that prevent further resistance development and stop MDR-TB 
transmission chains in the country is urgently needed.

IMPORTANCE A substantial proportion of MDR-TB strains in Sierra Leone were resistant 
against all first line drugs; however this makes the all-oral-six-month BPaLM regimen 
or other 6-9 months all oral regimens still viable, mainly because there was no FQ 
resistance.Resistance to BDQ was detected, as well as RR, due to mutations outside of 
the hotspot region. While the prevalence of those resistances was low, it is still cause for 
concern and needs to be closely monitored.

KEYWORDS multidrug resistance, Mycobacterium tuberculosis, Sierra Leone, tuberculo­
sis

T uberculosis (TB) is among the leading causes of death from a single infectious agent, 
accounting for 1.6 million deaths in 2021 (1). TB is caused by pathogens of the 

Mycobacterium tuberculosis complex (MTBC), consisting of Mycobacterium tuberculosis 
sensu stricto (Mtb), Mycobacterium africanum (Maf) (2), Mycobacterium bovis, and strains 
of other animal-adapted species (3–5). Mtb strains cause most human diseases glob­
ally, while Maf strains are responsible for 20%–40% of diseases in West Africa (Benin—
37%, Ghana—20%, Ginneau Bissau—47%, and Sierra Leone—23%) (6–11). MTBC strains 
can be further classified into nine main lineages (L) and several sublineages using 
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single-nucleotide polymorphism (SNP)-based barcoding classification (12). Mtb strains 
belong to L1–L4, L7, and L8, while Maf belongs to L5, L6, and L9 (11).

Drug-susceptible TB is treatable with 6 months of a standard drug regimen composed 
of isoniazid (INH), rifampicin (RIF), pyrazinamide (PZA), and ethambutol (EMB) (13). 
However, increasing drug resistance, especially rifampicin-resistant (RR)-TB, multidrug-
resistant (MDR, resistance to both RIF and INH)-TB, pre-extensively drug resistance 
[pre-XDR, MDR plus resistance to one fluoroquinolone (FQ)], and XDR-TB [pre-XDR 
plus additional resistance to one other World Health Organization (WHO) group A 
drug], threaten TB control (14). In 2021, an estimated 450,000 people developed MDR/
RR-TB globally, ~167,000 were diagnosed, and only ~162,000 were initiated on MDR/RR 
treatment (1). Global treatment success for MDR/RR-TB is only ~60% (1). In MDR/RR-TB, 
additional resistance to other first-line drugs, such as PZA and EMB, and second-line 
drugs, including FQ or bedaquiline (BDQ), is problematic as it reduces effective treatment 
options (15).

In May 2022, the WHO recommended a novel all-oral 6-month regimen of BDQ, 
preteonamid (Pa), and linezolid (L) plus moxifloxacin (M) (in the absence of FQ resist­
ance) for the treatment of MDR-TB (BPaLM) (16, 17). This new regimen was found to 
be non-inferior to standard 9- and 12-month MDR-TB regimens and was found to be 
favorable because of a reduction in adverse events (16, 18). While this new regimen 
holds great promise, the emergence of FQ and/or BDQ resistance described recently 
may threaten the longevity of the regimen (19, 20). Thus, understanding the underlying 
prevalence of FQ/BDQ resistance before introducing the new regimen is crucial (21, 22). 
Equally important is the ongoing monitoring of resistance development, for example, 
fostered by the transmission of MTBC strains with particular resistance profiles that can 
negatively impact diagnostic or treatment strategies in a given geographical region, 
as shown for the I491F outbreak clone in Eswatini (19, 23, 24). Furthermore, strains of 
particular MTBC lineages may have minimum inhibitory concentration (MIC) differences 
to particular drugs, for example, L1 Mtb strains have been found to have intrinsically 
higher Pa MIC compared to L2–L4, and L7 strains (25). Whether or not this is clinically 
important has not yet been established.

Sierra Leone, a country in West Africa with an estimated TB incidence of 289 per 
100,000 population, had a prevalence of MDR/RR-TB of 2.5% and 12% among newly 
diagnosed and retreatment TB in 2021 (1). Xpert MTB/RIF is the primary molecular TB 
diagnostic in most hospitals, but smear microscopy continues to be used in primary care 
clinics. Molecular and phenotypic drug susceptibility testing for all other TB drugs is not 
performed in the country (26). As such, detailed first- and second-line drug resistance 
data are unavailable, and the information on phylogeny and transmission dynamics of 
MDR/RR MTBC strains in the country is very limited.

To close these knowledge gaps, we performed a whole genome sequencing (WGS) 
study of 238 RR/MDR MTBC strains collected in Sierra Leone between 2016 and 
2020. WGS data of the MTBC strains were investigated for phylogenetic classification, 
resistance prediction, and cluster analysis.

MATERIALS AND METHODS

Study design and population

Sputum samples from the National TB Reference Laboratory Freetown, Sierra Leone, of 
individuals with RR-TB as determined by Xpert MTB/Rif and those with suspected RR-TB 
who had failed first-line treatment in Sierra Leone between November 2016 and March 
2020 were sent to the Supranational Reference Laboratory in Borstel for mycobacterial 
culture. All RR isolates based on genotypic drug susceptibility tests were included in this 
analysis. Each strain included in the study came from a different patient. A schematic 
representation of the study design is shown in Fig. 1.
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Whole genome sequencing and analysis

The DNA of MTBC strains was extracted as previously described (27). The genomes were 
sequenced and analyzed with bioinformatics pipelines as described by Grobbel et al. (28) 
and Merker et al. (29). Briefly, genomic DNA was sequenced using Illumina Technology 
(NextSeq 500 or MiSeq) using the Baym protocol (30) and Nextera library preparation 
kits following the manufacturer’s instructions (Illumina, San Diego, CA). The FASTQ data 
were analyzed with the MTBseq pipeline (31). Briefly, reads were mapped to the H37Rv 
genome [GenBank ID: NC_000962.3 (32)] with BWA (33), processed with SAMtools (34), 
and the mappings were refined with the GATK 3.8 (35).

For variant detection, SAMtools (34)-derived mpileup files were filtered for minimum 
thresholds of at least two reads indicating a variant in both forward and reversed 
orientation, two reads calling the allele with at least a phred score of 4, and 5% allele 
frequency for resistance determination, and for phylogeny, four reads mapped in each 
forward and reverse direction, respectively, with 75% allele frequency and at least four 
calls with a phred score of at least 20.

Genomic SNP positions with a reliable base call in at least 95% of the strains and 
covered in all strains were concatenated to a sequence alignment. SNPs within a window 
of 12 bp from each other and those located in repetitive regions or resistance-associated 
genes were excluded to avoid calling SNPs related to insertions and deletions artifacts 
(29). Strains were phylogenetically classified, and transmission clusters were inferred with 
single linkage clustering using distance cutoffs of ≤5 and ≤12 SNPs. Raw FASTQs were 
uploaded to the European Nucleotide Archive (Table S1).

Resistance analysis

Genotypic resistance predictions were based on a curated Research Center Borstel 
mutation catalog, as described by Grobbel et al. (28), and the WHO’s catalog (36). 
Mutations linked to phenotypic drug resistance were marked as resistant, and unclear 
ones were classified as not resistant. When no mutation was detected, strains were 
defined as susceptible. Drug-resistant types were classified based on the WHO’s 
classification (14).

FIG 1 Study design. Inclusion criteria were patient sputum samples positive for Mycobacterium tuberculosis complex strains, which were genotypically rifampicin 

resistant. Only one cultured sample per patient was included in the study and sequenced samples that did not meet NGS quality standards were excluded. n, 

number of samples; NGS, next-generation sequencing. Created with BioRender.
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Phylogenomic analysis

A maximum parsimony tree (MPT) was built with the software BioNumerics version 7.6.3 
(Biomerieux) from the aligned sequences of concatenated SNPs. Numbers on branches 
indicate the number of distinct SNP positions between isolates. Using distinct SNP sites, 
maximum likelihood trees (MLTs) were calculated with IQ-TREE 2, an efficient method 
for phylogenetic inference (37), using ModelFinder (38), an automated model selection, 
including ascertainment bias correction, and ultrafast bootstrap approximation (39) with 
resampling of 1,000. The MLT was midpoint rooted with the FigTree software version 
1.4.4. The trees were visualized with Interactive Tree of Life (iTOL) 5.7 (40).

Statistical analysis

Descriptive statistics were performed (distribution frequency) and graphs were drawn 
with R software version 4.2.1.

RESULTS

Study population

A total of 238 MTBC strains were included in the study (Table 1), 63% (n = 151), and they 
were from retreatment patients. The majority of strains were obtained from men (43%, 
n = 102), and the median age was 34 years (interquartile range 30–39). Among patients 
with known HIV status, 15% (25/162) were HIV positive.

MTBC population structure

WGS data analysis revealed 15,089 informative SNPs differentiating any of the 238 MTBC 
strains. These SNPs were used to calculate a maximum likelihood phylogeny based on 
a concatenated SNP alignment (Fig. 2). Based on canonical SNP signatures (12), the 238 
strains were classified into six main MTBC lineages (L1–L6) (Fig. 2; Fig. S1; Table 2). Strains 
of L4 were most frequent (n = 147, 62%), followed by strains of L6 (Maf, n = 50, 21%), 
L2 (n = 22, 9%), L1 (n = 10, 4%), L5 (Maf, n = 7, 3%), and L3 (n = 2, 0.8%). The strains 
were further categorized into sub-lineages as follows: 4.1.2.1 Haarlem (n = 45, 19%), 4.1 
Euro-American (n = 38, 16%), 6.2.2 West Africa 2 and 4.8 mainly T (n = 23, 9.7%), and 2.2.1 
Beijing Ancestral 3 (n = 22, 9.2%) (Fig. 2; Tables S1 and S2.1).

TABLE 1 Main demographic characteristics of study participantsa

n (RR/MDR) (%)

Total 238
Sex Female 41 17

Male 102 43
Unknown 95 40

Age range (years) ≤19 13 6
20–29 50 21
30–39 48 20
40–49 37 16
50–59 20 8
≥60 8 3
Unknown 62 26

Type New 10 4
Retreatment 151 63
Unknown 77 32

HIV status Negative 137 58
Positive 25 11
Unknown 76 32

aHIV, human immunodeficiency virus; MDR, multidrug-resistant; RR, rifampicin-resistant.
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Drug resistance

We then performed a genotypic resistance prediction based on high-confidence 
resistance mutations. Overall, resistance prevalence was 82% (n = 196), 53% (n = 126), 
and 39% (n = 92) for INH, EMB, and PZA, respectively (Fig. 3; Fig. S2–S6; Table S2.2). No 
resistance to FQ and linezolid was detected; however, five strains were resistant to BDQ/
clofazimine (CFZ) based on mutations in Rv0678 (Fig. S4). A total of 61 (26%) strains were 
found to be resistant to all first-line drugs; three had additional resistance to BDQ/CFZ 
(Table S2.3). Resistance patterns were similar across strains from all lineages, except for 
cycloserine (CS), as all L5 and L6 strains were inherently resistant to CS (Fig. 3). Out of the 
five BDQ/CFZ resistant strains, one belonged to L1.1.1, one to L4.8, one to L5, and two to 
L6 (Table S2.4).

All the RIF resistance-conferring mutations were found in the rpoB gene. The most 
prevalent mutation was rpoB S450L (41%, n = 98), which is part of the WHO group_1 
mutations (2001) associated with resistance (36) (Table S3.1). The rpoB S450L mutation 
was found in strains of all lineages except L2 ( Table S4). Despite this, there was a diversity 
of rpoB mutations, with 32 (13%) of the strains having one of the so-called RIF-borderline 
mutations (rpoB D435Y, L452P, H445L/N, and L430P) (41, 42). Such strains may test 
phenotypically susceptible to RIF. Also, three strains had the rpoB I491V and V170F 
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resistance mutations, which are found outside of the RIF-resistance-determining region 
(RRDR) (23, 24, 36, 43) (Tables S1, S3.1, and S4), and thus, not detected by commercial 
molecular RR tests such as Xpert MTB/RIF assay.

Mutations linked with resistance to INH were found in the katG gene and the 
fabG1-inhA regulatory region (Tables S1, S3.2, and S5) (44). The katG S315T resistance 
mutation was most prevalent (n = 133, 56%) and found in strains of all lineages except 
L3 and L5 (Tables S1, S3.2, and S5). Besides, 53 strains had mutations in fabG1-inhA/inhA, 

FIG 3 Drug resistance to first- and second-line anti-tuberculosis drugs per lineage of Mycobacterium tuberculosis complex strains investigated. The bubble 

plot shows the relative abundance of M. tuberculosis complex (MTBC) strains for each lineage that developed resistance to the corresponding drug. On the 

left y-axis are the abbreviated names of drugs: INH, isoniazid; EMB, ethambutol; PZA, pyrazinamide; CS, cycloserine; ETH, ethionamide; PTH, proteonamid; PAS, 

para-aminosalicylic acid; CFZ, clofazimine; BDQ, bedaquiline; and CPR, capreomycin. On the x-axis at the bottom are the MTBC strain lineages and indicated at 

the top are the total number of MTBC strains per lineage. n = number of isolates

TABLE 2 MTBC strain proportions, clustering, and cluster rate within the lineages

Main lineages ∑ no. of strains (%) # Clustered Cluster rate

Lineage 1 10 (4.2) 3 30
Lineage 2 22 (9.2) 19 86
Lineage 3 2 (0.8) 0 0
Lineage 4 147 (61.8) 70 48
Lineage 5 7 (2.9) 0 0
Lineage 6 50 (21) 12 24
Total 238 104 44
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out of which 37 acquired a second mutation in katG (Tables S3.2 and S5). Of those, 
the most prevalent mutation was fabG1 15t>c (18 strains), which is classified as WHO 
group_2 borderline mutation; 12 did not have any additional INH mutations, and 4 had 
an additional katG S315T mutation (Tables S1 and S3.2). Also, of note were the 12 strains 
with fabG1 L203L mutations; however, 10 of these strains had also developed the higher 
level katG S315T resistance mutation (Tables S1, S3.2, and S5).

Transmission (genomic clustering)

Using a maximum distance of 12 SNPs between two strains to define a cluster, 104 
(44%) strains were grouped into 31 clusters ranging in size from 2 to 16 strains (Fig. 4; 
Fig. S7; Table 2). We linked the cluster data with resistance mutation profiles to better 
understand the transmission dynamics of RR/MDR strains. Indeed, while all strains of 
the largest cluster group_3 shared the katG S315T mutation (Fig. 5A) (16 isolates of 
2.2.1 Beijing sublineage), they had different rpoB, embB, and pncA resistance mutations, 
subdividing the clustered strains into sub-clusters as indicated in the MPT (Fig. S8). The 
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second-largest cluster group_13 consisted of seven 4.8 mainly T sublineage MDR strains 
(Fig. 5B); all strains shared the same RIF rpoB S450L, INH katG S315T, and EMB embB 

FIG 5 Phylogeny of the strains of the two largest clusters of multidrug-resistant Mycobacterium tuberculosis strains. Maximum likelihood trees were calculated 

for the M. tuberculosis strains of the two largest multidrug-resistant clusters identified in the study. (A) The midpoint-rooted phylogeny of the 16 clustered M. 

tuberculosis strains of "cluster 3" belonging to the sublineage 2.2.1 Beijing Ancestral 3. The alignment was based on 1,174 informative SNP sites. This tree shows 

the transmission of an isoniazid-resistant clone with multiple independent developments to multidrug resistance (MDR—resistance to at least isoniazid and 

rifampicin), shown by the different rifampicin resistance mutations. The strains also had developed different ethambutol and pyrazinamide resistance mutations. 

(B) The midpoint-rooted phylogeny of the seven clustered M. tuberculosis strains of "cluster 12" belonging to the sub-lineage 4.8 mainly T. The alignment was 

based on 466 informative SNP sites. In this tree, a single MDR clone was transmitted, which was also resistant to ethambutol, shown by the same resistance 

mutation for all the seven strains. However, the strains developed different pyrazinamide resistance mutations. 1. The genotypic drug resistance type; 2–5. 

the color-coded resistance mutations of the first-line drugs identified for the respective drugs; and the black dots on the tree branches indicate the ultrafast 

bootstrap values (+0.95). RIF, rifampicin; INH, isoniazid; EMB, ethambutol; PZA, pyrazinamide; MDR, multidrug-resistant.
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M306V resistance mutations indicating the ongoing spread of this MDR strain in the 
country (Fig. 5B).

Clustering also indicated smaller transmission events of RR/MDR L6 strains (Fig. 6). 
Out of the 51 L6 strains, 12 (24%) clustered (Tables S1 and S2.5). Of the 6.3.3 West Africa 2 
sublineage strains, 10 out of 17 (59%) were clustered, forming two clusters (group_4 and 
group_5) of five strains each (Fig. 6). Interestingly, while the cluster analysis separated the 
strains into two clusters, they were closely related in the phylogeny and share the RIF 
rpoB D435Y mutation and INH fabG1-17g>t/katG S315T double mutation, indicating the 
emergence from a common MDR ancestor (Fig. 6). However, only the strains of group_5 
developed further resistance to EMB and PZA, rendering them fully first-line resistant 
(Fig. 6). Also, two of the strains developed BDQ/CFZ resistance due to mutations in 
Rv0678 (Table S1).

DISCUSSION

In this study, we employed WGS to characterize RR/MDR MTBC strains from Sierra Leone. 
We found that one in five strains investigated was resistant to all first-line drugs. While 
no resistance to FQ was observed, five strains had resistance to BDQ/CFZ due to Rv0678 
mutations. The cluster rate exceeded 40%, indicating ongoing transmission of RR/MDR 
TB, which contributes significantly to the disease burden in the country. Strikingly, Maf 
L6 strains constituted 21% of the MDR MTBC strains analyzed and formed a longitudinal 
outbreak with two branches, each constituting five strains. Within one of these branches, 
all strains were resistant to all first-line drugs, and two strains had developed additional 
BDQ/CFZ resistance. There was a high diversity of drug resistance mutations with a 
significant number of so-called borderline INH and RIF resistance mutations, potentially 
allowing the use of these first-line drugs albeit with higher dosing.

None of the investigated MTBC strains had FQ resistance, which contrasts with data 
from other West African countries. For instance, in Nigeria, FQ resistance was 13% 

FIG 6 Phylogeny of the largest cluster of endemic multidrug-resistant Mycobacterium africanum strains. The mid-point-rooted maximum likelihood tree was 

calculated for the 10 multidrug-resistant (MDR, resistance to at least isoniazid and rifampicin) M. africanum strains belonging to sublineage 6.3.3 West Africa 

2. The alignment was based on 1,924 informative SNP sites. The tree shows a single sublineage 6.3.3 West Africa 2 MDR clone transmitting, which formed two 

distinct clusters (clusters 4 and 5). 1. The genotypic drug susceptibility type (gDST); 2–6. are the color-coded resistance mutations of the first-line drugs identified 

for the respective drugs; and the black dots on the tree branches indicate the ultrafast bootstrap values (+0.95). RIF, rifampicin; INH, isoniazid; EMB, ethambutol; 

PZA, pyrazinamide; BDQ, bedaquiline; MDR, multidrug-resistant.
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(17/132 of RR-TB) in a study conducted between 2018 and 2020 (45), while in Ghana, 
36% (11/31) of MDR-TB strains were FQ resistant (46).

We found five MTBC strains (2%) with resistance to BDQ and CFZ due to mutations 
in Rv0678, a transcriptional repressor of the MmpS5–MmpL5 efflux pump (47, 48). 
Mutations in Rv0678 are the primary drivers of BDQ/CFZ resistance in clinical strains in 
South Africa (20) and Moldova (21). Also, these mutations are linked to treatment failure 
and can potentially cause an increase in BDQ/CFZ resistance over a short timeframe (20).

Considering the low prevalence of BDQ resistance (2%) and the absence of FQ 
resistance in Sierra Leone, both the 9–12-month all-oral regimens and the new 6-month 
BPaLM are likely to be effective treatment regimens for most patients (16, 17). BDQ/CFZ 
resistance may emerge without direct drug exposure (23, 24, 43, 49), and since the exact 
mechanism is yet to be identified, it is crucial to prioritize prospective surveillance for 
BDQ/CFZ resistance and mechanisms involved in selecting MTBC strains with Rv0678 
mutations. This is especially significant as BDQ is an essential drug in the new BPaLM 
regimen and the rapid development of resistance may reduce the efficacy of the regimen 
(50).

Our investigation of the MTBC strain diversity identified strains of six main MTBC 
lineages circulating and causing RR/MDR-TB in Sierra Leone. Overall, the widely 
distributed and diverse L4 strains were the most prevalent (51). L4 strains are highly 
successful globally due to their genotypic and phenotypic diversity (51–53). The high 
proportion of L4 strains in this study linked to a cluster rate of 62% is in line with previous 
studies (2, 51). Lineage 2 strains were the third most prevalent strains; surprisingly, they 
all belonged to the 2.2.1 Beijing Ancestral 3 sublineage, also showing a high cluster 
rate of 86%, indicating effective MDR-TB transmission. Recent studies, for example, from 
Eastern European countries, have found associations between modern L2 strains such 
as L2.2.3 (54) and L2.2.1 (55) with high rates of clustering and transmission (56–58). 
Studies from India and South Africa indicate that strains of ancestral Beijing lineages 
may also develop high drug resistance rates linked with ongoing transmission of few 
MDR/pre-XDR/XDR strains in a given setting (19, 59). The emergence of ancestral Beijing 
strains in Sierra Leone warrants close monitoring and further investigations towards 
cross-border spread in Africa, introduction by migration followed by local spread, and the 
overall importance of this strain type for the MDR epidemic.

In contrast to other geographical regions, 24% of strains belonged to Maf, the 
majority were L6 (classified as West African 2), confirming the findings from another 
study from West Africa (60). All Maf strains were resistant to CS, a drug classified as group 
B by the WHO because of 1 bp frameshift deletion in ald, as described previously (61).

In line with findings from other African countries such as Namibia, we found a high 
diversity of INH/RIF resistance mutations with a substantial proportion of strains having 
so-called borderline resistance mutation in rpoB and/or in the inhA-fabG1 promotor 
region, which are difficult to detect by phenotypic assays (41, 42, 62). In patients infected 
with MTBC strains with lower-level resistance mutations, high-dose INH and/or RIF may 
overcome resistance, presenting a viable treatment option, especially for patients with 
MDR/pre-XDR/XDR TB with advanced resistance patterns (63, 64). However, host genetic 
factors that lead to enhanced drug metabolisms and/or reduced bioavailability need to 
be investigated as they are likely to contribute to the higher frequency of strains with 
borderline resistance mutations in the region (65–67). High-dose regimens can only be 
applied when both pathogen and host genetics/phenotypes are available.

Still, the high prevalence of MTBC strains in Sierra Leone and Namibia with RR/
MDR-TB patients underlines their significance for the drug resistance TB epidemiology. 
Moreover, since strains with borderline INH resistance mutations can also develop 
higher-level resistance by a second mutation (42), it is, therefore, essential to have 
molecular methods for resistance detection to keep track of low-level resistance 
mutations to prevent misclassification of resistant strains and reduce treatment failure.

We detected three strains with resistance mutations outside the rifampicin RRDR 
(rpoB I491V and V170F), which are not detected by commercial molecular RR tests such 
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as Xpert MTB/RIF assay (23, 24, 43). Consequently, patients are usually treated with 
drug-susceptible regimens resulting in higher rates of treatment failures and possibly 
enhanced transmission. Such strains have also proven to be challenging for severe 
MDR-TB control in other African countries such as Eswatini (23).

Conclusion

Our data indicate that resistance to group A, B, and C MDR-TB treatment drugs is limited 
in Sierra Leone. Hence, the short all-oral-6-month BPaLM or the recently proposed 6–
9-month or 9–12-month regimens offer great potential to treat most of the MDR-TB cases 
in the country successfully. Our data on the MTBC strains' population structure point 
toward the potential importance of ancestral Beijing strains for the MDR-TB epidemic 
in Africa. We also demonstrated that MDR Maf strains contribute significantly to the 
MDR-TB burden in the country.

Limitations

Our study was limited by the small sample size and lack of metadata to help make 
associations among the isolates. However, the thorough genotypic testing and in-depth 
analysis revealed noteworthy findings.
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