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ABSTRACT Teleost gill mucus has a highly diverse microbiota, which plays an essen
tial role in the host’s fitness and is greatly influenced by the environment. Arctic 
char (Salvelinus alpinus), a salmonid well adapted to northern conditions, faces multi
ple stressors in the Arctic, including water chemistry modifications, that could nega
tively impact the gill microbiota dynamics related to the host’s health. In the context 
of increasing environmental disturbances, we aimed to characterize the taxonomic 
distribution of transcriptionally active taxa within the bacterial gill microbiota of Arctic 
char in the Canadian Arctic in order to identify active bacterial composition that 
correlates with environmental factors. For this purpose, a total of 140 adult anadromous 
individuals were collected from rivers, lakes, and bays belonging to five Inuit commun
ities located in four distinct hydrologic basins in the Canadian Arctic (Nunavut and 
Nunavik) during spring (May) and autumn (August). Various environmental factors were 
collected, including latitudes, water and air temperatures, oxygen concentration, pH, 
dissolved organic carbon (DOC), salinity, and chlorophyll-a concentration. The taxonomic 
distribution of transcriptionally active taxa within the gill microbiota was quantified by 
16S rRNA gene transcripts sequencing. The results showed differential bacterial activity 
between the different geographical locations, explained by latitude, salinity, and, to a 
lesser extent, air temperature. Network analysis allowed the detection of a potential 
dysbiosis signature (i.e., bacterial imbalance) in fish gill microbiota from Duquet Lake in 
the Hudson Strait and the system Five Mile Inlet connected to the Hudson Bay, both 
showing the lowest alpha diversity and connectivity between taxa.

IMPORTANCE This paper aims to decipher the complex relationship between Arctic 
char (Salvelinus alpinus) and its symbiotic microbial consortium in gills. This salmonid 
is widespread in the Canadian Arctic and is the main protein and polyunsaturated 
fatty acids source for Inuit people. The influence of environmental parameters on gill 
microbiota in wild populations remains poorly understood. However, assessing the Arctic 
char’s active gill bacterial community is essential to look for potential pathogens or 
dysbiosis that could threaten wild populations. Here, we concluded that Arctic char 
gill microbiota was mainly influenced by latitude and air temperature, the latter being 
correlated with water temperature. In addition, a dysbiosis signature detected in gill 
microbiota was potentially associated with poor fish health status recorded in these 
disturbed environments. With those results, we hypothesized that rapid climate change 
and increasing anthropic activities in the Arctic might profoundly disturb Arctic char gill 
microbiota, affecting their survival.
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A rctic char, Salvelinus alpinus (Linnaeus 1758), a salmonid well adapted to cold and 
oligotrophic water, has a circumpolar distribution with the widest latitudinal range 

in freshwater fishes. It dominates most aquatic systems and is one of the top predators 
in the Arctic lakes (1–5), giving it a central role in the stability of the ecosystem (6). 
Moreover, different sympatric forms with different life history could co-exist in the 
same habitat or be completely isolated. One of those ecophenotypes concerns the 
fish’s migration with freshwater permanent residents, small residents, and anadromous 
populations (4). In our data, individuals were assumed to be anadromous based on local 
fishermen’s knowledge. They were caught during their summer migrations from the bays 
to rivers and lakes in August (2018 and 2019), except for fish from Salluit, sampled in May 
2019 before they migrated to the bay. Arctic char are rich in omega-3 polyunsaturated 
fatty acids, making them an essential source for the Indigenous communities (7) and 
economically important for commercial fisheries (8) and aquaculture (9). Unfortunately, 
this species is undermined by anthropogenic activities that lead to general and rapid 
lake degradation (10) with warming of surface water temperature (11). Arctic lakes are 
particularly impacted because of Arctic amplification, which is the fact that the rising 
Arctic surface temperature and the impacts due to climate change are greater in the 
Arctic than anywhere else in the world (12, 13). Those environmental degradations 
could lead to the eutrophication of oligotrophic Arctic lakes (14–19) with new inputs 
of nutrients and ions, salinity modifications (10, 14, 20), and decreases of dissolved 
oxygen in both surface and deep water (21, 22). This disturbs Arctic aquatic ecosystems, 
including water microbiome structure (23–27) and Arctic char physiology (19, 28, 29).

Likewise, higher water temperatures induce thermal stress in the cold-adapted 
Salvelinus alpinus (30). Warmer temperatures are correlated with increased opportunis
tic infections by pathogens such as Aeromonas salmonicida, Ichthyophthirius multifiliis, 
or Flavobacterium columnare (31–33). Moreover, rising temperatures may enhance the 
invasive capacity of southern species toward the North (34–39). These invasions threaten 
the local fish by introducing new parasites and pathogens for whom its immune 
system is naive (40–42). Those biological, physical, and chemical changes alter salmo
nid microbiota, including Arctic char (43–46). Microbiota is the consortium of microor
ganisms encompassing bacteria, archaea, protists, fungi, and viruses living in and on 
mucosal tissues. A balanced and symbiotic relationship between the microbiota and its 
host keeps both healthy. However, during stressful conditions, mucus protein compo
sition (mucins or anti-inflammatory cytokines) is altered (47–51), the immune system 
activity is affected (42), and the bacterial composition, diversity, and interactions (43–46, 
52) are modified. These changes favor opportunistic pathogens invasion or a shift from 
commensal to pathogen bacteria (53) and threaten host survival. This phenomenon is 
called dysbiosis (54).

In teleostean fishes, microbiota are found in skin, gut, and gill mucosal tissues. Gills 
are important in fish physiology since they are a semi-permeable barrier between the 
organism and the external environment that allows gas exchange (52). They also act 
as a gateway for new invasive pathogens (55) and, as guts, are a hot spot for immune 
molecules to respond to these attacks (55–59). Gill microbiota is therefore highly suitable 
for assessing the impact of both extrinsic and intrinsic factors on the integrity of Artic 
char physiology. However, wild Arctic char microbiota studies have focused on the skin 
and gut tissues in a migratory context with a salinity gradient (43, 60). Here, we report 
the first biogeographical study on Arctic char gill microbiota to unravel how abiotic 
factors might influence its bacterial composition and activity.

The taxonomic distribution of active bacteria in the Arctic char gill microbiota was 
characterized using a 16S rRNA gene metabarcoding approach from total RNA extracts. 
Sequencing 16S rRNA transcripts gives us information on the active part of the gill 
microbiota, while 16S rDNA sequences shed light on bacterial abundance (active or 
dormant) and free 16S rDNA. We quantified transcriptionally active taxa within the 
gill microbiota of 140 Arctic char sampled in five wild populations along a latitudinal 
gradient to reach this goal.
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We compared five different geographical sites in Nunavut (Ekaluktutiak, Victoria 
Island) and Nunavik (Salluit in Hudson Strait, Inukjuak and Akulivik in Hudson Bay, 
and Kangiqsualujjuaq in Ungava Bay) (Fig. 1) to measure the relative contribution 

FIG 1 Maps of the fishing sites with the location of the main Inuit communities in Kativik, Nunavik: Hudson Strait (Salluit), Ungava Bay (Kangiqsualujjuaq), 

and Hudson Bay (Akulivik and Inukjuak) and in Kikmeot, Nunavut: Cambridge Bay (Ekaluktutiak) (A). Fishing sites in Ekaluktutiak were CBL5 (n = 7), the three 

connected lakes Greiner (n = 25), first (n = 12), second (n = 12), and the bay (n = 7) (B). In Akulivik, the three rivers Chukotat (n = 3), Saparuajuiit (n = 3), and 

Korak (n = 7) were sampled (C). In Salluit, Duquet Lake (n = 24) was the only fishing site (D), and in Inukjuak, the fishing site was Five Mile Inlet (n = 25) (E). Fish 

coming from Koroc (n = 5) and George (n = 10) rivers in Kangiqsualujjuaq were also used for this project (F). A total of 140 anadromous Arctic char were caught 

in freshwater (FW) and saltwater (SW) sites across the Canadian Arctic. Maps were created using the “leaflet” package on RStudio and manually modified in 

Inkscape.
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of environmental factors (air temperature, water temperature, oxygen concentration, 
chlorophyll-a concentration, salinity, and pH) (Table S1) in influencing the taxonomic 
composition of active gill microbiota taxa. In addition, we measured the extent to which 
the dynamics of the interaction networks between those active taxa were modulated 
by these different locations. Network analysis aims to represent the complexity of active 
bacterial relationships according to co-occurrence patterns and positive or negative 
interactions between taxa (44 and references cited). This study provides a biogeograph
ical and latitudinal baseline to monitor the gill microbiota composition and its relation
ship with the host’s health.

RESULTS

The raw data showed 9,306,614 16S rRNA gene cDNA sequences with an average 
of 66,475 sequences per sample for 140 individuals collected from the five different 
communities. After filtration of low-quality reads, 8,531 amplicon sequence variants 
(ASVs) were available to compare gill bacterial microbiota composition between 
geographical sites. The abundance of the transcripts (ASVs) from active taxa differed 
between sites. Ekaluktutiak, Akulivik, Salluit, Inukjuak, and Kangiqsualujjuaq had 7,335, 
5,380, 3,031, 4,445, and 5,751 ASVs, respectively.

Differential relative bacterial activity between the five different sites

For the 50 most active ASVs at the family rank (Fig. 2), Arctic char gill microbiota in 
Ekaluktutiak was dominated by Rickettsiaceae and Rhodobacteraceae. Rickettsiaceae 
were significantly more active in Ekaluktutiak than in Salluit, Akulivik, Inukjuak, and 
Kangiqsualujjuaq (P = 2 e−16). Similarly, Rhodobacteraceae activity was significantly 
higher in Ekaluktutiak than in Akulivik (P = 1.9 e−08) and Kangiqsualujjuaq (P = 0.008) but 
significantly lower than in Salluit (P < 2 e−16), where Rhodobacteraceae were domi
nantly active. In Akulivik and Kangiqsualujjuaq, Chromobacteriaceae and Vibrionaceae 
transcripts were dominant but highly variable. Chromobacteriaceae were significantly 
more active in Akulivik than both in Ekaluktutiak and Inukjuak (P < 0.05), while Vibrio
naceae were significantly more active in Akulivik than in Ekaluktutiak (P = 7.7 e−16), 
Salluit (P = 2 e−05), Inukjuak (P = 4.8 e−05), and Kangiqsualujjuaq (P = 0.001). Finally, 
Vibrionaceae activity was significantly lower in Ekaluktutiak than in Inukjuak (P = 8.1 e−12) 
and Kangiqsualujjuaq (P = 0.001) but higher than in Salluit (P = 1.8 e−12). Nitrosomonada
ceae activity was also significantly lower in Ekaluktutiak than in Salluit (P = 1.6 e−12), 
Inukjuak (P = 2.6 e−6), and Kangiqsualujjuaq (P = 0.008) but higher than in Akulivik (P 
= 0.005). Also, the ASV activity heatmap (Fig. 3) showed a sample-based clustering from 
Nunavut, in Ekaluktutiak (in green) with an ASV group, which had an important activity 
compared to Nunavik samples. Another ASV group at the bottom right was also shared 
by Ekaluktutiak, Salluit, and Kangiqsualujjuaq samples.

Alpha diversity

Pielou index calculations for alpha diversity are presented in Fig. 4A. The non-parametric 
Kruskal-Wallis test was performed, and significant differences between groups were 
found (χ2 = 34.24, df = 4, P = 6.66e−07). The pairwise comparisons using a Wilcoxon rank 
sum test with continuity correction showed that Pielou index in Ekaluktutiak was 
significantly higher than in Salluit (P = 4.1e−07) and Inukjuak (P = 0.0004). With the 
Chao1 estimator, a richness index that extrapolates rare taxa (Fig. 4B), we observed 
significant differences between groups (Kruskal-Wallis test, χ2 = 23.23, df = 4, P = 0.0001). 
More precisely, the Chao1 index was significantly lower in Salluit than in Ekaluktutiak (P = 
0.04), Akulivik (P = 0.0001), Kangiqsualujjuaq (P = 3e−05), and Inukjuak (P = 0.002) and 
significantly lower in Inukjuak than in Akulivik (P = 0.002) and Kangiqsualujjuaq (P = 
0.04). Faith’s phylogenetic diversity measures (Fig. 4C), which consider the overall 
phylogenetic distance between taxa, also showed significant differences in alpha 
diversity across communities (Kruskal-Wallis: χ2 = 20.83, df = 4, P = 0.0003). Salluit’s alpha 

Research Article Microbiology Spectrum

March 2024  Volume 12  Issue 3 10.1128/spectrum.02943-23 4

https://doi.org/10.1128/spectrum.02943-23


diversity was significantly lower than in Ekaluktutiak (P = 0.04), Akulivik (P = 0.001), 
Inukjuak (P = 0.003), and Kangiqsualujjuaq (P = 0.0001), and Inukjuak showed significant 
lower index than in Akulivik (P = 0.013). Whether we use the Pielou index for evenness, 
the Chao1 index for richness, or Faith’s diversity index, we noticed that bacterial diversity 
within the Arctic char gill microbiota seemed to be the lowest in the Hudson Strait, in 
Salluit followed by Inukjuak.

Geographical influence on Arctic char gills microbiota

Weighted UniFrac distances between all samples from the five communities were 
visualized with a principal coordinates analysis (PCoA). Figure 5 shows that the geo
graphical parameter explained 39.9% of the group variance. More precisely, Ekaluktutiak 
and Salluit seemed more separated from the three other groups in the first axis (26.5%) 
and the second axis (13.4%), respectively. Therefore, both Ekaluktutiak and Salluit gill 
bacterial communities appeared to be the most differentiated from the other sites. 
Permutation-based multivariate analysis of variance (PERMANOVA) based on weighted 
UniFrac distances indicated that the clustering according to geographical groups was 
significant (F = 9.02, R2 = 0.22, and P = 1e−04). In addition, the pairwise PERMANOVA 
detected highly significant compositional differentiation between groups except 
between Akulivik and Kangiqsualujjuaq (Table 2). Multivariate homogeneity of group 
dispersion (Fig. S1) showed that interindividual variation was significantly higher in 
Ekaluktutiak than in Salluit (P = 0.02) and Inukjuak (P = 0.01) and significantly higher in 
Kangiqsualujjuaq than in Salluit (P = 0.05) and Inukjuak (P = 0.01).

Environmental influence on Arctic char gills microbiota

All the variables (water temperature, pH, salinity, chlorophyll-a, and O2 concentration) 
were correlated to air temperature with an absolute correlation index >0.21 (P < 0.05). 
The nonmetric multidimensional scaling (NMDS) with the factors “Air temperature” and 
“Latitude” (Fig. 6) showed that Ekaluktutiak was a little bit separated from the other 

FIG 2 Relative activity of the 50 most abundant transcripts (ASVs) at family rank found in the microbiota of the Arctic char’s 

gills across the five different communities Ekaluktutiak (EK), Salluit (SA), Akulivik (AK), Inukjuak (IN), and Kangiqsualujjuaq (KG). 

The relative activity of ASVs in the microbiota was highly heterogeneous between sites, with different species predominating.
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group in the first axis of the NMDS and that latitude was significantly related to the first 
axis of the NMDS ordination (P < 0.001). In contrast, air temperature (with averages of 
6.98°C, −2.35°C, 5.21°C, 7.21°C, and 15.23°C in Ekaluktutiak, Salluit, Akulivik, Inukjuak, and 
Kangiqsualujjuaq, respectively) was significantly associated with the second axis (P = 
0.04). Therefore, latitude appears to be the main factor in our data set explaining the 
differentiation in terms of the taxonomic distribution of active bacterial strains associ
ated with Arctic char gills between Ekaluktutiak in Nunavut and the four other geograph
ical regions in Nunavik (Fig. S4). Given that anadromous Arctic char were sampled in 
various habitats such as bays, rivers, and lakes in both Nunavut and Nunavik (Table 1), the 
salinity effect on gill microbiota was tested both with PERMANOVA and betadisper 
according to the type of water: “Freshwater” or “Saltwater.” PCoA was displayed for 
Nunavut (Ekaluktutiak) (Fig. S5A), Nunavik (Salluit, Kangiqsualujjuaq, Inukjuak, and 
Akulivik) (Fig. S5B), and both regions (Fig. S5C). The effect of the type of water was 
significant for each separate region (Fig. S5A and B) (PERMANOVA: P < 0.001 and 
betadisper: P > 0.05). Combining, Nunavik and Nunavut samples, the water type’s effect 
was still significant (P < 0.001), suggesting that the type of water was another parameter 

FIG 3 Heatmap of ASVs’ relative activity in the gills’ microbiota of Arctic char in five different communities in the Arctic. The visualization was performed with 

METAGENassist. In blue are transcripts with low abundance (active ASVs), and in red are transcripts with high abundance (active ASVs). The y-axis represents all 

community samples, and the x-axis represents all the 307 ASVs obtained after filtration. Ekaluktutiak (EK) samples were represented in green, Salluit (SA) in pink, 

Akulivik (AK) in red, Inukjuak (IN) in blue, and Kangiqsualujjuaq (KG) in turquoise. A pattern of an active ASV group in Ekaluktutiak showed a potentially important 

difference in bacterial activity in Arctic char gill microbiota between this site and the four other groups.
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explaining the different composition of the active Arctic char gill microbiota in the whole 
data set. Interestingly, the betadisper test had a P-value of 0.007, underlying the 
contrasting dispersion pattern between saltwater and freshwater gill microbiota (Fig. 
S5C).

FIG 4 Alpha diversity. Boxplot of the Pielou index (A), the Chao1 index (B), and the species richness 

with Faith’s diversity index (C) across the five communities Ekaluktutiak (EK), Salluit (SA), Akulivik (AK), 

Inukjuak (IN), and Kangiqsualujjuaq(KG). One star indicates a significative P-value <0.05; two stars indicate 

a P-value <0.01, and three stars indicate a P-value <0.001. Sites from Salluit and Inukjuak showed the 

lowest bacterial alpha diversity in richness and evenness.
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Different bacteria associated with the different sites

The phylum Actinobacteria is significantly associated with the community Ekaluktutiak 
(IndVal = 0.70, P = 0.03). Fusobacteria (IndVal = 0.91, P = 0.001) and Firmicutes (IndVal 
= 0.81, P = 0.006) were strongly and significantly associated with the sites from Akulivik. 
Gemmatimonadetes was an indicator species for Inukjuak (IndVal = 0.75, P = 0.001). 
Kangiqsualujjuaq had many indicator taxa including Rhodothermaeota (IndVal = 0.86, 
P = 0.001), Deinococcus and Thermus genera (IndVal = 0.76, P = 0.001), Planctomycetes 
(IndVal = 0.69, P = 0.001), Chloroflexi (IndVal = 0.67, P = 0.001), and Nitrospirae (IndVal = 
0.60, P = 0.005) (Table 3).

Different dynamics in interaction networks

Ekaluktutiak microbial interactions network showed 423 genera (nodes) and 8,033 
interactions (edges). Contrastingly, in Salluit, only 134 nodes interacted through 288 
edges. While in Akulivik, Inukjuak, and Kangiqsualujjuaq, 276, 215, and 224 nodes 
with 947, 826, and 995 edges were part of the network, respectively. To help in the 
visualization, only the 50 most active taxa at the genus rank were represented (Fig. 7). 
The most active taxa in Ekaluktutiak were Pseudomonas, with a relative transcriptional 
activity of 4%, followed by Rickettsia, Aeromonas, Photobacterium (both Proteobacteria), 
and Flavobacterium (Bacteroidetes) with relative transcriptional activities of 3%, 3%, 2%, 
and 2%, respectively. In Salluit, we found Mycoplasma (Tenericutes), Photobacterium, and 
Lactobacillus (Firmicutes) with 1% each of relative transcriptional activities. In Akulivik, 
Gallionella (Proteobacteria) with 4%, Flavobacterium with 3%, and Moritella (Proteobacte
ria) with 2% of relative transcriptional activities were the most active genera. In Inukjuak, 
Aliivibrio (Proteobacteria), Pseudomonas, and Chlamydia (Chlamydiae) were the most 
active taxa with 3%, 2%, and 2% of relative transcriptional activities, respectively. In 

FIG 5 Beta diversity. Principal coordinates analysis of the samples from the five different communities in the Arctic: 

Ekaluktutiak (green), Salluit (pink), Akulivik (orange), Inukjuak (blue), and Kangiqsualujjuaq (turquoise). The weighted UniFrac 

distances were used to construct PCoA, and a multivariate analysis of variance with 9,999 permutations was performed to 

obtain the P-value. Relative ASV activity in Ekaluktutiak (axis 1) and Salluit (axis 2) significantly differed from the three other 

groups.
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Kangiqsualujjuaq, Photobacterium, Aliivibrio, and Flavobacterium were the most active 
genera with relative transcriptional activities of 14%, 2%, and 2%, respectively.

We observed significant differences between groups in the degree metric (DG) (χ2 = 
122.7, df = 4, P < 0.001) (Fig. S6A), the neighborhood closeness (NC) metric (χ2 = 64.60, df 
= 4, P < 0.001) (Fig. S6C), and the connectivity centrality (CC) of the nodes in the networks 
(χ2 = 64.60, df = 4, P < 0.001) (Fig. S6B). Ekaluktutiak had the most connected interaction 
web with DG and NC, significantly higher than for Salluit (P < 0.001), Akulivik (P < 0.001), 
Inukjuak (P < 0.001), and Kangiqsualujjuaq (P < 0.001). CC was also significantly higher 
than Kangiqsualujjuaq (P < 0.001), Akulivik (P < 0.001), and Inukjuak (P < 0.001) but not 
significantly different than Salluit (P = 0.18). Then, Kangiqsualujjuaq seemed the most 
connected network after Ekaluktutiak’s with DG (P < 0.001), NC (P < 0.001), and CC (P < 
0.001) significantly higher than Inukjuak. Kangiqsualujjuaq also had significantly higher 
NC (P = 0.05) and CC (P = 0.0002) than Akulivik, as well as significantly higher DG (P < 
0.001) and NC (P < 0.001) than in Salluit. Akulivik had significantly higher DG and NC than 
Inukjuak (P < 0.001) and Salluit (P < 0.001) and significantly higher CC than Inukjuak (P = 
0.03). Finally, Inukjuak and Salluit did not differ significantly from each other in DG and 
NC, but Salluit had significantly higher CC than Kangiqsualujjuaq (P = 0.05), Akulivik (P = 
0.001), and Inukjuak (P = 0.001).

Regarding the correlations between all genera, we obtained 58, 0, 17, 2, and 43 
negative correlations with 7,975, 288, 930, 824, and 952 positive correlations for Ekaluk
tutiak, Salluit, Akulivik, Inukjuak, and Kangiqsualujjuaq, respectively (Table S3A). Less 
than 4% of the correlations were negative for all the networks. In Ekaluktutiak, 

FIG 6 Beta diversity. NMDS on weighted UniFrac distances with environmental independent parameters fitted. The 

environmental parameters were represented across the samples from the five different communities in the Arctic: Ekaluktutiak 

(green), Salluit (pink), Akulivik (orange), Inukjuak (blue), and Kangiqsualujjuaq (turquoise). Latitude and air temperature were 

significantly correlated to the bacterial relative activity in Arctic char gill microbiota.
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Psychromonas and Rickettsia were the most negatively correlated genera in the network, 
with five edges each (Table S3B). Rickettsia activity was exceptionally high (88, 166), and 
the topological metrics were relatively high for both genera. In Akulivik, Acinetobacter, 
Hassalia, and Planktothrix had the most negative correlations, with three, four, and five 
negative correlations, respectively. They were not the most active taxa and did not seem 
to be essential nodes in the network dynamics regarding the topological parameters 
(Table S3C). In Kangiqsualujjuaq, Pseudoalteromonas with nine negative correlations and 
Mycoplasma with eight negative correlations had metrics showing an important role of 
those taxa in this interaction network (Table S3D). Finally, Inukjuak only showed two 
nodes that have one negative relationship each: Shewanella and Bradyrhizobium. The 
nodes had low activity, and according to the metrics, they did not have a central role in 
the web (Table S3E). In all interaction networks, Proteobacteria and Bacteroidetes were 
predominant. Only a few taxa were shared between them, but they did not seem to have 
the same impact on the different network’s topologies. Moreover, none of the genera 
harboring negative correlations were simultaneously present in the different interaction 
networks. If Ekaluktutiak, Kangiqsualujjuaq, and Akulivik had important connectivity 
inside the interaction network, Salluit and Inukjuak were more fragmented (e.g., split into 
subnetworks), and their nodes were less connected.

DISCUSSION

In the present study, we have characterized the bacterial composition of active gill 
microbiota in Arctic char at five different locations in the Arctic: Ekaluktutiak (Cambridge 
Bay, Nunavut), Salluit (Hudson Strait, Nunavik), Akulivik, Inukjuak (Hudson Bay, Nunavik), 
and Kangiqsualujjuaq (Ungava Bay, Nunavik). Arctic char gill microbiota composition was 
generally heterogeneous. First, we observed that the northernmost site had the most 
different bacterial composition from the four other sites and showed a bacterial com
munity harboring a strong resilience pattern with high connectivity in its interaction 
network. In contrast, gill bacterial activity at Salluit and Inukjuak sites, heavily impacted 
by anthropogenic activities (61–66), showed a potential signature of dysbiosis, coincid
ing with reports of disrupted reproduction, infections, or increased mortality in Arctic 
char (67, 68). Finally, latitude and, to a lesser extent, air temperatures and water type 
were the most important influences in the composition of the active part of the Arctic 
char gill microbiota.

TABLE 1 General information about the geographical sites Ekaluktutiak, Salluit, Akulivik, Inukjuak, and Kangiqsualujjuaq

Region Community Location Type of sites Type of water Latitude Longitude Date

Nunavut Ekaluktutiak

Greiner Lake Lake Freshwater 69.18 −104.99 August 2018
69.19 −104.97 August 2019
69.19 −104.98 August 2020

First Lake Lake Freshwater 69.2 −104.76 August 2018
69.21 −104.75 August 2019
69.20 −104.75 August 2020

Second Lake Lake Freshwater 69.18 −104.68 August 2018
69.17 −104.6 August 2019

CBL5
(Inuhuktok)

Lake Freshwater 69.25 −104.71 August 2019

Cambridge Bay Bay Saltwater 69.09 −105.04 August 2018
68.99 −105.09 August 2019

Nunavik

Salluit Duquet Lake Lake Freshwater 62.06 −74.53 May 2019

Akulivik
Chukotat River River mouth Saltwater 60.79 −78.02 August 2018
Saparuajuiit River River mouth Saltwater 60.76 −77.87 August 2018
Korak River River mouth Saltwater 60.75 −77.63 August 2018

Inukjuak Five Mile Inlet River Freshwater 58.56 −78.21 August 2018

Kangiqsualujjuaq
George River River mouth Saltwater 58.69 −65.95 August 2018
Koroc River River mouth Saltwater 58.89 −65.79 August 2019
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Arctic char gill bacterial microbiota activity

Proteobacteria, Bacteroidetes, and Firmicutes were dominant in terms of activity. Those 
phyla have already been found to be major players in Arctic char gut microbiota in 

FIG 7 Microbial interaction networks at the five different geographic sites: Ekaluktutiak (green), Akulivik (orange), Salluit (pink), Kangiqsualujjuaq (turquoise), 

and Inukjuak (blue). Spearman’s correlations between the different ASVs at a genus rank, with a score <−0.4 (red edges) and >0.4 (green edges) and with a 

P-value adjusted with false discovery rate <0.05, were represented in the networks. The correlation score scales with the thickness of the edge. Each node is a 

genus; its size varies with its activity, and its color changes with its phylum. Ekaluktutiak was the most connected network, showing a resilient pattern, while 

Salluit and Inukjuak showed the lowest number of interactions.
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wild populations from Norwegian lakes (69) and experimental conditions under different 
diets in Sweden (70). Similarly, Arctic char core skin microbiota in the Kitikmeot region 
encompassed Proteobacteria, Firmicutes, and Cyanobacteria (43). When compared to 
other salmonids, Proteobacteria and Bacteroidetes were found in the gill microbiota 
(71), while Proteobacteria, Firmicutes, and Actinobacteria were found in rainbow trout 
gut microbiota (Oncorhynchus mykiss) (72–74). Proteobacteria were also found as a main 
phylum in Brook char (Salvelinus fontinalis) skin mucus with the phylum Bacteroidetes 
(44) and as core taxa in Atlantic salmon (Salmo salar) gut microbiota with the phylum 
Tenericutes (75) and Firmicutes (76, 77). Overall, the gill composition in teleostean fish 
consists of Proteobacteria, Firmicutes, Actinobacteria, Cyanobacteria, Ascomycota, and 
Basidiomycota (78). Therefore, our study confirmed that Proteobacteria, Bacteroidetes, 
and Firmicutes are part of the core microbiota of Arctic char gills. At family rank, gill 
bacterial communities were dominated by Chromobacteriaceae and Vibrionaceae in 
Akulivik and Kangiqsualujjuaq, by Rhodobacteraceae in Salluit and Ekaluktutiak, and by 
Rickettsiaceae in Ekaluktutiak only (Fig. 2). Vibrionaceae, a core taxon in skin and gut 
microbiota in wild Arctic char from King William Island (Nunavut) (43, 60), is common 
in marine environment (79), and Rhodobacteraceae was found in the gut microbiota 
of rainbow trout (Oncorhynchus mykiss) (80). Interestingly, Chromobacteriaceae and 
Rickettsiaceae are not commonly found in salmonid microbiota.

The principal genera found in the Arctic char gill microbiota were common mem
bers of teleost microbiota or opportunistic pathogens. First, Photobacterium, a common 
bacterium in marine environments (79), Atlantic salmon (75), and Arctic char skin and gut 
microbiota (43, 60), was found as one of the most active genera in the five communities 
(Fig. 7; Fig. S7A). Strains belonging to this genus could induce either benefits for the host 
with antimicrobial, antifungal, or antiprotozoal molecules production (81) or negative 
effects with pathogenic strains such as P. damselae, which could cause pasteurellosis, 

TABLE 2 Pairwise PERMANOVA P-values for the unweighted UniFrac distances with 9,999 permutationsa

Unweighted UniFrac distances

Ekaluktutiak Salluit Akulivik Inukjuak Kangiqsualujjuaq

Ekaluktutiak
Salluit 0.0001
Akulivik 0.0001 0.0001
Inukjuak 0.0001 0.0001 0.0002
Kangiqsualujjuaq 0.0001 0.0001 0.34 0.0004
aP-values were adjusted with the Benjamini-Hochberg correction.

TABLE 3 Association between geographical sites and bacteria at phylum ranka

Phylum IndVa lndex P-value Specificity (A) Sensitivity (B)

Ekaluktutiak Actinobacteria 0.70 0.03 0.51 0.95

Akulivik
Fusobacteria 0.91 0.001 0.90 0.92
Firmicutes 0.81 0.006 0.66 1.00

Inukjuak Gemmatimonadetes 0.75 0.001 0.59 0.96

Kangiqsualujjuaq

Rhodothermaeota 0.86 0.001 0.93 0.80
Deinococcus
Thermus

0.76 0.001 0.67 0.87

Ignavibacteriae 0.71 0.001 0.76 0.67
Planctomycetes 0.69 0.001 0.50 0.930
Chloroflexi 0.67 0.001 0.62 0.73
Nitrospirae 0.60 0.005 0.68 0.53
Thaumarchaeota 0.53 0.003 0.84 0.33
Calditrichaeota 0.52 0.001 1.00 0.27

Number of permutations: 9999
aResults of the indicator value index, its P-value, and its two components which show the specificity and sensitivity.
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a bacterial septicemia, in marine fish (82). In Akulivik, Inukjuak, and Kangiqsualujjuaq, 
Paludibacterium, usually found in freshwater with low salt tolerance (83), was dominant 
(Fig. S7A). However, gills were in contact with the saline environment during migration, 
so the taxon found should be a salt-tolerant strain or a core taxon recruited before 
the migration. In Akulivik and Inukjuak, Arctic char gills also carried Aliivibrio (Fig. 
S7A). Aliivibrio predominates in adult Atlantic salmon gut microbiota during its marine 
migratory phase (75) and comprises major fish pathogens associated with dysbiosis and 
diseases (84). Staphylococcus and Flavobacterium, two genera documented to include 
opportunistic pathogens, were dominant in Akulivik and Salluit, respectively (Fig. S7A). 
For example, Staphylococcus aureus could trigger exophthalmia and septicemia (85), and 
Staphylococcus warneri could induce an inflammatory response during dysbiosis (86). 
Moreover, Flavobacterium columnare and Flavobacterium psychrophilum are well known 
in aquaculture to cause bacterial diseases, gill lesions, ulcers (87), or cold-water disease 
(88), including in Arctic char (53). However, commensal strains of Staphylococcus were 
observed in rainbow trout (Oncorhynchus mykiss) skin microbiota, and Flavobacterium 
is considered a common member of the salmonid microbiota, as observed in brook 
char skin mucus (89), rainbow trout gills (71), and Arctic char gut and skin (43, 69). 
Finally, Ekaluktutiak showed a different profile dominated by Aeromonas, Pseudomonas, 
and Rickettsia (Fig. S7A). Aeromonas and Pseudomonas are two genera documented to 
include opportunistic pathogens triggering infection in stressed teleost hosts (44, 53, 
90–93). However, Pseudomonadaceae is part of Arctic char skin and gut core microbiota 
(43), and Pseudomonas is active in many environments (94) and commonly found in the 
Arctic (Svalbard) (95). Rickettsia genus includes pathogenic and toxic species that can be 
transmitted to humans through ticks (96), but few reports of fish infections were found. 
However, a “rickettsia-like organism,” Piscirickettsia salmonis, is responsible for a salmonid 
disease: the piscirickettsiosis (septicemia), which was documented in rainbow trout (O. 
mykiss), Chinook (O. tshawytscha), Coho (O. kisutch), Atlantic (Salmo salar), and pink (O. 
gorbuscha) salmons (97).

Biogeographical influence on Arctic char gill microbiota

The ASV relative activity heatmap showed an interesting pattern among the five different 
geographical sites, isolating the northern site in Nunavut (Fig. 3). This pattern is further 
supported by PCoA (Fig. 5) and PERMANOVA, showing that bacterial compositions of 
Ekaluktutiak and Salluit are significantly different from the three other groups (Table 2). 
Environmental conditions may partly drive this clustering. Indeed, microbiota taxonomic 
diversity and functionality are influenced by environmental parameters (43, 44, 52, 
98–104), which vary between different geographical sites (98). In our study, samples 
were collected in four different hydrologic basins: Ekaluktutiak, located in Cambridge 
Bay, in the Nunavut region, whereas southeast samples were taken in Hudson Strait, 
Hudson Bay, and Ungava Bay, which delimit the North, the West, and the East of 
Nunavik, respectively. Moreover, anadromous Arctic char came from lakes (Ekaluktutiak, 
Salluit), rivers (Inukjuak), or from the mouth of the bay (Kangiqsualujjuaq, Akulivik, 
and Ekaluktutiak) at different latitudes explaining that parameters such as temperature, 
salinity, and productivity were different between sites (105, 106). Therefore, the different 
types of sites located at different latitudes with different environmental conditions could 
explain the significant difference in Arctic char gill microbiota regarding the taxonomic 
distribution of transcriptional activity. These results were consistent with previous Arctic 
char skin and gut microbiota studies, where the geographical sites influenced the 
bacterial composition and diversity (60, 98). Gill microbiota could also be influenced 
by the population’s genetic structure (52), and a study on the genetic populations of 
Arctic char in Hudson Strait, Hudson Bay, and Ungava Bay showed distinct genetic 
populations (106). Investigating how population genetic structure influences the Arctic 
char gill microbiota in our data will be interesting.
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Latitude and air temperature influences in Arctic char gill microbiota

The latitude had the strongest effect on the taxonomic distribution of active bacterial 
strains in Arctic char gill microbiota (P < 0.001) to explain the differentiation between 
Ekaluktutiak (Nunavut) and the four other groups from Nunavik. Previously, Arctic char 
gut and skin microbiota analyses had shown the impact of habitat, season, geographical 
sites, salinity, and age on bacterial composition (43, 60, 98). Here, the latitude was the 
main explaining factor, to a lesser extent, air temperature (Fig. 6) and salinity (Fig. S5). 
At first sight, water temperature was identified as one of the main factors explaining the 
differences in gill microbiota’s richness (diversity) and evenness (structure) across the five 
geographical sites (Fig. S2). However, given that we were not able to directly meas
ure water temperature in each sampling site due to logistic constraints and different 
sampling teams, half of the water temperature data were obtained from GIS (geographic 
information system) estimation (all Nunavik samples), while the other half being directly 
measured with RBR probe (Nunavut). Therefore, a methodological bias was induced, 
potentially enhancing observed differences between Nunavut and Nunavik samples (Fig. 
S3). Therefore, to avoid any statistic bias, and because GIS estimation was not available 
for Nunavut sampling sites, we used air temperature collected by the official Canadian 
Data of Environment and Climate Change Canada (https://climate.weather.gc.ca/) for 
each Inuit community. Indeed, air temperature is generally used to calculate the water 
temperature as it has a strong positive correlation with it (107). The results showed a 
significant effect of air temperature on the taxonomic distribution of bacterial activity 
in Arctic char gills (Fig. 6) (P = 0.04). This effect was unsurprising as the temperature 
is one of the main factors influencing the microbial composition in waters and fish 
microbiota, including Arctic char (60). As an ectotherm living in cold, oxygenated, 
and oligotrophic waters (108, 109), Arctic char is one of the least resistant to high 
temperatures, thus strongly limiting its latitudinal distribution (2, 4, 30, 110). Arctic 
char generally live within a narrow range of water temperatures between 5.8°C and 
11.4°C in freshwaters (111) and between 5°C and 8°C in saltwater (112). A temperature 
optimum of 9.4°C for growth was recorded in Frobisher Bay, Nunavut (113), and a lethal 
temperature of 18°C has been determined in controlled conditions (114). From the 
microbial point of view, thermal acclimatization is explained in terms of metagenomic 
plasticity (115). Psychrophilic bacteria adapted for low temperatures will be replaced or 
dominated in warmer temperatures by mesophilic strains adapted to higher temper
atures and providing similar functions. In farmed Atlantic salmon (Salmo salar) gut 
microbiota, or in Chinook salmon (Oncorhynchus tshawtscha) gut microbiota, studied 
in recirculating aquaculture systems, warmer temperatures lead to the increase of the 
mesophilic genera Vibrio (116, 117) and Brevinema spp. (118), respectively. Moreover, 
a decrease in the psychrophilic Clostridium spp. in Chinook salmon gut microbiota 
was also noted (119). Additionally, mesophilic strains that replace psychrophilic species 
could be pathogenic. For example, Aeromonas salmonicida spp., which are primarily 
well known for being psychrophilic (32, 120, 121), also contain many mesophilic strains 
(122), and its abundance was correlated with warmer temperatures and high incidence 
of furunculosis in fish in James Bay (Nunavik) (31). Thus, warmer water temperatures 
could lead to more fish diseases in the North. We found that Arctic char gill microbiota 
from Ekaluktutiak, with warmer water temperatures, exhibited increased activity of the 
mesophilic species Aeromonas lacus, Aeromonas sobria, and Pseudomonas brenneri (Fig. 
S7B) (123–126). Aeromonas lacus was also found dominant in Duquet Lake (Salluit). 
Contrastingly, in colder water from Kangiqsualujjuaq, Inukjuak, and Akulivik, bacterial 
activity was dominated by the psychrophilic species Aliivibrio sifiae and the Photobacte
rium carnosum (127–129). This suggests mesophilic species dominated warmer sites, 
and psychrophilic species dominated colder sites. Arctic char gill microbiota in the five 
communities studied here was generally dominated by active genera, such as Photobac
terium, Aliivibrio, Staphylococcus, Aeromonas, Pseudomonas, or Flavobacterium, which are 
known to include opportunistic pathogen species. Those genera could trigger infections 
in the fish under stressed conditions such as warmer temperatures (44, 53, 82, 84–88, 
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90–92). Therefore, the change in water temperatures and its impact on replacement 
by mesophilic opportunistic pathogens must be closely examined. More investigations 
with controlled environmental and ecotoxicological parameters are needed to test which 
parameters in those different latitudes may most influence the Arctic char gill microbiota.

Different bacterial network dynamics and potential dysbiosis

Ekaluktutiak exhibited the most connected interacting network, involving 8,033 
interactions between the 50 most active taxa. High network connectivity is a hallmark of 
microbiota resilience (130–133), so such results might indicate a healthy fish population. 
Interestingly, Arctic char stock and survival in Ekaluktutiak were relatively stable (112, 
134, 135). Thus, Ekaluktutiak gills microbiota exhibited a resilient pattern that involved 
mainly active strains belonging to Proteobacteria and Bacteroidetes (Table S3A; Fig. 7). 
It is also associated with Actinobacteria, usually found in healthy salmonid microbiota 
(Table 3) and containing species able to synthesize antibiotic products (136), inhibiting 
fungal pathogen development (71), and/or producing potential probiotics for treating 
furunculosis in rainbow trout (58, 137). In contrast, the Salluit network exhibited the 
lowest number of interactions (n = 288) between 48 taxa (Fig. 7), involving mainly 
Mycoplasma, a genus including several opportunistic and pathogenic species (138). 
Mycoplasma is particularly abundant in salmonid gut (71, 75, 139), playing a role in 
lipid and sugar metabolism (140), and is a core genus in Arctic char gut microbiota in 
freshwaters (43, 60). Overall, with both the lowest bacterial alpha diversity, in terms of 
richness and evenness (Fig. 4), and the weakest network connectivity, Salluit microbiota 
probably showed a pattern of a highly unstable bacterial community (i.e., with low 
resilience) (133). Stressful conditions could induce low resilience of the gill microbiota, 
favoring pathogenic infections of fish (131, 132, 141–146). Interestingly, metal contami
nations by the Raglan mine, located approximately 100 km upstream of Deception Bay 
in Salluit, have been reported (66–68, 147), and a study showed Arctic char muscular 
infections by fungi in this region (67). However, we cannot exclude that the difference 
between Ekaluktutiak and Salluit, particularly in the number of interactions between 
the different genera, could also be influenced by the fact that we have more sampling 
sites in Ekaluktutiak (five) than in Salluit (one). The low connectivity of the network 
and pre-dominance of the genus Aliivibrio suggest that the Inukjuak microbiota was 
susceptible to dysbiosis but to a lesser extent than Salluit. Moreover, Gemmatimona
detes (Table 3) is associated with Arctic char gill microbiota in Inukjuak. It contains a lot 
of phototrophic species found in wastewater treatment or the High-Arctic in Greenland 
(148). Many environmental stresses in Inukjuak, such as chemical contamination (69, 70), 
hydroelectric dams, or fish invasions bringing new parasites and pathogens (66), could 
cause this potential dysbiosis and threaten Arctic char. Moreover, in 2018, in the Five 
Mile Inlet system in Inukjuak, the Arctic char local population had a healthy Fulton index 
(1.13 + −0.10) but showed disruption in reproduction and a worrying annual mortality 
rate (68%–82%) (68). Further investigation should focus on the link between Arctic char 
gill microbiota, the host’s health and immune system, and more accurate environmental 
analysis in Salluit and Inukjuak. Akulivik and Kangiqsualujjuaq individuals exhibited 
healthy gill microbiota patterns, but a complete report from Makivik Corporation (66) 
showed important Arctic char mortality in rivers from Kangiqsualujjuaq. However, the 
air temperature collected in August 2019 was exceptionally high (18.86°C) (ECCC) and 
decoupled from the water temperature collected by GIS (2.08°C). This can be explained 
by the glaciers around Kangiqsualujjuaq, which also play an essential role in the water 
temperature due to their erosion (Canadian Encyclopedia).

Conclusion

The bacterial composition of active gill microbiota in Arctic char differed between groups 
and was mainly influenced by latitude and, to a lesser extent, air temperature and water 
type. Dysbiosis patterns were detected in Salluit and Inukjuak, characterized by poor 
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network connectivity and the prevalence of opportunistic pathogens. We hypothesized 
that such a gill bacterial microbiota dysbiosis was associated with local habitat degrada
tion documented in both communities. Gill microbiota has shown to be a good indicator 
for monitoring the effect of environmental stresses on fish health (52, 147, 149–151), 
and more studies are needed to identify how environmental stress impacts Arctic char 
gill microbiota in the North. A monitoring tool will contribute to the collaborative effort 
assessing the extent to which current and future threats could impact the fitness of local 
Arctic char populations.

MATERIALS AND METHODS

Fish sampling

Anadromous Arctic char have been sampled from five communities across the Canadian 
Arctic in freshwaters and saltwaters (Fig. 1; Table 1). In Nunavut, during the ice-free 
season, four lakes upstream of the Freshwater Creek (Greiner system) and the marine bay 
facing the community of Ekaluktutiak (Cambridge Bay) on Victoria Island were sampled 
during August 2018, 2019, and 2020. The four lakes sampled were Greiner Lake (69.18N, 
−104.99W; 36.9 km2), First Lake (69.20N, −104.76W; 3.16 km2), Second Lake (69.18N, 
−104.68W; 268 km2), and CBL5 (named Inuhuktok; 69.25N, −104.71; 1.11 km2) (152). The 
fishing sites were selected based on the traditional ecological knowledge shared by 
the Inuit field guides from the Hunters and Trappers Organization, and adult fish were 
harvested using gill nets. Fish were killed according to an animal use protocol elaborated 
by the GLLFAS/WSTD animal care committee, and dissections were made at the Canadian 
High Arctic Research Station Campus (CHARS). Dissections were carried out in the field 
under the most sterile conditions possible. Once collected from the net with gloves, the 
fish were separated and placed in a cool box before being dissected at CHARS with tools 
cleaned with 70% alcohol and flames between each individual. One- or two-gill arches 
were taken randomly, without targeting the right or left side of the individual, as the 
sample size avoided potential bias, and the inter-individual variation between the two 
sides would not be significant (153). In total, 25 gills from Greiner Lake, 12 from First Lake, 
12 from Second Lake, 7 from CBL5, and 7 from Cambridge Bay were used for microbial 
analysis. The Northern Aquatic Resources lab at the Institute of Systems and Integrative 
Biology (IBIS, University Laval, Québec, QC, Canada) and the Ministry of Forests, Wildlife, 
and Parks (Québec, QC, Canada) did sampling across Nunavik. As for Ekaluktutiak in 
Nunavut, samples were harvested with the Inuit wildlife managers with gillnets or 
counting weirs (106). In Hudson Bay, samples were collected near the Inukjuak commun
ity with 25 individuals from Five Mile Inlet (58.56N, −78.21W). Then, fish were collected 
near the Akulivik community with seven gills from Korak River (60.75N, −77.63W), three 
from Chukotat River (60.79N, −78.02W), and three from Saparuajjuit River (60.77,–77.81). 
In Hudson Strait, 24 individuals were collected in Duquet Lake (62.06N, −74.53W) in the 
Salluit community. Finally, in Kangiqsualujjuaq (Ungava bay), 10 individuals from George 
River (58.69N, −65.95W) and 5 from Koroc River (58.89N, −65.79W) were fished. Overall, 
63, 25, 13, 24, and 15 Arctic char were caught in Ekaluktutiak, Inukjuak, Akulivik, Salluit, 
and Kangiqsualujjuaq, respectively (Fig. 1). Thus, a total of 140 fish belonging to the five 
regions could be dissected for the analysis of Arctic char gill microbiota. One- or two-gill 
arches were collected for each individual and preserved in Nucleic Acid Preservation 
buffer (154, 155).

Moreover, weight and fork length were measured for each fish except for some 
coming from George River (Kangiqsualujjuaq), Korak, and Chukotat River (Akulivik). 
Fulton index, which indicates the physiological condition of the fishes, was also 
calculated according to Froese (156): K = 100 × (W/L)3, with weight (W) in grams and 
length (L) in centimeters. Normality was assessed with Shapiro’s test, and homoscedas
ticity was assessed with Levene’s test (157), to compare morphological traits between 
communities. Those conditions were not respected. The Kruskal-Wallis test was therefore 
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performed in R version 3.4.2 (158) followed by multiple pairwise comparisons between 
groups, i.e., function “wilcoxtest()” with the argument “p.adjust.method = BH” to adjust 
P-values for multiple comparisons using Benjamini and Hochberg’s false discovery rate 
(FDR).

16S rRNA gene library construction

Gills preserved in NAP buffer were washed with PBS 1×, pH 7.4. Then, 100 mg of gill 
tissues per individual was used to extract RNA using Trizol reagent (cat #15596026, 
Thermo Fisher Scientific). Throughout the libraries’ construction, 12 controls were 
processed with the same protocol as the samples. These controls were negative controls 
that followed the same protocols (RNA extraction, reverse transcription, PCR, and DNA 
purification) as the rest of the samples to ensure no contamination of the reagents 
throughout the laboratory. Once RNA was extracted, reverse transcription PCR was done 
using the qScript cDNA Synthesis Kit (cat #95048-100) from QuantaBio (Beverly, MA, 
USA). Finally, the V4 fragment of the universal microbial marker rRNA 16S gene was 
amplified with a first PCR using the primers 519-F (5′-ACA CTC TTT CCC TAC ACG ACG 
CTC TTC CGA TCT CAG CMG CCG CGG TAA -3), 745-R (5′- GTG ACT GGA GTT CAG ACG 
TGT GCT CTT CCG ATC TGA CTA CHV GGG TAT CTA ATCC -3′) (Sigma-Aldrich, St. Louis, MO, 
USA) and using the enzyme Q5 High Fidelity DNA Polymerase with the manufacturer’s 
standard protocol (New England, Biolabs). Initial denaturation was at 98°C for 2 minutes, 
denaturation was at 98°C for 10 seconds, then annealing was at 60°C for 30 seconds, 
followed by elongation at 72°C for 30 seconds, and the final elongation at 72°C for 10 
minutes. After 35 cycles, electrophoresis on 2% agarose gels was done to verify the 
successful amplification of the V4 region. Samples were then purified with AMPure beads 
[cat #A63880, Beckman Coulter, Pasadena (CA), USA] and quantified by Nanodrop. A 
second PCR was performed to barcode samples with two indexes. For this PCR, the final 
elongation was at 72°C for 10 minutes, and 12 cycles were programmed. As for the first 
PCR, 2% agarose gels were used, followed by purification. Finally, barcoded samples were 
pooled, and the smallest concentration of DNA was used to equilibrate the quantity 
of DNA for each sample in the pool. The sequencing was made on Illumina MiSeq in 
paired-end mode (2 × 300 bp) at the IBIS Genomics Platform (Université Laval, Québec, 
QC, Canada).

Bioinformatics

After sequencing, quality filtering and trimming were done to remove reads with poor 
quality with dada2 (159) using R v 3.4.2 (158). According to visualization of the Phred 
scores, truncations were made at 275 for the forward reads and 270 for reverse reads 
(truncLen). The NAs (not available) data were eliminated, and the threshold of expec
ted error was 4 for the forward reads and 5 for the reverse reads (maxEE). Then, the 
sequences were cut at the beginning of 5 pb to have better quality sequences (trimLen 
= 5), and a prediction model was used to correct on the reads to avoid data loss of those 
reads (160). Finally, ASVs were clustered with dada2 with an identity threshold of 97%. 
Chimeras were removed, and ASVs were decontaminated with control reads. The NCBI 
16S Microbial Database was used to assign taxonomy to ASVs with dada2 (161). ASV 
raw counts, metadata, and taxonomy tables were imported into the R package phyloseq 
(162). From this phyloseq object, ASVs with a mean relative activity <1e−5 and samples 
with a total count <10,000 were filtrated. After normalization steps, 8,531 ASV remained, 
and 4 samples were discarded because of their low total count: one from Cambridge Bay, 
one from Five Mile Inlet, and two from Duquet Lake.

Environmental data

Water sampling and data measurement in Ekaluktutiak (Victoria Island, Nunavut) 
were performed by the Laboratory of Aquatic Sciences of the Université du Quebec 
à Chicoutimi (QC, Canada). Water temperature, conductivity, O2 concentration, O2 
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saturation, and salinity were measured with a Ruskin RBR Concerto probe (Ottawa, 
ON, Canada). Environment and Climate Change Canada at the National Laboratory for 
Environmental Testing (Burlington, ON, Canada) analyzed DOC content in the water 
samples [see section “Materials and Methods” in references (152, 163)]. The environ
mental data in Nunavik were estimated using ArcGIS software v10.4 (164), BIO-Ora
cle v2.0 (165), Marspec (166), and WorldClim v2.0 (167) [see section “2. Methods” 
in reference (168)]. Air temperatures were collected for Ekaluktutiak, Salluit, Akulivik, 
Inukjuak, and Kangiqsualujjuaq using the Environment and Climate Change Canada 
database (climate.weather.gc.ca) (Table S1). From these data, we calculated the average 
air temperature in the month in which each group of fish was caught. As with the 
morphometric data, grouping all the environmental information for all the sites was 
challenging. In Ekaluktutiak, we do not have environmental data from 2020 (10 samples) 
and from Cambridge Bay because the RBR probe was not available that day. Therefore, 
another data set with a different number of samples was used for the rRNA 16s analysis 
with environmental data (Fig. 6). Table S2 makes it easier for the reader to understand the 
different data sets used for the different analyses.

Statistics

Relative activity

Barplots with mean and standard error, representing the relative activity of the most 
active ASVs (Fig. 2; Fig. S7), were made using the package ggplot2 (169) on RStudio (170). 
Non-parametric Kruskal-Wallis and Wilcoxon tests assessed the significant differences 
with a P-value adjusted with Benjamini-Hochberg’s FDR correction (P < 0.05). An ASV 
activity heatmap (Fig. 3) was performed with METAGENassist (171). During filtration, 307 
out of 16,801 variables with less than 50% zeros and passing the interquartile range filter 
were conserved to construct the heatmap. Following a Pareto scaling normalization, the 
heatmap was built with Pearson distances using Ward’s clustering algorithm (171).

Alpha diversity

The alpha diversity index Pielou, an index of evenness (172), and Chao1, an estimator of 
species richness unbiased by low activity taxa (173), were calculated and represented in 
Fig. 4A and B. Phylogenetic trees were constructed with the neighbor-joining method 
(174) to calculate Faith’s phylogenetic diversity metric, an alpha diversity index based 
on phylogenetic distances. This was made using the package btools in R (175) (Fig. 4C). 
When normality (Shapiro-Wilk test) and homoscedasticity (Levene test) were not met, the 
non-parametric test Kruskal-Wallis was performed. To assess the significant differences 
in alpha diversity between communities or specific sites, multiple pairwise comparisons 
between groups (Wilco text) with Benjamini-Hochberg correction were used. Otherwise, 
an ANOVA followed by a Tukey test was used.

Beta diversity

To compare the microbiota composition between sites, a principal coordinates analysis 
with weighted UniFrac distances (Fig. 5; 175) was performed to visualize the dissimilar
ities between the different geographical groups using the ggplot2 package (169). A 
permutation-based multivariate analysis of variance [Table 2, (176)] was performed to 
assess the differences in microbiota composition between geographical groups using 
the adonis function in the vegan package in RStudio (176). A Benjamini-Hochberg 
correction was made to account for the unbalanced experimental design and the 
susceptibility of PERMANOVA to the heterogeneous dispersion of factor groups (177). 
Finally, an analysis of multivariate homogeneity of group dispersion (variances) was done 
with the betadisper function in the vegan package. Another PCoA was processed by 
grouping “Freshwater” and “Saltwater” to assess the impact of water types on analyses, 
instead of communities. A nonmetric multidimensional scaling (Fig. 6; 147) on weighted 
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UniFrac distances was fitted using the dplyr package (178) in RStudio. For this analysis, 
we removed the samples without any environmental data. A new metadata table and 
a new phyloseq object were created with the 120 remaining samples. Then, the envfit 
function from the vegan package was used to fit the environmental parameters on the 
NMDS plot with 9,999 permutations. This function calculates multiple regressions of 
the different environmental variables in the NMDS ordination. Because of the number 
of tested variables, the Bonferroni correction was performed for the P-value with the 
function p.adjust. A plot was made using ggplot2 to visualize the NMDS axis with the 
weighted UniFrac distances of each sample and the environmental parameters fitted. 
Spearman’s correlations between all environmental variables (salinity, water tempera
ture, air temperature, chlorophyll-a, and O2 concentration) were calculated to take 
independent variables in our analysis.

Indicator species analysis

To associate the bacteria at a different taxonomic rank (phylum, genus, and species) with 
various geographical sites, the function “multipatt” from the Indicspecies package was 
performed. It allowed us to have indicator species for each community with the indicator 
value index (179, 180). For each indicator value, a specificity index (the probability 
that the sites where we found an indicator species fit with the target sites of this 
indicator species) and a sensitivity index (the probability of finding the indicator species 
in the target sites associated with this species) were associated. A permutational test is 
performed in this function to assess the statistical significance for each association with 
an IndVal index >0.5 and P < 0.05 (Table 3).

Co-activity networks

Spearman’s correlation coefficient was calculated between each pair of ASV at the genus 
level in Rstudio (v 4.0.5) with the function “rcorr” from the Hmisc package (181) for each 
geographical site. A threshold of −0.4 and 0.4 for the Spearman’s coefficient was set, 
and P-values were adjusted with the false discovery rate method with p-FDR <0.05 (182). 
Then, the resulting five tables combining activities and correlations for the top 50 most 
active taxa at the genus rank were visualized using Cytoscape (v 3.5.1) (183), resulting in 
five co-activity networks for the five different geographical sites (Fig. 7). Nodes represent 
the different active taxa at a genus level, their colors represent the phylum, and their size 
shows the 16S rRNA gene expression level as a proxy for overall transcriptomic activity. 
The edges between nodes represent the correlation between taxa. The green edges 
show positive correlations, while the red edges show negative correlations. Finally, three 
metrics have been extracted from the networks with the function “Network Analyzer” in 
Cytoscape: degree (DG), neighborhood connectivity (NC), and closeness centrality (CC). 
Those network topological parameters allow a better understanding of the dynamics in 
different networks. DG is the number of edges connected from one node to another 
(184). The more a node has edges, the more it is locally connected, indicating its 
relevance in the network (185). CC is a qualitative measure that indicates if a node is close 
to the other nodes in the network (186). The shortest path length to spread information 
from one node to another is represented, and it indicates if the node has an important 
influence in the network and how it can interact with other nodes (184). Finally, NC is 
a quantitative measure that calculates the average connectivity of a node to the other 
nodes in the network. It indicates how the node impacts in the network dynamics (187).
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