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Abstract

Polygenic risk scores (PRSs) increasingly predict complex traits; however, suboptimal 

performance in non-European populations raise concerns about clinical applications and health 

inequities. We developed CT-SLEB, a powerful and scalable method to calculate PRSs, 

using ancestry-specific genome-wide association study summary statistics from multiancestry 

training samples, integrating clumping and thresholding, empirical Bayes and superlearning. 

We evaluated CT-SLEB and nine alternative methods with large-scale simulated genome-wide 

association studies (~19 million common variants) and datasets from 23andMe, Inc., the Global 

Lipids Genetics Consortium, All of Us and UK Biobank, involving 5.1 million individuals of 

diverse ancestry, with 1.18 million individuals from four non-European populations across 13 

complex traits. Results demonstrated that CT-SLEB significantly improves PRS performance 

in non-European populations compared with simple alternatives, with comparable or superior 

performance to a recent, computationally intensive method. Moreover, our simulation studies 

offered insights into sample size requirements and SNP density effects on multiancestry risk 

prediction.

Genome-wide association studies (GWASs) have identified tens of thousands of single 

nucleotide polymorphisms (SNPs) associated with complex traits and diseases1. PRSs 

summarize the combined effect of individual SNPs, offering the potential to improve 

risk stratification for various diseases and conditions2–7. However, to date, GWASs 

have primarily focused on populations predominately comprising European (EUR)-origin 

individuals8. Consequently, the PRSs generated from these studies tend to underperform in 

non-EUR populations, particularly in African (AFR)-ancestry populations9–12. The limited 

representation of non-EUR populations in PRS research raises concerns that using current 

PRSs for clinical applications may exacerbate health inequities13–16.
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In addition to the critical importance of addressing inequalities in the representation 

of a non-EUR population in genetic research, there is also an important need to 

develop statistical methods that leverage genetic data across populations to develop better-

performing PRSs. Most existing PRS methods have been developed to analyze data from a 

single-ancestry group17–26 and, subsequently, their performance was primarily evaluated 

in EUR populations3–6. Although the same methods can also be used to build PRSs 

in non-EUR populations, the resulting PRSs tend to have limited performance due to 

smaller training data sample sizes compared with EUR populations9,14. Some studies have 

conducted meta-analyses of GWASs across diverse populations to develop a multiancestry 

PRS27–29. Although this approach may lead to a single PRS that performs more ‘equally’ 

across diverse groups, it does not account for heterogeneity in linkage disequilibrium (LD) 

and effect sizes across populations, and is not designed to derive the best PRS possible for 

each population30,31.

Recent methods aim to develop more optimal PRSs in non-EUR populations by 

combining available GWASs from the target population with ‘borrowed’ information from 

larger GWASs in the EUR populations. One such study developed PRSs in separate 

populations and then combined them by optimal weighting to maximize target-population 

performance32. Other studies proposed Bayesian methods using multivariate priors for 

effect-size distribution to borrow information across populations30,33,34. Despite these 

developments, methods leveraging multiancestry datasets for PRSs remain limited. Both 

theoretical and empirical studies have indicated that the optimal PRS building depends 

on multiple factors17,35,36, including sample size, heritability, effect-size distribution, and 

LD, and thus exploration of alternative methods with complementary advantages is needed 

to build optimal PRSs in any given setting. Moreover, and perhaps more importantly, 

evaluation of multiancestry methods for building improved PRSs remains quite limited to 

date owing to the lack of large GWASs for various non-EUR populations, especially of AFR 

origin, where risk prediction remains the most challenging.

In the present Technical Report, we propose CT-SLEB, a computationally simple and 

powerful method for generating PRSs using GWASs across diverse ancestry populations. 

CT-SLEB is a model-free approach that combines multiple techniques, including a two-

dimensional (2D) extension of the popular clumping and thresholding (CT) method17,18, 

a superlearning (SL) model for combining multiple PRSs and an empirical Bayes (EB) 

approach for effect-size estimation. We compared CT-SLEB’s performance with nine 

alternative methods using large-scale simulated GWASs across five ancestry groups. In 

addition, we developed and validated population-specific PRSs for 13 complex traits using 

GWAS data from 23andMe, Inc., the Global Lipids Genetics Consortium (GLGC)37, All of 

Us (AoU) and UK Biobank (UKBB) across EUR (n ≈ 3.91 million), AFR (primarily African 

American (AA), n ≈ 265,000), Latino (n ≈ 574,000), East Asian (EAS, n ≈ 270,000) 

and South Asian (SAS, n ≈ 77,000) populations. Both simulation studies and empirical 

data analyses indicated CT-SLEB as a scalable and powerful method for generating PRSs 

for non-EUR populations. Furthermore, our simulation studies and evaluation of various 

methods in large datasets provided insights into the future yield of multiancestry PRSs 

because GWASs in diverse populations continue to grow.
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Results

Method overview

CT-SLEB is designed to generate multiancestry PRSs, incorporating large GWASs from the 

EUR population and smaller GWASs from non-EUR populations. The method has three key 

steps (Fig. 1 and Extended Data Fig. 1): (1) CT method for selecting SNPs to be included 

in a PRS for the target population; (2) EB method for SNP coefficient estimation; and (3) 

SL model to combine a series of PRSs generated under different SNP selection thresholds. 

CT-SLEB requires three independent datasets: (1) GWAS summary statistics from training 

datasets across EUR and non-EUR populations; (2) a tuning dataset for the target population 

to determine optimal model parameters; and (3) a validation dataset for the target population 

to report the final prediction performance.

Two-dimensional CT.—In step 1, CT-SLEB uses 2D CT on GWAS summary statistics 

data to incorporate SNPs with either shared effects across the EUR and the target 

populations or population-specific effects in the target population (Fig. 1a). Each SNP is 

assigned to one of two groups based on the P value from the EUR and target populations: 

(1) SNPs with a P value smaller in the EUR population; or (2) SNPs with a P value smaller 

in the target population or those that exist only in the target population. SNPs in the first 

group are ranked by the EUR P value (from smallest to largest) and then clumped using 

LD estimates from the EUR reference sample. SNPs in the second group are ranked by 

the target-population P value and clumped using LD estimates from the target-population 

reference sample. Clumped SNPs from both groups form a candidate set for the next step. In 

the thresholding step, P-value thresholds vary over a 2D grid. Each dimension corresponds 

to the threshold for the P value from one population. At any threshold combination, a SNP 

may be included in the target-population PRSs if its P value from either the EUR or the 

target population achieves the corresponding threshold.

EB estimation of effect sizes.—As SNP effect sizes are expected to be correlated 

across populations38,39, we proposed an EB method to efficiently estimate effect sizes for 

SNPs to be included in the PRSs (Fig. 1b). Based on the selected SNP set from the CT step, 

we first estimated a ‘prior’ covariance matrix of effect sizes between the EUR and the target 

population. Then, we estimated each SNP’s effect size in the target population using the 

corresponding posterior mean, which weights the effect-size estimate from each population 

based on the bias-variance trade-off (Methods).

Superlearning.—Previous research has shown that combining PRSs under different P-

value thresholds can effectively increase prediction performance20. Therefore, we proposed 

an SL model to predict the outcome using PRSs generated under different tuning parameters 

as training variables (Fig. 1c). The SL model is a linear combination of predictors based 

on multiple supervised learning algorithms40–42. The set of prediction algorithms can 

be self-designed or chosen from classical prediction algorithms. We used the R package 

SuperLearner v.2.0–26 (ref. 43) and chose Lasso44, ridge regression45 and neural networks46 

as three different candidate models in the implementation. We trained the SL model on the 
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tuning dataset and evaluated the final PRS performance using the independent validation 

dataset.

Design of simulation studies.—We conducted simulation studies comparing ten 

methods across five broad categories: (1) single-ancestry methods using only target-

population data; (2) EUR PRSs, generated using single-ancestry methods on EUR-only 

GWAS data; (3) weighted PRSs, applying single-ancestry PRSs separately to the EUR and 

target populations, and deriving an optimal linear combination of the two; (4) Bayesian 

methods, assuming a multivariate Bayesian framework for PRS construction; and (5) our 

proposed approach, CT-SLEB. The single-ancestry methods include CT17,18 and LDpred2 

(refs. 19,26). EUR PRSs are generated using CT and LDpred2. Weighted PRS approaches 

include: CT based, LDpred2 based and PolyPred-S+ (ref. 47). The last method linearly 

combines PRSs using EUR and target-population PRSs from SBayesR21 and EUR PRS 

from PolyFun-pred48, which integrates functional annotation information to identify causal 

variants across the genome and thus uses additional information that is not incorporated 

into the other methods compared. Bayesian methods include the following: (1) XPASS 

method34, assuming a multivariate normal distribution for effect size and using the posterior 

mean of the target population to construct PRS; and (2) PRS-CSx30, using a continuous 

shrinkage Bayesian framework to calculate the posterior mean of effect sizes for EUR 

and non-EUR populations, and subsequently deriving an optimal linear combination of all 

populations using a tuning dataset.

All methods used the target and EUR population training data to construct PRSs for the 

target population. In addition, CT-SLEB and PRS-CSx were evaluated using data from 

all five ancestries. For computational efficiency, most analyses were restricted to ~2.0 

million SNPs included in Hapmap3 (HM3) (ref. 49) or the Multi-Ethnic Genotyping Arrays 

(MEGA)50 chip array, or both. However, the PolyPred-S+ and PRS-CSx methods were 

currently limited to ~1.3 million HM3 SNPs in the provided software.

Simulation study results

Results from simulation studies (Fig. 2 and Supplementary Figs. 1–5) show that 

multiancestry methods generally lead to the most accurate PRSs in different settings. When 

the training data sample size for the target population is small (Fig. 2a and Supplementary 

Figs. 1a and 2–5a), PRSs from single-ancestry methods perform poorly compared with 

EUR-based PRSs. Conversely, when the target-population training sample size is large 

(Fig. 2b and Supplementary Figs. 1b and 2–5b–d), PRSs from single-ancestry methods can 

outperform EUR PRSs. PRSs generated from multiancestry methods can achieve substantial 

improvement in either setting.

When using only EUR and target-population data, both CT-SLEB and PRS-CSx can 

lead to improvements over other candidate methods in most settings. When the target-

population sample size is large, weighted LDpred2 performs comparably to CT-SLEB 

and PRS-CSx. Between CT-SLEB and PRS-CSx, neither method is uniformly superior 

across all scenarios. With a smaller target-population sample size n = 15,000 , PRS-CSx 

often outperforms CT-SLEB at the highest degree of polygenicity (Pcausal = 0.01), whereas 
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CT-SLEB excels at the lowest polygenicity Pcausal = 5 × 10−4 . The difference between the 

two methods narrows with larger sample sizes n = 45,000 − 100,000 . When using data from 

all five ancestries simultaneously, CT-SLEB and PRS-CSx improve by 6.8% and 23.7% on 

average, respectively, compared with only using EUR and target-population data. PRS-CSx 

outperforms CT-SLEB in many settings (Fig. 1b and Supplementary Figs. 1a,b and 2–5b–d). 

Under different simulation settings, the number of SNPs used by CT-SLEB ranged from 

549,000 to 933,000, while PRS-CSx retained all HM3 SNPs (Supplementary Table 1).

Comparing the runtime for constructing AFR PRSs on chromosome 22 data (Methods 

and Supplementary Table 2), CT-SLEB is, on average, almost 25× faster than PRS-CSx 

(4.35 versus 109.11 min) in two ancestries analyses and 91× faster than that of PRS-CSx 

in five ancestries setting (4.62 minutes versus 420.96 minutes) using a single core with 

Intel E5–26840v4 central processing unit (CPU). Sensitivity analyses assessing the required 

tuning and validation sample size for CT-SLEB (Extended Data Fig. 2) demonstrated that 

prediction performance improves with larger sizes. Meanwhile, CT-SLEB’s performance 

remained robust when the tuning and validation sample sizes were around 2,000. Additional 

sensitivity analyses compared CT-SLEB and PRS-CSx performance when both methods 

used HM3 SNPs. CT-SLEB held an advantage in low polygenicity setting with a training 

sample size of 15,000 or 45,000 (Supplementary Fig. 6a,b). However, with a training sample 

size >80,000, both methods showed similar performance in a low polygenicity setting 

(Supplementary Fig. 6c,d).

Unequal predictive performance of PRSs across populations presented an ethnic barrier 

for implementing this technology in healthcare. We examined the required training GWAS 

sample size for minority populations to bridge the performance gap compared with the 

EUR population. Results indicated that, when effect sizes for shared causal SNPs are 

similar across populations (genetic correlation = 0.8), the gap is mostly eliminated for all 

populations except AFR when the sample size reaches between 45% and 80% of the EUR 

population (Fig. 3 and Supplementary Fig. 7). However, for the AFR population, sample 

size requirements can vary dramatically depending on the genetic architecture of traits. 

When we assumed equal common SNP heritability for AFR and other populations, the 

AFR sample size requirement appeared dauntingly large due to smaller per-SNP heritability 

(Fig. 3a,b and Supplementary Fig. 7a,b). If per-SNP heritability remained the same across 

populations, but heritability varied proportionately to the number of common variants, the 

AFR sample size requirement aligned with those of other minority populations (Fig. 3c,d 

and Supplementary Fig. 7c).

CT-SLEB has a major advantage over PRS-CSx in computational scalability, allowing it to 

handle a much larger number of SNPs. We used CT-SLEB to study the effect of SNP density 

on PRS performance by considering three SNP sets for PRS building: (1) ~1.3 million SNPs 

in HM3 (ref. 49); (2) ~2.0 million SNPs, which included all HM3 SNPs and additional 

SNPs in the MEGA chips array; and (3) all ~19 million common SNPs included in the 

1000 Genomes Project (phase 3) (ref. 51), which were used to generate the traits in our 

simulation studies. We observed that PRS performance in various US minority populations 

could be substantially enhanced by including SNPs in denser panels. This benefit, resulting 
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from denser panels, was more enhanced when the target-population sample size was larger 

and in settings with fewer causal SNPs (Fig. 4 and Supplementary Fig. 8).

23andMe data analysis results

We developed and validated population-specific PRSs for seven complex traits using GWAS 

data from 23andMe, Inc. (Methods, Supplementary Tables 3 and 4 and Supplementary 

Data). We conducted GWASs using a training dataset for each population adjusting for 

principal components (PCs) 1–5, sex and age (Methods). The Manhattan plots and Q–

Q (quantile–quantile) plots for GWASs are shown in Supplementary Figs. 9–15 and no 

inflation was observed (Supplementary Table 5). We estimated heritability for the seven 

traits in the EUR population using LD-score regression52 (Supplementary Table 6 and 

Methods).

The results for heart metabolic disease burden and height (Fig. 5 and Supplementary 

Table 7) followed a similar pattern to our simulation studies. The PRS-CSx using five 

ancestries generally yielded to the best performing PRSs across different populations. With 

only EUR and target-population data, both CT-SLEB and PRS-CSx performed well across 

different populations. The relative gain was often large, especially for the AA population, 

compared with the best performing EUR or single-ancestry PRS. Weighted methods did 

not excel with the AA population, but showed substantial improvement compared with 

each component PRS (EUR and single ancestry) for other populations. PolyPred-S+ had 

comparable performance to PRS-CSx and CT-SLEB on EAS and SAS populations, but was 

notably worse on the AA population. We also observed that, even with the best performing 

method and large sample, a substianial gap remained for PRS performance in non-EUR 

populations compared with the EUR population (Fig. 5).

We observed similar trends in the 23andMe data analysis for five binary traits: any 

cardiovascular disease (CVD), depression, migraine diagnosis, morning person and sing 

back musical note (SBMN) (Fig. 6 and Supplementary Table 7). In most settings, CT-SLEB, 

PRS-CSx and PolyPred-S+ often produced superior PRSs, improving on the best EUR 

or single-ancestry PRSs. For CVD, which is the clinically most relevant trait for risk 

prediction and preventive intervention, CT-SLEB outperformed PRS-CSx and PolyPred-S+ 

by a notable margin except for the EAS population. For the AFR population, particularly 

underrepresented in genetic research, CT-SLEB outperformed PRS-CSx and PolyPred-S+ 

by a notable margin for several traits (for example, CVD and morning person). Conversely, 

PRS-CSx and PolyPred-S+ significantly outperformed CT-SLEB for predicting migraine 

diagnosis and SBMN in the SAS population. Despite the best performing methods and large 

GWASs in non-EUR populations, a major gap remains for PRS performance compared with 

the EUR population.

GLGC and AoU analysis results with UKBB as validation dataset

We developed and validated population-specific PRSs using GWAS summary data for four 

traits from GLGC—high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein 

(LDL)-cholesterol, log(triglycerides) (log(TGs)) and total cholesterol (TC)—and two traits 

from AoU—height and body mass index (BMI) (Methods and Supplementary Tables 4 and 
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8). We evaluated the methods using individual-level data from UKBB (Supplementary Table 

9). The Manhattan plots and Q–Q plots for GWASs are shown in Supplementary Figs. 

16–21, with no inflation observed given the genomic inflation factor for most ancestries, 

except height for the Latino population in AoU (λ1,000 = 1.0; Supplementary Table 5). We 

estimated heritability for the four traits in the EUR population using LD-score regression52 

(Supplementary Table 6 and Methods).

In GLGC data analyses, CT-SLEB, PRS-CSx and PolyPred-S+ outperformed the other 

approaches (Fig. 7). CT-SLEB demonstrated superior performance in the AFR population, 

improving adjusted R2 for log(TGs) and LDL-cholesterol by 140% and 66.4%, respectively, 

compared with PRS-CSx. This highlighted the advantage of the model-free approach 

CT-SLEB in handling biomarker traits, with some SNPs having unusually large effects. 

Conversely, PRS-CSx outperformed CT-SLEB in the EAS population. For log(TGs) and 

LDL-cholesterol, the adjusted R2 ratio between CT-SLEB and PRS-CSx was only 89.8% 

and 52.9%, respectively. It is interesting that, for LDL-cholesterol and TC, PRSs generated 

by CT-SLEB and five ancestries PRS-CSx demonstrated superior performance in the AFR 

population compared with EUR PRSs in the EUR population (Fig. 7). Finally, in AoU data 

analyses, CT-SLEB performed better in predicting BMI, whereas PRS-CSx predicted height 

more accurately (Fig. 8). These results highlight the importance of generating PRSs using 

multiple alternative methods in multiancestry settings.

To directly compare CT-SLEB and PRS-CSx, we reported the prediction performance R2 

(for continuous traits) or logit-scale variance (converted from the area under the receiver 

operating characteristic curve (AUC) for binary traits; Supplementary Note) between CT-

SLEB and PRS-CSx, averaging over the 13 traits within each ancestry in 23andMe, 

GLGC and AoU data analyses (Supplementary Table 10). When only EUR and the target-

population data were used for PRS construction, the averaged performance ratio between 

CT-SLEB and PRS-CSx was 144%, 88.5%, 103%, and 92.1% for AFR (primarily AA), 

EAS, Latino and SAS, respectively. When data from five ancestries or three ancestries 

(AoU) were used for PRS construction, the averaged performance ratio was 143%, 91.7%, 

94.5%, and 89.6% for AFR (primarily AA), EAS, Latino and SAS, respectively.

Discussion

In summary, we proposed CT-SLEB as a powerful and computationally scalable method 

to generate optimal PRSs across ancestrally distinct groups using GWASs across diverse 

populations. We compared CT-SLEB’s performance with various simple and complex 

methods, in large-scale simulation studies and datasets. Results showed that no single 

method was uniformly the best across all scenarios, and it was important to generate 

PRSs using alternative methods across multiple ancestries. Encouragingly, CT-SLEB led 

to marked improvement in PRS performance compared with alternatives for AFR origin 

populations, where polygenic prediction has been most challenging. Computationally, CT-

SLEB is an order of magnitude faster than a recently proposed Bayesian method, PRS-

CSx30, and can more easily handle much larger SNP contents and additional populations.
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A unique contribution of our study is the evaluation of a variety of PRS methodologies 

in the unprecedentedly large and diverse datasets from the 23andMe, GLGC, AoU and 

UKBB GWASs. Our findings offer crucial insights into the future yield of emerging large 

multiancestry GWASs. Adult height is often used as a model trait to explore the genetic 

architecture of complex traits, and the potential for polygenic prediction. The standard CT 

method, when trained in ~2 million EUR individuals from 23andMe data, leads to a PRS 

with a prediction R2 of approximately 0.276. Using LD-score regression, we estimated 

GWAS heritability of height using the 23andMe data to be 0.395, indicating that the PRS 

had achieved about 69.8% (0.276 of 0.395) of its maximum potential in the 23andMe 

EUR population. However, even with the best method and large 23andMe GWAS sample 

(nLatino ≈ 350,000 and nAFR ≈ 100,000), the highest prediction accuracy of height PRS for 

non-EUR populations was substantially lower compared with that of the EUR population 

(relative R2 of ~0.48 (0.133 of 0.276) for AFR, 0.76 (0.210 of 0.276) for EAS, ~0.86 (0.237 

of 0.276) for Latino, and ~0.80 (0.222 of 0.276) for SAS compared with that for EUR). The 

average relative R2 (continuous traits) or logit-scale variance (binary traits) for AFR, EAS, 

Latino and SAS across the 13 evaluated traits was 0.50, 0.76, 0.77 and 0.79, respectively 

(Supplementary Table 11).

We observed similar patterns for other traits, including disease outcomes for which risk 

prediction is of the most interest. For CVD, for example, the CT method, trained in a sample 

of ~700,000 cases and ~1.3 million controls from the EUR population, produced a PRS 

with a prediction accuracy of an AUC of 0.65. For other populations with considerable 

but smaller sample sizes than the EUR population (ncase/ncontrol = 32,000/66, for AA and 

ncase/ncontrol = 84,000/270,000 for Latino populations), the AUCs for the best performing PRSs 

are close to 60% or lower. Furthermore, sample size is not the only factor for differential 

PRS performances across populations. For example, the performance of the best CVD PRS 

for Latino and SAS populations are similar, despite a much smaller sample size for the latter 

population. Collectively, these findings and additional simulation study results indicated 

that bridging the PRS performance gap across populations required greater parity in GWAS 

sample sizes.

Our simulation studies and data analyses showed that no single PRS method is uniformly 

most powerful in all settings. In the analysis of GLGC data, for example, CT-SLEB 

greatly improved PRS performance compared with PRS-CSx for the AFR population, 

but the opposite was true for the EAS population. The optimal method for generating 

PRSs depended on the underlying multivariate effect-size distribution of the traits across 

different populations. Although Bayesian methods, in principle, could generate optimal 

PRS under correct specification of underlying effect-size distribution19,26,30,34, modeling 

this distribution in multiancestry settings could be challenging. In the analysis of lipid 

traits in GLGC, for example, we found that the Bayesian methods could not account well 

for the existence of large-effect SNPs in the AFR population owing to the inadequacy of 

the underlying model for the effect-size distribution. Conversely, the CT method and their 

extensions, although they do not require strong modeling assumptions about effect-size 

distribution, cannot optimally incorporate LD among SNPs. Our analysis revealed the 

advantages of alternative methods in different settings by comparing results across various 
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complex traits with distinct architecture in terms of heritability, polygenicity, and number of 

clusters of distinct effect sizes53,54. We thus advocate that, in future applications, researchers 

consider generating and evaluating a variety of PRSs obtained from complementary 

methods. As different PRSs may contain some orthogonal information, the best strategy 

could be to combine them using a final SL step, rather than choosing one best PRS.

Our study has several limitations. Although 23andMe datasets have extremely large sample 

sizes, the power of genetic risk prediction is likely to be blunted in this population, 

compared with other settings, owing to higher environmental heterogeneity. For example, a 

recent study55 reported achieving prediction R2 for height of ~41% for the EUR individuals 

within UKBB using a PRS developed with ~1.1 million individuals from UKBB (n = 

400,000) and 23andMe (n = 700,000). In comparison, the PRS prediction R2 for height 

that we achieved within the 23andMe EUR population was only ~30% despite doubling the 

sample size of the training dataset. However, we also noted that the heritability estimate in 

23andMe ℎSNP
2 = 0.395 ) is substantially smaller than those previously reported56,57 based on 

UKBB (ℎSNP
2 ≈ 0.5 − 0.7). When comparing the results across the two studies using prediction 

R2 relative to the underlying heritability of the respective populations, we observed a 

significant gain in performance due to the increased sample size of the present study. Thus, 

although caution is needed to extrapolate the 23andMe study results to other populations, the 

relative performance of PRSs across different methods and different ancestry groups within 

this population is probably generalizable to other settings.

Although we conducted large-scale simulation across various scenarios, the simulated 

genotype data from HapGen2 may not fully reflect the levels of differentiation within 

and across ancestries due to limited haplotype data within the 1000 Genomes Project. 

Furthermore, our proposed method, as well as many existing methods, primarily focused 

on generating PRSs across ancestrally distinct populations. However, highly admixed 

populations such as the AFR and Latino origin in the USA could benefit from methods 

that explicitly account for individual-level estimates of admixture proportions58. In addition, 

our method assumes that individual-level data are available for model tuning and validation, 

but this is not a fundamental limitation because summary statistics-based methods59,60 could 

also be used in these steps. Moreover, although we observed a consistent increase of five 

ancestries CT-SLEB over two ancestries CT-SLEB in simulations, real data analyses did 

not show the same consistent pattern (Figs. 5–7), potentially owing to the complexity of 

underlying effect sizes across different ancestries compared with simulations.

In conclusion, we have proposed a new and computationally scalable method for generating 

powerful PRSs using data from GWASs in diverse populations. Furthermore, our simulation 

studies and data analysis across multiple traits involving large 23andMe Inc., GLGC, AoU 

and UKBB studies will provide unique insight into the potential outcomes of future GWASs 

in diverse populations for years to come.

Online content

Any methods, additional references, Nature Portfolio reporting summaries, source data, 

extended data, supplementary information, acknowledgements, peer review information; 
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details of author contributions and competing interests; and statements of data and code 

availability are available at https://doi.org/10.1038/s41588-023-01501-z.

Methods

We assumed that there were l = 1, …L populations, with l = 1 indexing the EUR population. 

We assumed that, for each population, summary statistics data from underlying GWASs 

were available in the form of (β̂kl, σ̂kl, Pkl) for k = 1, 2, …, KL SNPs, where β̂, σ̂ and P  denote 

effect-size estimates, standard error of the mean (s.e.m.) values and P  values for individual 

SNPs, respectively. We also assumed that additional datasets were available for each target 

population, which can be split into tuning and validation sets. Our proposed CT-SLEB 

method contained three steps: (1) 2DCT; (2) EB procedure; and (3) SL algorithm, detailed in 

the following subsections.

CT

In this step, we extended the traditional CT to a 2D setting so that PRSs for a target 

population could be built using approximately independent SNPs that showed significant 

associations in at least one of the two populations (majority population and target 

population). The CT method has two components: clumping and thresholding. In the 2D 

setting where the lead SNPs might be informed by GWASs of either the EUR or the 

target population, it is unclear which reference sample is the most suited for LD clumping. 

After initial exploration of alternative approaches through simulation studies, we found that 

the most informative approach was to split the SNPs into two sets depending on which 

population they showed stronger signals and then to perform LD clumping for each set 

separately, based on the reference sample from respective populations. For the thresholding 

step, we selected SNPs based on two distinct thresholds for their respective P values in 

the two populations. As the optimal threshold for P-value selection depends on sample 

size18,35,36, and sample sizes for GWASs across EUR and minority populations are highly 

differential, we anticipated (and confirmed through simulation studies) that a 2D approach 

for threshold selection was more optimal than using a single P-value threshold across both 

populations. The CT step details are as follows:

1. The clumping r2-cutoff and base size of the clumping window size wb vary 

across 0.01, 0.05, 0.1, 0.2, 0.5 and 0.8, and 50 kb and 100 kb, respectively. 

The clumping window size ws is defined as wb/r2 because LD is inversely 

proportional to the genetic distance between variants20,61.

2. Select all variants with smaller P  values in EUR Pk1 < Pk2  and clump based on 

Pk1 using LD estimates from EUR reference samples with selected r2 and ws.

3. Select all variants with smaller P values in the target population Pk2 < Pk1  and 

the population-specific SNPs and, then, clump based on Pk2 using LD estimates 

from the target-population’s reference samples with the same r2 cutoff and wb.

4. Combine the postclumping variants from steps 2 and 3 as the candidate variant 

set.
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5. Define two different P-value cutoffs P t1, P t2  for the EUR and target populations. 

A variant was selected if Pk1 < P t1 or Pk2 < P t2. We allowed P t1 and P t2 to vary 

in the set: 5 × 10−8, 5 × 10−7, 5 × 10−6, …, 5 × 10−1, 1.0. With the cross-

combination of P t1 and P t2, a total of 81 different P-value cutoffs were applied.

6. With the cross-combination of P t1, P t2, r2 and wb, a total of 972 PRSs 

6 r2thresholds × 2 wb windows × 81 value thresholds  were evaluated on the tuning 

dataset using estimated regression coefficients (β̂k2 from the target-population’s 

GWAS.

EB to calibrate regression coefficients

In the CT step, we used β̂k2 from the target population to calculate PRS. However, β̂k2

can be noisy with small target-population GWAS sample sizes. Meanwhile, given the high 

genetic correlations across ancestries38,39, effect sizes from other populations can calibrate 

regression coefficients for PRSs. Although we only used P values from GWASs for the EUR 

and the target populations for selecting SNPs in the CT step, the EB step leveraged GWASs 

from multiple populations. Suppose ûk = ûk1, …, ûkL = (β̂k1 2fk1 1 − fk1 , …, β̂kL 2fkl 1 − fkL )
is the vector of the standardized effect size for the kth SNP in L different populations, with 

ŝk
* = sk1, …, skL = σ̂k1 2fk1 1 − fk1 , …, σ̂kL 2fkL 1 − fkL  being the vector of the corresponding 

s.e.m. values of ûk. We assumed that uk ∣ uk ≈ N uk, Σk , where Σk = diag sk
2  and given that the 

GWASs for different populations were independent. In addition, we assumed that the prior 

distribution of the mean of uk is uk ≈ N 0, Σ0 , which assumed that the effect size followed 

the strong negative selection model. By integrating the conditional and prior distribution, we 

obtained the marginal distribution of uk as N 0, Σ0 + Σk . Supposing that the SNP set selected 

from the CT step had K* variants overlapped across all the populations, we estimated the 

prior covariance matrix Σ0 using the K*-overlapped variants shared across all populations as:

Σ̂0 = 1
K* − 1 k = 1

K*
ûk

Tûk − Σk .

We note that we ignored potential correlation across selected SNPs in this step, but the 

estimate was still expected to be consistent for Σ0 which represents marginal variance–

covariance matrices for effect sizes associated with an individual SNP across populations. 

Applying the Bayes formula, the posterior distribution of uk became:

uk ∣ ûk ≈ N Σ̂0(Σ̂0 + Σk)
−1ûk, Σ̂0(Σ̂0 + Σk)

−1Σk .

The EB coefficients for the kth SNP were defined as:

βk
EB = FkΣ̂0(Σ̂0 + Σk)

−1ûk,
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where βk
EB

 is an L × 1 vector for the posterior effect size of the kth SNP for each of the L

populations and Fk = diag 1
2fkl 1 − fkl L × L

 is the scaling matrix to scale effect sizes from 

the standardized scale back to the original scale. Preliminary simulation studies indicated 

that the EB step of effect-size calibration led to distinct improvement in PRS performance 

(compared with using effect-size estimates from the target population) irrespective of all 

other steps.

To save computational time, we estimated Σ̂0, based on the SNP set that gives the 

best PRS in the CT step and applied the same Σ̂0 to derive the EB-calibrated effect 

sizes for all PRSs corresponding to a cross-combination of P t1, P t2, r2 cutoff and 

wb. Using EB-calibrated effect sizes, we computed 972 PRSs for each population 

6 r2thresholds × 2 wb windows × 81 value thresholds . In all analyses, we computed the 1,944 

PRSs using EB-calibrated effect sizes of the target population and EUR. When more than 

two ancestries were involved, we used data from all populations to derive EB estimates 

(Supplementary Note). However, to save computational time at the SL step, we derived 

the final PRS for the target population by only incorporating the 1,944 PRSs derived 

for the larger EUR population and the target population. All 1,944 PRSs were used as 

input for the SL step to predict the outcome for the target population. As many PRSs are 

highly correlated, we filtered out redundant ones with pairwise correlations >0.98. In the 

simulations, 369 of the 1,944 PRSs were kept on average after the filtering.

Superlearning

We combined all PRSs generated from the previous steps into an input dataset and 

trained them on the tuning dataset to predict the outcome Y. The SL algorithm generated 

an optimally weighted combination from a set of distinct prediction algorithms40–42,62 

(Supplementary Note). The set of prediction algorithms could be self-designed or chosen 

from classical prediction algorithms, for example, Lasso44, ridge regression45 and neural 

networks46. We used three different prediction algorithms implemented in the SuperLearner 

package43 to generate the SL estimate: Lasso44, ridge regression45 and neural networks46. 

For binary traits, as ridge regression was currently not supported by the SuperLearner 

package, we used Lasso and neural network in data analysis. To use AUC as the objective 

function, we used the flag ‘method = method.AUC’ in the SuperLearner package.

Simulation

Large-scale, multiancestry genotype data were generated using HAPGEN2 (v.2.1.2) (ref. 63) 

mimicking the LD of EUR, AFR, Americas (AMR), EAS and SAS. The 1000 Genomes 

Project (phase 3) (ref. 51) served as the reference panel, including 503 EUR, 661 AFR, 

347 AMR, 504 EAS and 489 SAS subjects. Biallelic SNPs with mean allele frequency 

(MAF) > 0.01 in any of the populations were kept, resulting in ~8.6 million SNPs for 

EUR, ~14.8 million SNPs for AFR, ~9.8 million SNPs for AMR, ~7.6 million SNPs for 

EAS and ~9.0 million SNPs for SAS. The genotype data were generated with a total of 

~19.2 million SNPs. The set of simulated variants for all five ancestries was the same. 

Population-specific SNP proportions ranged from 2.92% for AMR to 43.84% for AFR, 
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respectively (Supplementary Fig. 22). SNPs with MAF < 0.01 in a population were excluded 

from PRS calculation owing to unstable LD estimation. A total of 120,000 independent 

subjects were simulated for each of the populations.

Trait values were generated by selecting causal SNPs randomly across the genome, with 

the causal SNP proportion set to 0.01, 0.001 or 5 × 10−4. We considered two models for 

heritability distribution: (1) constant common SNP heritability; and (2) constant per-SNP 

heritability which implied that the total heritability was proportional to the number of 

common SNPs. We also considered three negative selection patterns: strong, mild and no 

negative selection.

We denoted ukl as the standardized effect size for the kth causal SNP of the lth population. 

Under strong negative selection and constant heritability model, standardized effect sizes 

were drawn from a multivariate normal distribution of the form:

ukl ≈ N 0, ℎ2
Cl

, cov ukl1, ukl2 = ρℎ2
Cl1Cl2

,

where Cl is the number of causal SNPs with MAF > 0.01 in the lth population, the heritability 

ℎ2 associated with common SNPs for each population is set to 0.4, and the genetic 

correlation ρ is set to 0.8. We then generated the phenotype using linear model of the form 

Y il = ∑k = 1
Cl Gikl

2fkl 1 − fkl
ukl + ϵil for the ith subject in the lth population, where fkl is the effect 

allele frequency for the kth causal SNP in the lth population. The error terms were generated 

as ϵil ≈ N 0, 1 − ℎ2 . We also considered mild negative selection (ukl
2 ∝ fkl 1 − fkl

0.75) and no 

negative selection ukl
2 ∝ fkl 1 − fkl ) scenarios (Supplementary Note). Finally, we assumed 

total heritability of all ~19 million SNPs to be 0.4 across all populations, but with 

common SNP heritability varying proportionally to their number within each population. 

The model assumed equal per-SNP heritability across populations, leading to the common 

SNP heritability values of 0.32, 0.21, 0.16, 0.19 and 0.17 for AFR, AMR, EAS, EUR and 

SAS, respectively. Genetic correlation was set to 0.8 or 0.6.

We set the training sample sizes for each target population to 15,000, 45,000, 80,000 

or 100,000. GWAS summary statistics for each population were generated based on the 

training samples using PLINK v.1.90 with the command ‘--linear’. We fixed the EUR 

sample size at 100,000 and simulated the tuning and validation dataset of 10,000 for each 

target population. The final prediction R2 is the average of ten independent simulation 

replicates. For CT-SLEB and PRS-CSx, incorporating data across all five ancestries, we 

assumed non-EUR training sample sizes to be equal to the target population’s.

Existing PRS methods

The CT method selects clumped SNPs with varying P-value thresholds and chooses an 

optimal PRS based on its performance on the tuning dataset. We implemented CT using 

PLINK v.1.90 (ref. 64) with the clumping step command ‘--clump --clump-r2 0.1 --clump-

kb 500’. We estimated LD based on 3,000 randomly selected unrelated subjects from the 
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training dataset for each population. We set candidate P-value thresholds as 5 × 10−8, 1 

× 10−7, 5 × 10−7, 1 × 10−6, …, 5 × 10−1 and 1.0 and we used the PLINK command 

‘--score no-sum no-mean-imputation’ for computing PRS. The optimal P-value threshold is 

determined based on prediction R2 on the tuning dataset.

The LDpred2 method infers SNP effect sizes by a shrinkage estimator, combining GWAS 

summary statistics with a prior on effect sizes while leveraging LD information from an 

external reference panel. LDpred2 is implemented using the R package ‘bigsnpr’26. The 

tuning parameters were: (1) the proportion of causal SNPs, with candidate values set to 

sequences of length 17 that are evenly spaced on a logarithmic scale from 10−4 to 1; (2) per-

SNP heritability, with candidate values set to 0.7, 1 or 1.4× the total heritability estimated 

by LD-score regression divided by the number of causal SNPs; and (3) the ‘sparse’ option, 

which was set to ‘yes’ or ‘no’ (the ‘sparse’ option sets some weak effects to zero). The 

method selected tuning parameters based on the performance on the tuning dataset.

The EUR PRS based on CT or LDpred2 was built using a EUR training dataset from the 

EUR population and estimated tuning parameters based on the EUR tuning sample. When 

evaluating the EUR PRSs in the target population, we excluded the SNPs that do not exist in 

the target population.

Weighted PRS linearly combined the CT or LDpred2 PRSs generated from the EUR and 

target populations. The weights for EUR PRSs and for target-population PRSs are estimated 

using the target-population’s tuning dataset through a linear regression. We implemented 

weighted PRSs using R v.4.0.0.

PolyPred-S+ consists of a PolyFun-pred predictor trained on the EUR population and two 

SBayesR predictors using training data from the EUR and target populations, respectively. 

On a target-population tuning dataset, PolyPred-S+ performed non-negative least squares 

regression to compute the mixture weights and linearly combined the predictors. PolyFun-

pred leveraged genome-wise functional annotations for prior causal probabilities, fed 

into the SuSiE fine-mapping method for the posterior causal effect estimation. SBayesR 

estimated posterior tagging effects with a finite normal mixture prior on effect sizes. For 

PolyFun-pred, we used precomputed prior causal probabilities provided by the authors, 

extracted LD information using the EUR population in the 1000 Genomes Project (phase 

3) and assumed 10 causal SNPs per locus. Using GCTB (2.03 beta version), we trained 

SBayesR with the sparse shrunk LD matrix for HapMap3 variants published by the SBayesR 

authors. Currently, the shrunk LD matrix is available only for EUR populations. Therefore, 

both SBayesR predictors for EUR and target populations used the shrunk LD matrix for 

EUR. Model parameters and MCMC (Markov Chain Monte Carlo) settings followed the 

same way as the PolyPred-S+ authors’ UKBB simulations.

XPASS leverages the genetic correlation between the target and EUR populations, assuming 

a bivariate normal distribution with nonzero covariance for effect-size pairs corresponding 

to the same SNP in both populations. It can incorporate population-specific covariates as 

fixed effects to improve weight estimation accuracy. We extracted the top 20 PCs from 

the reference genome for each population as the covariates. When estimating LD matrices, 

Zhang et al. Page 15

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ancestry-specific reference data were inputted. LD matrices were estimated based on EUR 

LD blocks for all datasets, because the XPASS package offered only EUR and EAS options.

PRS-CSx estimated population-specific SNP effect sizes using a Bayesian framework with 

continuous shrinkage priors to jointly model GWAS summary statistics from multiple 

populations. In addition, PRS-CSx conducted a step similar to weighted PRSs, linearly 

combining PRSs based on the posterior effect sizes from EUR and target populations, 

with weights estimated based on the target-population’s tuning dataset. We implemented 

PRS-CSx following https://github.com/getian107/PRScsx. We set the gamma-gamma prior 

hyperparameters a and b to default values of 1 and 0.5, respectively. Furthermore, the 

parameter ϕ varied over the default set of values 10−6, 10−4, 10−2 and 1, with optimal ϕ
being determined based on tuning dataset performances.

Runtimes and memory usage comparison

We compared the computation time and memory usage of CT-SLEB (two ancestries and five 

ancestries) and PRS-CSx (two ancestries and five ancestries) based on their performance on 

chromosome 22, assuming AFR as the target population. All analyses used a single core 

with an Intel E5–26840v4 CPU. Performance was averaged over 100 replicates. The training 

dataset consisted of GWAS summary statistics for AFR (nGWAS = 15,000) and EUR (nGWAS 

= 100,000) populations. Tuning and validation datasets each contained 10,000 subjects. For 

the five ancestries analyses, training GWAS sample sizes for AMR, EAS and SAS were set 

to 15,000 each.

23andMe data analysis

The individuals in our analyses are part of the 23andMe participant cohort. All 

participants provided informed consent and answered surveys online according to our human 

subject protocol, reviewed and approved by Ethical and Independent Review Services, 

a private institutional review board (http://www.eandireview.com). Detailed information 

about genotyping, quality control, imputation, removing related individuals and ancestry 

determination has been provided in Supplementary Note. Participants were included in the 

analysis based on consent status as checked when data analyses were initiated.

Our analysis involved five ancestries (AA, EAS, EUR, Latino and SAS), and included 

two continuous and five binary traits: (1) heart metabolic disease burden; (2) height; (3) 

any CVD; (4) depression; (5) migraine diagnosis; (6) morning person; and (7) SBMN. 

Data for each population were randomly split into training, tuning and validation datasets 

(70%, 20% and 10%, respectively), with detailed sample size in Supplementary Table 3. We 

performed GWASs for the seven traits using each population’s training dataset, adjusting 

for PCs 1–5, sex and age with standard quality control procedures (Supplementary Note). 

SNPs with MAF > 0.01 in at least one population were kept in the analyses. We further 

restricted analyses to SNPs that were on HM3 + MEGA chips array with ~2.0 million SNPs. 

LDSC v.1.01 (ref. 52) was used to estimate the heritability with the EUR population GWAS 

summary statistics for the seven traits. LD scores were estimated using the 503 unrelated 

EUR samples from the 1000 Genomes Project. Heritability analyses were limited to EUR 
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populations due to insufficient sample size in non-EUR populations for stable LD-score 

regression estimates.

We compared PRS prediction performance for ten methods: CT, LDPred2, best EUR PRS 

based on CT and LDpred2, weighted PRS based on CT and LDpred2, PolyPred-S+, XPASS, 

PRS-CSx (using EUR and target-population data or all five populations) and CT-SLEB 

(using EUR and target-population data or all five populations). As individual-level data were 

unavailable in the training step, we used the 1000 Genomes Project (phase 3) reference data 

to estimate LD for each population. Specifically, AFR and AMR from the 1000 Genomes 

Project served as references for the AA and Latino populations in 23andMe, respectively. 

PRS prediction performance was reported based on the independent validation dataset, 

separate from training and tuning datasets. To calculate the adjusted R2 for continuous traits, 

we first regressed the traits on covariates and then evaluated PRS performance by predicting 

residualized trait values. The adjusted AUC for binary traits was calculated using roc.binary 

function in the R package RISCA v.1.01 (ref. 65).

GLGC data analysis

We obtained GWAS summary statistics of four blood lipid traits from publicly 

available GLGC databases (http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/

ancestry_specific). UKBB data were removed from the GWAS summary statistics. The 

details of study design, genotyping, quality control and GWASs have been described 

elsewhere37. Training data were available for the four blood lipid traits, LDL-cholesterol, 

HDL-cholesterol, log(TGs) and TC, from five different ancestries: EUR, AFR (primarily 

AA), Latino, EAS and SAS (Supplementary Table 8). Tuning + validation data from UKBB 

dataset were from EUR, AFR, EAS and SAS ancestries (Supplementary Table 9). Details 

of ancestry prediction for UKBB have been described in Supplementary Note. As a result 

of poor ancestry classification and low sample size, the Latino population was not evaluated 

using UKBB data. The implementation of the ten different PRS approaches followed the 

same steps as in the 23andMe data analyses. We used the 1000 Genomes Project (phase 3) 

reference data to estimate the LD for each population. The adjusted R2 values were adjusted 

by sex, age and genetic PCs 1–10.

AoU data analysis

The individuals included in our analyses were part of the AoU participant 

cohort. All these individuals’ information has been collected according to the 

AoU Research Program Operational Protocol (https://allofus.nih.gov/sites/default/files/

aou_operational_protocol_v1.7_mar_2018.pdf).

Detailed information about genotyping, ancestry determination, quality 

control and removing related individuals can be found in the 

AoU Research Program Genomic Research Data Quality Report (https://

www.researchallofus.org/wp-content/themes/research-hub-wordpress-theme/media/2022/06/

All%20Of%20Us%20Q2%202022%20Release%20Genomic%20Quality%20Report.pdf).

We analyzed three ancestries (EUR, AFR and Latino/AA) and two continuous traits (height 

and BMI). GWASs for these traits were performed using unrelated samples for each 
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population, adjusting for PCs 1–16, sex and age, with quality control steps provided by 

the AoU platform.

The AoU platform provided whole-genome sequencing (WGS) data and array data. 

Although the WGS data have fewer samples than array data (98,590 WGS and 165,127 

array samples, 22 June 2022 version), quality control information and relatedness of samples 

were provided only within the WGS data. For GWASs with respect to each population, we 

performed sample-level quality control within the WGS data. Due to computation burden, 

analyses were conducted using array SNPs with subjects passing the WGS data quality 

control. SNPs with MAF > 0.01 in at least one of the three populations were kept, whereas 

analyses were restricted to SNPs available on HM3 + MEGA chips array. As the analyses 

were constrained to array data, all analyses involved up to 800,000 SNPs (Supplementary 

Table 4). We used the reference data from the 1000 Genomes Project (phase 3) to estimate 

the LD for each population.

Tuning + validation data from UKBB dataset were from EUR and AFR ancestries. The 

Latino population was not evaluated on UKBB for the same reason as in GLGC analyses. 

The implementation of the ten different PRS approaches followed the same steps as the 

23andMe data analyses. The adjusted R2 was adjusted by sex, age and PCs 1–10.

Extended Data

Extended Data Fig. 1 |. CT-SLEB detailed flowchart.
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The method contains three major steps: 1. Two-dimensional clumping and thresholding; 

2. Empirical-Bayes procedure for utilizing genetic correlations of effect sizes across 

populations; 3. Super-learning model for combining PRSs under different tuning parameters. 

The tuning dataset is used to train the super learning model. The final prediction 

performance is evaluated based on an independent validation dataset. For continuous traits, 

the prediction is evaluated using R2 obtained from the linear regression between outcome 

and PRS after adjusting for covariates (Methods). For binary traits, the prediction is 

evaluated using the area under the ROC curve (AUC).

Extended Data Fig. 2 |. Performance of CT-SLEB with different tuning and validation sample 
sizes.
The total tuning and validation sample size is set as 2000, 5000, 100,000 and 200,000 with 

half for tuning and half for validation. Analyses are conducted in the multiancestry setting 

under a strong negative selection model. The training sample size for the AFR population 

is 15,000. The training sample size for EUR is 100,000. The sample size for the tuning 

dataset and validation for each population is fixed at 10,000, respectively. Common SNP 

heritability is assumed to be 0.4 across all populations and effect-size correlation is assumed 

to be 0.8 across populations. The causal SNPs proportion is varied across 0.01 (top panel), 

0.001 (medium panel), or 5 × 10−4 (bottom panel). The final prediction R2 is reported as the 

average of ten independent simulation replicates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Zhang et al. Page 19

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Acknowledgements

We thank the research participants and employees of 23andMe, Inc. for making this work possible. We thank L. 
Noblin, M. J. Francis and E. Voeglein for helping with the research collaboration agreement with the Harvard T.H. 
Chan School of Public Health, Johns Hopkins Bloomberg School of Public Health and 23andMe, Inc. The analysis 
utilized the high-performance computation Biowulf cluster at the National Institutes of Health (NIH), USA, 
Faculty of Arts and Sciences Research Computing Cluster at Harvard University and the Joint High Performance 
Computing Exchange at Johns Hopkins Bloomberg School of Public Health. The UKBB data were obtained under 
UKBB resource application no. 17712. This work was funded by NIH grants: nos. K99 CA256513 to H.Z., 
R00 HG012223 to J.J., NHLBI 5T32HL007604-37 to Z.Y., R35-CA197449, U19-CA203654, R01-HL163560, 
U01-HG009088 and U01-HG012064 to X.L., R01 HG010480-01 to N.C. and U01HG011724 to N.C. The AoU 
Research Program is supported by the NIH, Office of the Director: Regional Medical Centers: 1 OT2 OD026549; 1 
OT2 OD026554; 1 OT2 OD026557; 1 OT2 OD026556; 1 OT2 OD026550; 1 OT2 OD 026552; 1 OT2 OD026553; 
1 OT2 OD026548; 1 OT2 OD026551; 1 OT2 OD026555; IAA no.: AOD 16037; Federally Qualified Health 
Centers: HHSN 263201600085U; Data and Research Center: 5 U2C OD023196; Biobank: 1 U24 OD023121; The 
Participant Center: U24 OD023176; Participant Technology Systems Center: 1 U24 OD023163; Communications 
and Engagement: 3 OT2 OD023205; 3 OT2 OD023206; and Community Partners: 1 OT2 OD025277; 3 OT2 
OD025315; 1 OT2 OD025337; 1 OT2 OD025276. In addition, the AoU Research Program would not be possible 
without the partnership of its participants.

Data availability

Simulated genotype data for 600,000 subjects from 5 ancestries are 

at: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/COXHAP. 

GWAS summary level statistics for five ancestries from GLGC are at: http://

csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific. GWAS summary 

statistics for three ancestries are from AoU at: https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/FAWEQK. The PRSs developed for six traits for GLGC 

and AoU have been released through the PGS Catalog (https://www.pgscatalog.org) with 

publication ID PGP000489 and score IDs PGS003767–PGS003848. The 23andMe GWAS 

summary statistics for the top 10,000 genetic markers associated with 3 traits (height, 

morning person and SBMN) across 5 diverse ancestries have been made available as 

Supplementary Data and are also available at: https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/3NBNCV. The full GWAS summary statistics and the final 

PRSs for these three traits (height, morning person and SBMN) are available through 

23andMe, Inc. to qualified researchers under an agreement with 23andMe, Inc. that protects 

the privacy of the 23andMe participants. Please visit research.23andme. com/dataset-access 

for more information and to apply for access to the data. The summary statistics for the 

four other traits used in the paper (any CVD, heart metabolic disease burden, depression 

and migraine) will not be made available because of 23andMe’s business requirements. 

Participants provided informed consent and participated in the research online, under a 

protocol approved by the external AAHRPP-accredited institutional review board, Ethical & 

Independent Review Services.

References

1. Buniello A et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, 
targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019). 
[PubMed: 30445434] 

2. Chatterjee N, Shi J & García-Closas M Developing and evaluating polygenic risk prediction models 
for stratified disease prevention. Nat. Rev. Genet. 17, 392–406 (2016). [PubMed: 27140283] 

3. Khera AV et al. Genome-wide polygenic scores for common diseases identify individuals with risk 
equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). [PubMed: 30104762] 

Zhang et al. Page 20

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/COXHAP
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific
http://csg.sph.umich.edu/willer/public/glgc-lipids2021/results/ancestry_specific
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAWEQK
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/FAWEQK
https://www.pgscatalog.org/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3NBNCV
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/3NBNCV


4. Mavaddat N et al. Polygenic risk scores for prediction of breast cancer and breast cancer subtypes. 
Am. J. Hum. Genet. 104, 21–34 (2019). [PubMed: 30554720] 

5. Jia G et al. Evaluating the utility of polygenic risk scores in identifying high-risk individuals for 
eight common cancers. JNCI Cancer Spectr. 4, pkaa021 (2020). [PubMed: 32596635] 

6. Zhang H et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci 
from overall and subtype-specific analyses. Nat. Genet. 52, 572–581 (2020). [PubMed: 32424353] 

7. Graff RE et al. Cross-cancer evaluation of polygenic risk scores for 16 cancer types in two large 
cohorts. Nat. Commun. 12, 970 (2021). [PubMed: 33579919] 

8. Fatumo S et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022). 
[PubMed: 35145307] 

9. Duncan L et al. Analysis of polygenic risk score usage and performance in diverse human 
populations. Nat. Commun. 10, 3328 (2019). [PubMed: 31346163] 

10. Liu C et al. Generalizability of polygenic risk scores for breast cancer among women with 
European, African, and Latinx ancestry. JAMA Netw. Open 4, e2119084–e2119084 (2021). 
[PubMed: 34347061] 

11. Du Z et al. Evaluating polygenic risk scores for breast cancer in women of african ancestry. J. Natl 
Cancer Inst. 113, 1168–1176 (2021). [PubMed: 33769540] 

12. Wojcik GL et al. Genetic analyses of diverse populations improves discovery for complex traits. 
Nature 570, 514–518 (2019). [PubMed: 31217584] 

13. Martin AR et al. Human demographic history impacts genetic risk prediction across diverse 
populations. Am. J. Hum. Genet. 100, 635–649 (2017). [PubMed: 28366442] 

14. Martin AR et al. Clinical use of current polygenic risk scores may exacerbate health disparities. 
Nat. Genet. 51, 584–591 (2019). [PubMed: 30926966] 

15. Wang Y et al. Theoretical and empirical quantification of the accuracy of polygenic scores in 
ancestry divergent populations. Nat. Commun. 11, 3865 (2020). [PubMed: 32737319] 

16. Kullo IJ et al. Polygenic scores in biomedical research. Nat. Rev. Genet. 23, 524–532 (2022). 
[PubMed: 35354965] 

17. Wray NR, Goddard ME & Visscher PM Prediction of individual genetic risk to disease from 
genome-wide association studies. Genome Res. 17, 1520–1528 (2007). [PubMed: 17785532] 

18. Purcell SM et al. Common polygenic variation contributes to risk of schizophrenia and bipolar 
disorder. Nature 460, 748–752 (2009). [PubMed: 19571811] 

19. Vilhjálmsson BJ et al. Modeling linkage disequilibrium increases accuracy of polygenic risk 
scores. Am. J. Hum. Genet. 97, 576–592 (2015). [PubMed: 26430803] 

20. Privé F, Vilhjálmsson BJ, Aschard H & Blum MGB Making the most of clumping and thresholding 
for polygenic scores. Am. J. Hum. Genet. 105, 1213–1221 (2019). [PubMed: 31761295] 

21. Lloyd-Jones LR et al. Improved polygenic prediction by Bayesian multiple regression on summary 
statistics. Nat. Commun. 10, 5086 (2019). [PubMed: 31704910] 

22. Newcombe PJ, Nelson CP, Samani NJ & Dudbridge F A flexible and parallelizable approach to 
genome-wide polygenic risk scores. Genet. Epidemiol. 43, 730–741 (2019). [PubMed: 31328830] 

23. Ge T, Chen CY, Ni Y, Feng YCA & Smoller JW Polygenic prediction via Bayesian regression and 
continuous shrinkage priors. Nat. Commun. 10, 1776 (2019). [PubMed: 30992449] 

24. Song S, Jiang W, Hou L & Zhao H Leveraging effect size distributions to improve polygenic risk 
scores derived from summary statistics of genome-wide association studies. PLoS Comput. Biol. 
16, e1007565 (2020). [PubMed: 32045423] 

25. Zhou G & Zhao H A fast and robust Bayesian nonparametric method for prediction of complex 
traits using summary statistics. PLoS Genet. 17, e1009697 (2021). [PubMed: 34310601] 

26. Privé F, Arbel J & Vilhjálmsson BJ LDpred2: better, faster, stronger. Bioinformatics 36, 5424–
5431 (2021). [PubMed: 33326037] 

27. Koyama S et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and 
shared genetic risk loci for coronary artery disease. Nat. Genet. 52, 1169–1177 (2020). [PubMed: 
33020668] 

Zhang et al. Page 21

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



28. Sakaue S et al. Trans-biobank analysis with 676,000 individuals elucidates the association of 
polygenic risk scores of complex traits with human lifespan. Nat. Med. 26, 542–548 (2020). 
[PubMed: 32251405] 

29. Agbaedeng TA et al. Polygenic risk score and coronary artery disease: a meta-analysis of 979,286 
participant data. Atherosclerosis 333, 48–55 (2021). [PubMed: 34425527] 

30. Ruan Y et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 
573–580 (2022). [PubMed: 35513724] 

31. Tian P et al. Multiethnic polygenic risk prediction in diverse populations through transfer learning. 
Front. Genet. 13, 1854 (2022).

32. Márquez-Luna C et al. Multiethnic polygenic risk scores improve risk prediction in diverse 
populations. Genet. Epidemiol. 41, 811–823 (2017). [PubMed: 29110330] 

33. Xiao J et al. XPXP: improving polygenic prediction by cross-population and cross-phenotype 
analysis. Bioinformatics 38, 1947–1955 (2022). [PubMed: 35040939] 

34. Cai M et al. A unified framework for cross-population trait prediction by leveraging the genetic 
correlation of polygenic traits. Am. J. Hum. Genet. 108, 632–655 (2021). [PubMed: 33770506] 

35. Dudbridge F & Wray NR Power and predictive sccuracy of polygenic risk scores. PLoS Genet. 9, 
e1003348 (2013). [PubMed: 23555274] 

36. Chatterjee N et al. Projecting the performance of risk prediction based on polygenic analyses of 
genome-wide association studies. Nat. Genet. 45, 400–405 (2013). [PubMed: 23455638] 

37. Graham SE et al. The power of genetic diversity in genome-wide association studies of lipids. 
Nature 600, 675–679 (2021). [PubMed: 34887591] 

38. Brown BC, Ye CJ, Price AL & Zaitlen N Transethnic genetic-correlation estimates from summary 
statistics. Am. J. Hum. Genet. 99, 76–88 (2016). [PubMed: 27321947] 

39. Shi H et al. Population-specific causal disease effect sizes in functionally important regions 
impacted by selection. Nat. Commun. 12, 1098 (2021). [PubMed: 33597505] 

40. van der Laan MJ, Polley EC & Hubbard AE Super learner. Stat. Appl. Genet. Mol. Biol. 6, 25 
(2007).

41. Polley E & van der Laan MJ Super learner in prediction. UC Berkeley Division of Biostatistics 
Working Paper Series (2010); http://biostats.bepress.com/ucbbiostat/paper266

42. Ledell E, Petersen M & Van Der Laan MJ Computationally efficient confidence intervals for cross-
validated area under the ROC curve estimates. Electron J. Stat. 9, 1583–1607 (2015). [PubMed: 
26279737] 

43. Polley E, LeDell E, Kennedy C & van der Laan MJ SuperLearner: Super learner prediction. R 
version 2.0–26 (2019).

44. Tibshirani R Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B Stat. 
Methodol. 58, 267–288 (1996).

45. Friedman J, Hastie T & Tibshirani R Regularization paths for generalized linear models via 
coordinate descent. J. Stat. Softw 33, 1–22 (2010). [PubMed: 20808728] 

46. Ripley BD Pattern Recognition and Neural Networks (Cambridge Univ. Press, 2007).

47. Weissbrod O et al. Leveraging fine-mapping and multipopulation training data to improve cross-
population polygenic risk scores. Nat. Genet. 54, 450–458 (2022). [PubMed: 35393596] 

48. Weissbrod O et al. Functionally informed fine-mapping and polygenic localization of complex trait 
heritability. Nat. Genet. 52, 1355–1363 (2020). [PubMed: 33199916] 

49. Consortium TIH 3. Integrating common and rare genetic variation in diverse human populations. 
Nature 467, 52 (2010). [PubMed: 20811451] 

50. Bien SA et al. Strategies for enriching variant coverage in candidate disease Loci on a multiethnic 
genotyping array. PLoS ONE 11, 167758 (2016).

51. Auton A et al. A global reference for human genetic variation. Nature 526, 68–74 (2015). 
[PubMed: 26432245] 

52. Bulik-Sullivan BK et al. LD score regression distinguishes confounding from polygenicity in 
genome-wide association studies. Nat. Genet. 47, 291–295 (2015). [PubMed: 25642630] 

Zhang et al. Page 22

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://biostats.bepress.com/ucbbiostat/paper266


53. Zhang Y, Qi G, Park JH & Chatterjee N Estimation of complex effect-size distributions using 
summary-level statistics from genome-wide association studies across 32 complex traits. Nat. 
Genet. 50, 1318–1326 (2018). [PubMed: 30104760] 

54. Zhang YD et al. Assessment of polygenic architecture and risk prediction based on common 
variants across fourteen cancers. Nat. Commun. 11, 3353 (2020). [PubMed: 32620889] 

55. Márquez-Luna C et al. Incorporating functional priors improves polygenic prediction accuracy in 
UK Biobank and 23andMe data sets. Nat. Commun. 12, 6052 (2021). [PubMed: 34663819] 

56. Ge T, Chen CY, Neale BM, Sabuncu MR & Smoller JW Phenome-wide heritability analysis of the 
UK Biobank. PLoS Genet. 13, e1006711 (2017). [PubMed: 28388634] 

57. Yengo L et al. Meta-analysis of genome-wide association studies for height and body mass index 
in ~700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018). [PubMed: 
30124842] 

58. Ding Y et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 
774–781 (2023). [PubMed: 37198491] 

59. Song L et al. SummaryAUC: a tool for evaluating the performance of polygenic risk prediction 
models in validation datasets with only summary level statistics. Bioinformatics 35, 4038–4044 
(2019). [PubMed: 30911754] 

60. Zhao Z et al. PUMAS: fine-tuning polygenic risk scores with GWAS summary statistics. Genome 
Biol. 22, 257 (2021). [PubMed: 34488838] 

61. Pritchard JK & Przeworski M Linkage disequilibrium in humans: models and data. Am. J. Hum. 
Genet. 69, 1–14 (2001). [PubMed: 11410837] 

62. van der Laan MJ & Rose S Targeted Learning: Causal inference for observational and experimental 
data, Vol. 4 (Springer New York, 2011).

63. Su Z, Marchini J & Donnelly P HAPGEN2: simulation of multiple disease SNPs. Bioinformatics 
27, 2304–2305 (2011). [PubMed: 21653516] 

64. Purcell S et al. PLINK: a tool set for whole-genome association and population-based linkage 
analyses. Am. J. Hum. Genet. 81, 559–575 (2007). [PubMed: 17701901] 

65. Foucher Y et al. RISCA: Causal inference and prediction in cohort-based analyses. R version 1.01 
https://cran.r-project.org/package=RISCA (2020).

66. Zhang H, Jin J & Zhang J Multi-ancestry PRS development. Zenodo 10.5281/zenodo.8033882 
(2023).

67. Zhang H & Okuhara D CT-SLEB software. Zenodo 10.5281/zenodo.8033795 (2023).

Zhang et al. Page 23

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://cran.r-project.org/package=RISCA


Fig. 1 |. CT-SLEB workflow.
a–c, The method has three key steps: CT method for selecting SNPs (a); EB procedure 

for incorporating correlation in effect sizes of genetic variants across populations (b); and 

SL model for combining the PRSs derived from the first two steps under different tuning 

parameters (c). GWAS summary statistics data were obtained from the training data. The 

tuning dataset was used to train the SL model. The final prediction performance was 

evaluated using an independent validation dataset. s.e.m., standard error of the mean.
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Fig. 2 |. Simulation results of various PRS methods in multiancestry settings.
a,b, Each of the four non-EUR populations with a training sample size of 15,000 (a) or 

80,000 (b). For the EUR population, the size of the training sample was set at 100,000. The 

tuning dataset included 10,000 samples per population. Prediction R2 values were reported 

based on an independent validation dataset with 10,000 subjects per population. Common 

SNP heritability was assumed to be 0.4 across all populations, and effect-size correlation 

was assumed to be 0.8 across all pairs of populations. The proportion of causal SNPs varies 

across 0.01 (top), 0.001 (middle), 5 × 10−4 (bottom), and effect sizes for causal variants 
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are assumed to be related to allele frequency, under a strong negative selection model. Data 

were generated based on ~19 million common SNPs across the 5 populations, but analyses 

were restricted to ~2.0 million SNPs that were used on Hapmap3 + MEGA chip array. 

PolyPred-S+ and PRS-CSx analyses were further restricted to ~1.3 million HM3 SNPs. 

All approaches were trained using data from the EUR and target populations. CT-SLEB 

and PRS-CSx were also evaluated using data from all five ancestries as training data. 

The red dashed line shows the prediction performance of EUR PRSs generated using the 

single-ancestry method (best of CT or LDpred2) in the EUR population.
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Fig. 3 |. Comparison of CT-SLEB PRSs across different ancestries with single-ancestry EUR 
PRSs in the EUR population.
a–d, The training sample size for each of the four non-EUR populations is 15,000, 45,000, 

80,000 or 100,000. The training sample size for the EUR population is fixed at 100,000 

and PRS performance is evaluated using single-ancestry CT or LDpred2, depending on 

whichever performs the best in each setting. a,b, Under the genetic architecture where 

common SNP heritability is fixed at 0.4, (a) depicts the relative performance of CT-SLEB in 

non-European populations compared to EUR PRSs, while (b) shows the averaged per-SNP 

heritability across different ancestries. Then under the genetic architecture where per-SNP 

heritability is fixed. c,d, (c) demonstrates the relative performance of CT-SLEB in non-

European populations relative to EUR PRSs.) The effect-size correlation was assumed to 

be 0.8 across all pairs of populations. The effect sizes for causal variants were assumed to 

be related to allele frequency under a strong negative selection model. CT-SLEB uses the 

summary statistics from all five ancestries.
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Fig. 4 |. Prediction performance of CT-SLEB PRS under varying SNP densities.
a,b, The analysis of simulated data based on ~19 million SNPs was limited to 3 different 

SNP sets: Hapmap3 (~1.3 million SNPs), Hapmap3 + MEGA chips array (~2.0 million 

SNPs) and 1000 Genomes Project (1KG; ~19 million SNPs). a,b, The training sample size 

for each of the four non-EUR populations was 15,000 (a) or 80,000 (b). The training sample 

size for the EUR population was fixed at 100,000. Prediction R2 values are reported based 

on an independent validation dataset with 10,000 subjects per population. Common SNP 

heritability was assumed to be 0.4 across all populations and effect-size correlation was 
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assumed to be 0.8 across all pairs of populations. The proportion of causal SNPs varied 

across 0.01 (top), 0.001 (middle) and 5 × 10−4 (bottom). Lastly, effect sizes for causal 

variants were assumed to be related to allele frequency under a strong negative selection 

model.
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Fig. 5 |. Prediction accuracy of PRSs for heart metabolic disease burden and height in 23andMe, 
Inc. datasets.
The total sample size for heart metabolic disease burden and height was, respectively, 2.46 

million and 2.93 million for EUR, 131,000 and 141,000 for AFR, 375,000 and 509,000 for 

Latino, 110,000 and 121,000 for EAS and 29,000 and 32,000 for SAS, respectively. The 

dataset was randomly split into 70%, 20%, and 10% for training, tuning, and validation 

datasets, respectively. The adjusted R2 values were reported based on the PRS performance 

in the validation dataset, accounting for PCs 1–5, sex, and age. The red dashed line 

represents the prediction performance of EUR PRS generated using a single-ancestry 

method (best of CT or LDpred2) in the EUR population. Analyses were restricted to ~2.0 

million SNPs that are included in Hapmap3, or the MEGA chips array or both. PolyPred-S+ 

and PRS-CSx analyses were further restricted to ~1.3 million HM3 SNPs. All approaches 

were trained using data from the EUR and the target population. CT-SLEB and PRS-CSx 

were also evaluated using training data from all five ancestries. From top to bottom, two 

continuous traits are displayed in the following order: (1) heart metabolic disease burden and 

(2) height.
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Fig. 6 |. Prediction accuracy of five binary traits in 23andMe, Inc. datasets.
The data are from five populations: EUR (averaged n ≈ 2.37 million), AFR (averaged n ≈ 
109,000), Latino (averaged n ≈ 401,000), EAS (averaged n ≈ 86,000) and SAS (averaged 

n ≈ 24,000). The datasets are randomly split into 70%, 20% and 10% for training, tuning 

and validation datasets, respectively. The adjusted AUC values were reported based on the 

validation dataset accounting for PCs 1–5, sex and age. The red dashed line represents the 

prediction performance of EUR PRS generated using a single-ancestry method (best of CT 

or LDpred2) in the EUR population. Analyses were restricted to the ~2.0 million SNPs 

that are included in Hapmap3, the MEGA chips array or both. PolyPred-S+ and PRS-CSx 

analyses were further restricted to ~1.3 million HM3 SNPs as implemented in the provided 

software. All approaches were trained using data from the EUR and the target populations. 

CT-SLEB and PRS-CSx were also evaluated using training data from five ancestries. From 

top to bottom, five binary traits are displayed in the following order: (1) any CVD; (2) 

depression; (3) migraine diagnosis; (4) SBMN; and (5) morning person.
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Fig. 7 |. Prediction accuracy of four blood lipid traits from the GLGC.
We used the GWAS summary statistics from five populations as the training data: EUR (n 
≈ 931,000), AFR (primarily AA, n ≈ 93,000), Latino (n ≈ 50,000), EAS (n ≈ 146,000) 

and SAS (n ≈ 34,000). The tuning and validation datasets are from UKBB data with three 

different ancestries: AFR (n = 9,042), EAS (n = 2,009) and SAS (n = 10,615). The tuning 

and validation were split half and half. The adjusted R2 values were reported based on the 

performance of the PRS in the validation dataset, while accounting for PCs 1–10, sex and 

age. The red dashed line represents the prediction performance of EUR PRSs generated 

using a single-ancestry method (best of CT or LDpred2) in the EUR population. Analyses 

were restricted to ~2.0 million SNPs that are included in Hapmap3, the MEGA chips array 

or both. PolyPred-S+ and PRS-CSx analyses were further restricted to ~1.3 million HM3 

SNPs as implemented in the provided software. All approaches were trained using data 

from the EUR and the target populations. CT-SLEB and PRS-CSx were also evaluated 

using training data from five ancestries. From top to bottom, four traits are displayed in the 

following order: (1) HDL-cholesterol, (2) LDL-cholesterol, (3) log(TGs) and (4) TC.
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Fig. 8 |. Prediction accuracy of two traits from the AoU dataset.
We used the GWAS summary statistics from three populations as the training data: EUR (n 
≈ 48,000), AFR (n ≈ 22,000) and Latino (averaged n ≈ 15,000). The tuning and validation 

datasets are from UKBB data with AFR (n = 9,042). The tuning and validation were split 

half and half. The adjusted R2 values were reported based on the performance of the PRSs 

in the validation dataset, while accounting for PCs 1–10, sex and age. The red dashed 

line represents the prediction performance of EUR PRSs generated using a single-ancestry 

method (best of CT or LDpred2) in the EUR population. Analyses were restricted to 

around 800,000 SNPs that were genotyped in the AoU dataset for different ancestries. All 

approaches were trained using data from the EUR and AFR populations. CT-SLEB and 

PRS-CSx were further evaluated using training data from three ancestries: AFR, EUR and 

Latino. From top to bottom, two traits are displayed in the following order: (1) BMI and (2) 

height.

Zhang et al. Page 33

Nat Genet. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Method overview
	Two-dimensional CT.
	EB estimation of effect sizes.
	Superlearning.
	Design of simulation studies.

	Simulation study results
	23andMe data analysis results
	GLGC and AoU analysis results with UKBB as validation dataset

	Discussion
	Online content
	Methods
	CT
	EB to calibrate regression coefficients
	Superlearning
	Simulation
	Existing PRS methods
	Runtimes and memory usage comparison
	23andMe data analysis
	GLGC data analysis
	AoU data analysis

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Fig. 7 |
	Fig. 8 |

