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Abstract

Mendelian randomization (MR) is an epidemiological framework using genetic variants as

instrumental variables (IVs) to examine the causal effect of exposures on outcomes. Statisti-

cal methods based on unidirectional MR (UMR) are widely used to estimate the causal

effects of exposures on outcomes in observational studies. To estimate the bidirectional

causal effects between two phenotypes, investigators have naively applied UMR methods

separately in each direction. However, bidirectional causal effects between two phenotypes

create a feedback loop that biases the estimation when UMR methods are naively applied.

To overcome this limitation, we proposed two novel approaches to estimate bidirectional

causal effects using MR: BiRatio and BiLIML, which are extensions of the standard ratio,

and limited information maximum likelihood (LIML) methods, respectively. We compared

the performance of the two proposed methods with the naive application of UMR methods

through extensive simulations of several scenarios involving varying numbers of strong and

weak IVs. Our simulation results showed that when multiple strong IVs are used, the pro-

posed methods provided accurate bidirectional causal effect estimation in terms of median

absolute bias and relative median absolute bias. Furthermore, compared to the BiRatio

method, the BiLIML method provided a more accurate estimation of causal effects when

weak IVs were used. Therefore, based on our simulations, we concluded that the BiLIML

should be used for bidirectional causal effect estimation. We applied the proposed methods

to investigate the potential bidirectional relationship between obesity and diabetes using the

data from the Multi-Ethnic Study of Atherosclerosis cohort. We used body mass index (BMI)

and fasting glucose (FG) as measures of obesity and type 2 diabetes, respectively. Our

results from the BiLIML method revealed the bidirectional causal relationship between BMI

and FG in across all racial populations. Specifically, in the White/Caucasian population, a 1

kg/m2 increase in BMI increased FG by 0.70 mg/dL (95% confidence interval [CI]: 0.3517–

1.0489; p = 8.43×10−5), and 1 mg/dL increase in FG increased BMI by 0.10 kg/m2 (95% CI:

0.0441–0.1640; p = 6.79×10−4). Our study provides novel findings and quantifies the effect
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sizes of the bidirectional causal relationship between BMI and FG. However, further studies

are needed to understand the biological and functional mechanisms underlying the bidirec-

tional pathway.

Introduction

Causal inference is of vital importance in several fields of medicine and epidemiology [1,2]. It

is used to identify factors causally associated with common diseases, thereby providing a basis

for disease intervention and prevention [2,3]. Randomized controlled trials (RCTs) have been

used for measuring the causal effects of treatments on outcomes [4–6]. However, RCTs may

be expensive, with longer follow-up and potentially multiple ethical problems in real-life appli-

cations [2,4–6]. Alternately, an observational study design is commonly used to identify an

association between treatment and outcome [7]. In traditional prospective observational

cohort studies, exposure is measured, and then participants are followed over time to find out

how many develop certain health conditions. In retrospective cohort studies, subjects are

selected based on preexisting exposure status, and outcome data from the past are assembled

for analysis. In case-control studies, subjects are selected and categorized into the case or con-

trol group based on the incidence of outcomes. The exposures are measured retrospectively

for both the case and control groups for analysis [7,8]. Inferences from observational studies

can be biased by unobserved confounders that affect both the exposure and outcome or by

potential reverse causations [4,6,9–11]. For example, an observational study identified an asso-

ciation between coronary heart disease and vitamin E intake, but an RCT found no such asso-

ciation [12,13].

Methods using instrumental variables (IVs) were proposed as an alternative solution to

examine the causality between exposure and outcome using cross-sectional observational data-

sets. An IV is a factor that is predictive of exposure but is not directly associated with either the

outcome or confounders [14,15]. Mendel’s laws of inheritance state that alleles are randomly

distributed from parents to offspring, so an allele-related trait also separates randomly in a

population, and those alleles are unlikely to be associated with confounders [6,10]. Also, the

germline genotypes are assigned to individuals before any possible exposures and outcomes,

thus reducing the concern of reverse causation [6,10]. Therefore, causal inference methods

proposed using genetic variants as IVs can reduce bias due to unobserved confounders and

reverse causation [6]. Mendelian randomization (MR) is a framework used to infer the causal

relationship between exposure and outcome using genetic variants as IVs of exposure of inter-

est [4,6,11,15,16].

Correctly selecting IVs is critical to a successful MR study. There are three assumptions of

selecting valid IVs in MR studies: 1) the genetic variables are associated with the exposure, 2)

the genetic variables are independent of confounders, and 3) the genetic variables are indepen-

dent of the outcome given the exposures and all confounders [4,6,9,17]. During recent decades,

thousands of genetic associations have been revealed by genome-wide association studies

[2,6,18], which provide a reliable source of candidate IVs for MR studies. Several MR methods

have been proposed on the foundations of the three assumptions listed above [2,19–21].

A commonly used MR method is the ratio method with an IV, which uses the ratio of the

coefficient of regressing outcome on an IV and the coefficient of regressing exposure on the

IV as the estimate of the causal effect between exposure and outcome [2,19,21]. This method

has been expanded to multiple IVs using inverse-variance weighted (IVW) methods. With
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uncorrelated IVs, the IVW estimator from MR studies combines the ratio estimates from each

IV through IVW meta-analysis [19,20].

One challenge of performing MR studies is that many genetic variants are only modestly

associated with the exposure and explain only a small amount of the exposure’s variance [22].

The F-statistic of regressing the exposure on a genetic variant is commonly used in MR studies

to measure the strength of the genetic variant as an IV. When a genetic variant is an IV for

exposure, and the associated F-statistic is less than 10, it is considered a weak IV [23,24]. Find-

ing strong IVs for MR studies is often difficult. When multiple weak IVs are used, estimations

from the IVW ratio method will be biased [20,25]. For instance, studies with weak IVs can be

sensitive to violations of the IV assumptions, leading to biased effect estimates [15,26]. To

overcome bias associated with weak IVs, limited information maximum likelihood (LIML)

estimators have been proposed. Theoretical justifications and simulation studies have shown

that the LIML estimators provide accurate estimation even when weak IVs are used [22,27].

Although the ratio and LIML MR methods can estimate unidirectional causal effects

(Fig 1), many phenotypes have bidirectional causal effects (Fig 2) in which the exposure and

the outcome affect each other, such as the bidirectional relationship between diabetes and obe-

sity [28], between inflammation and sleep disorders [29], or between depression and pain [30].

The bidirectional relationship between exposure and outcome leads to a feedback loop. Typi-

cally, bidirectional causal effects are estimated using two unidirectional MR (UMR) models,

one for each causal direction [31,32]. When the bidirectional causal effects are estimated using

UMR methods for each direction separately, the feedback loop will bias the estimation of

causal effects [10,17]. Darrous et al. have proposed a method for estimating bidirectional

causal effects based on summary data; however, their model applies to two-sample MR [33].

Although several MR-related reviews addressed the existence of a feedback loop in bidirec-

tional causation scenarios [5,10,17], to our knowledge, no MR method for the estimation of

bidirectional causal effects accounts for the feedback loop.

Fig 1. Unidirectional Mendelian randomization model.

https://doi.org/10.1371/journal.pone.0293510.g001

Fig 2. Bidirectional Mendelian randomization model with a feedback loop.

https://doi.org/10.1371/journal.pone.0293510.g002
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In this manuscript, we propose two methods to estimate bidirectional causal effects and

account for the feedback loop between exposure and outcome in a one-sample bidirectional

MR (BMR) model. The proposed BiRatio method and BiLIML method are extended from the

traditional ratio and LIML methods, respectively. We compared the performance via simula-

tions when the underlying model is unidirectional and bidirectional with different strengths of

IVs and found that the BiRatio and BiLIML methods provide an accurate estimation of causal

effects. We applied the proposed methods to estimate the effects of the bidirectional relation-

ship between obesity and diabetes: Observational studies and RCTs have shown that individu-

als with higher body mass index (BMI) also have a higher likelihood of developing diabetes

[28,34,35], and patients with type 2 diabetes have a higher likelihood of being obese [28]. With

BMI as a measure of obesity and fasting glucose (FG) as a measure of diabetes, we investigated

the bidirectional relationship between BMI and FG by estimating causal effects using data

from the Multi-Ethnic Study of Atherosclerosis (MESA) cohort.

Methods

The study is approved by MD Anderson institutional review board and uses secondary data

from the dbGaP.

Unidirectional MR model

The UMR model is shown in Fig 1. Let Y1 denote exposure of interest and Y2 denote the out-

come of interest. Let X1 denote a SNP (or a set of SNPs) that is only associated with Y1 but is

not directly associated with Y2. Let C represent the (typically unmeasured) confounder that

affects both the exposure and outcome. The model in Fig 1 can be represented by the following

sets of equations:

Y1 ¼ b01 þ b11X1 þ bCY1C þ ε1 ð1Þ

Y2 ¼ b02 þ g12Y1 þ bCY2C þ ε2 ð2Þ

Bidirectional MR model

The BMR model is shown in Fig 2. Let Y1 and Y2 denote outcomes of interest where each out-

come is causally related to the other. Let X1 denote a SNP that is only associated with Y1 but

not directly associated with Y2. Similarly, let X2 denote a SNP that is only associated with only

Y2 but not directly associated with Y1. The bidirectional model is represented by a joint system

of equations:

Y1 ¼ b01 þ b11X1 þ bCY1C þ g21Y2 þ ε1 ð3Þ

Y2 ¼ b02 þ b22X2 þ bCY2C þ g12Y1 þ ε2 ð4Þ

In this model, the bidirectional relationship between Y1 and Y2 leads to a recursive relation-

ship (i.e., a feedback loop) between these two outcomes. After each feedback cycle, values of

outcome variables Y1 and Y2 are altered. The feedback cycle converges to

Y1 ¼
b01 þ g21b02

1 � g12g21

þ
g21bCY2 þ bCY1

1 � g12g21

C þ
b11

1 � g12g21

X1 þ
g21b11

1 � g12g21

X2 þ d1 ð5Þ
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Y2 ¼
b02 þ g12b01

1 � g12g21

þ
g12bCY1 þ bCY2

1 � g12g21

C þ
g12b11

1 � g12g21

X1 þ
b22

1 � g12g21

X2 þ d2 ð6Þ

when |γ12γ21|<1. See the S1 Appendix for derivation.

Estimation methods

Various methods for the estimation of causal effects have been proposed [2,4,19,20]. One of

the simplest MR methods is the ratio method [4,15]. For cases in which multiple IVs are used,

the inverse-variance weighted (IVW) ratio method has been proposed [19,20].

Unidirectional ratio method (Ratio)

The ratio estimator of γ12 is calculated using Eqs (1) and (2) as the ratio of coefficient of regres-

sion of Y2 on X1 and the coefficient of regression of Y1 on X1 [2,15].

ĝ12 ¼
^g12b11

b̂11

ð7Þ

Bidirectional ratio method (BiRatio)

In the literature [31,36–38], the ratio and IVW methods have been naively applied to Eqs (3)

and (4) without accounting for the feedback cycle, leading to biased estimation. One study

[31] used two UMR estimations for the causal effects in each direction. In our proposed

approach, a joint system of Eqs (5) and (6) is used for parameter estimations. Specifically, γ12 is

estimated as the ratio of the coefficient of regression of Y2 on X1 which is
^g12b11

1� g12g21
and the coeffi-

cient of regression of Y1 on X1, which is
^b11

1� g12g21
.

ĝ12 ¼

^g12b11

1� g12g21

^b11

1� g12g21

ð8Þ

Although the bidirectional effect estimator in Eq (8) may look similar to the unidirectional

MR ratio estimator in Eq (7), they are not equivalent because the estimated numerator and

denominator include (1−γ12γ21) for the bidirectional method. Furthermore, the equations

used to estimate γ12 also include X2 in Eq (4), which is not included in Eq (2) of the unidirec-

tional model.

Similarly, γ21 is estimated as the ratio of the coefficient of regression of Y1 on X2 and the

coefficient of regression of Y2 on X2.

ĝ21 ¼

^g21b22

1� g12g21

^b22

1� g12g21

When multiple IVs are used for estimating γ12, denoted by X1.1, . . ., X1.k, the IVW ratio esti-

mator of γ12 is ĝ12 ¼

P ^g12b11
1� g12g21

� �

i

b11
^

1� g12g21

� �

i
var

^g12b11
1� g12g21

� �

i
Þ� 1

P
b11

^

1� g12g21

� �2

i
var

^g12b11
1� g12g21

� �

i

� �� 1 where the
^g12b11

1� g12g21

� �

i
is the coefficient

of regression of Y2 on the X1.i,
b̂11

1� g12g21

� �

i
is the coefficient of regression of Y1 on X1.i, and the

var ^g12b11

1� g12g21

� �

i

� �
is the variance of coefficient from regression of Y2 on the X1.i, i = 1,. . .,k.
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When multiple IVs are used for estimating γ21, denoted by X2.1, . . ., X2.k, the IVW ratio estima-

tor of γ21 is ĝ21 ¼

P ^g21b22
1� g12g21

� �

i

b22
^

1� g12g21

� �

i
var

^g21b22
1� g12g21

� �

i
Þ� 1

P
b22

^

1� g12g21

� �2

i
var

^g21b22
1� g12g21

� �

i

� �� 1 where the
^g21b22

1� g12g21

� �

i
is the coefficient of

regression of Y1 on the X2.i
b̂22

1� g12g21

� �

i
is the coefficient of regression of Y2 on X2.i, and

var ^g21b22

1� g12g21

� �

i

� �
is the variance of coefficient from regression of Y2 on the X2.i, i = 1,. . .,k.

Bidirectional LIML method (BiLIML)

As mentioned in the Introduction, many genetic variants are only modestly associated with

the exposure and only explain a small amount of variance of the exposure [22]. When multiple

weak IVs are used in MR studies, estimations from the IVW method will be biased [20,25].

However, the LIML method does not suffer from such bias, according to previous theoretical

and simulation studies [22,27]. LIML was originally developed as an extension of the full infor-

mation maximum likelihood (FIML) method. FIML estimates the parameters of simultaneous

linear equation models using information from all equations. When one or more equations

are mis-specified, FIML provides inconsistent estimations. LIML overcomes this disadvantage

by using only information regarding the equation’s structure that includes the parameters of

interest, such as the γ12 in Eq (2) from the UMR model for unidirectional causal effect estima-

tion. LIML provides closed-form maximum likelihood estimates of the parameters (e.g., γ12)

[15,39]. The LIML method was previously applied [32] using Eqs (1) and (2) to estimate the

bidirectional causal effects between BMI and C-reactive protein; however, as mentioned

above, such formulation ignores the feedback loop, leading to biased estimation. In our pro-

posed approach, we adapt the LIML method to the BMR model using Eqs (5) and (6).

In our bidirectional LIML approach, we estimate γ12, using Eqs (4) and (5). We can rewrite

Eq (5) as

Y1 ¼ a01 þ aCY1C þ a11X1 þ g23X2 þ d1 ð9Þ

where a01 ¼
b01þg21b22

1� g12g21
; aCY1 ¼

bCY1þg21bCY2

1� g12g21
; a11 ¼

b11

1� g12g21
, and g23 ¼

g21b22

1� g12g21
. Formulas (4) and (9)

can be written as

1 0

� g12 1

" #
Y1

Y2

" #

¼
a01 aCY1 a11 g23

b02 bCY2 0 b22

" #
1

C

X1

X2

2

6
6
6
6
4

3

7
7
7
7
5
þ

d1

ε2

" #

which can be represented as GY ¼ BW þ ½ d1 ε2 �
T
, where

Y ¼ ½Y1 Y2�
T
;G ¼

1 0

� g12 1

" #

;W ¼ ½ 1 C X2 X1 �
T
, and B ¼

a01 aCY1 a11 g23

b02 bCY2 0 b22

" #

.

We assume d1 ε2 �½ follow multi-normal distribution. The likelihood function is

L ¼ ð2pÞnexp �
1

2
ðGY � BWÞT S� 1

O
In

� �
ðYG � WBÞT

� �

jS
O

Inj
� 1

2 ð10Þ

The maximum likelihood estimation of γ12 can be represented as

½b̂02
^bCY2 ĝ12 �

T
¼ ðXTðIn � k̂MwÞXÞ

� 1XTðIn � k̂MwÞY2 ð11Þ
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where X ¼ 1 C X2 Y1½ �;Mw ¼ In � WðWTWÞ� 1WT;W ¼ 1 C X2 X1 �½ and k̂ is

an eigenvalue of the matrix ðYTMwYÞ
� 1=2YTMcYðYTMwYÞ

� 1=2
, where Y = [Y1Y2],

MC ¼ In � C∗ðC∗TC∗Þ
� 1C∗T , and C∗ ¼ 1 C X2 �½ .

Again, the estimated γ12 is different from the unidirectional LIML estimate because the esti-

mation approach includes the instrumental variable, X2.

Similarly, in the bidirectional LIML approach, we can estimate γ21 using Eqs (3) and (6).

We rewrite Eq (6) as

Y2 ¼ a02 þ aCY2C þ a22X2 þ g13X1 þ d2 ð12Þ

where a02 ¼
b02þg12b11

1� g12g21
; aCY2 ¼

bCY2þg12bCY1

1� g12g21
; a22 ¼

b22

1� g12g21
, and g13 ¼

g12b11

1� g12g21
. Formulas (3) and

(12) can be written as

1 � g12

0 1

" #
Y1

Y2

" #

¼
b01 bCY1 b11 0

a02 aCY2 g13 a22

" #
1

C

X1

X2

2

6
6
6
6
4

3

7
7
7
7
5
þ

ε1

d2

" #

which can be represented as GY ¼ BW þ ½ ε1 E2 �
T
, where Y ¼ ½Y1 Y2�

T
;G ¼

1 � g21

0 1

" #

,

W ¼ ½ 1 C X1 X2 �
T
, and B ¼

b01 bCY1 b11 0

a02 aCY2 g13 a22

" #

: We assume ε1 d2 �½ follow

multi-normal distribution. The maximum likelihood estimation of γ12 can be represented as

½b̂01
^bCY1 ĝ21 �

T
¼ ðXTðIn � k̂MwÞXÞ

� 1XTðIn � k̂MwÞY1 ð13Þ

where X ¼ 1 C X1 Y2½ �;Mw ¼ In � WðWTWÞ� 1WT;W ¼ 1 C X1 X2 �½ , and k̂ is

an eigenvalue of the matrix ðYTMwYÞ
� 1=2YTMcYðYTMwYÞ

� 1=2
, where Y ¼ ½Y1Y2�,

MC ¼ In � C∗ðC∗TC∗Þ
� 1C∗T , and C∗ ¼ 1 C X1 �½ .

Simulations

We assessed the robustness and accuracy of the proposed bidirectional methods using simula-

tions. For each simulated dataset, we applied the traditional ratio and LIML methods and the

proposed BiRatio and BiLIML methods. In each scenario, SNPs X1 and X2 were simulated

with a minor allele frequency of 0.3, and the frequencies are assumed to be in Hardy-Weinberg

proportions. The values of β11 and β22 were set to 1 or 2 to represent strong IVs and set to 0.02

or 0.05 to represent weak IVs. Also, in each scenario, the confounder C was generated from a

normal distribution with mean 1 and unit variance. The regression coefficient of confounder

C on Y1 and Y2, βcy1 and βcy2, respectively, were set to 0.3. The intercept values β01 and β02

were set to 1. The errors ε1 and ε2 were simulated from a standard normal distribution in each

scenario. The datasets were generated with different numbers of strong IVs ranging from 1 to

20 and different numbers of weak IVs ranging from 1 to 100. For each scenario, we performed

simulations with 1000 replicates.

Simulation scenario 1—the standard UMR model: We simulated data using the unidirec-

tional model in Fig 1 with Formulas (1) and (4), in which the X1 is the IV for estimating the

causal effect of Y1 on Y2 and the X2 is the IV for estimating the causal effect of Y2 on Y1.

Because it is a unidirectional model, there is no causal effect of Y2 on Y1. The values of β11 and

β22 were set to 1 when one strong IV was used; set to 2
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when 20 strong IVs were used; set to 0.02 when 20 weak IVs were used; and set to 0.05

when 100 weak IVs were used. The purpose of this simulation was to confirm that the pro-

posed BiRatio and BiLIML methods are appropriate for analyzing data even when the underly-

ing model is unidirectional.

Simulation scenario 2—the BMR model: Outcomes Y1 and Y2 were generated using Formu-

las (5) and (6) in the BMR model. The values of β11 and β22 were set to 1 when one strong IV

was used; and set to 2 when 5, 10, or 20 strong IVs were used. The purpose of this simulation

was to evaluate the accuracy of proposed methods when simulated data have a bidirectional

causal relationship, and instrumental variables are strong.

Simulation scenario 3—the BMR model: The outcomes Y1 and Y2 were generated using

Formulas (5) and (6) in the BMR model. The values of β11 and β22 were set to 0.02 when 1, 5,

10, or 20 weak IVs were used; and set to 0.05 when 100 weak IVs were used. The purpose of

this simulation was to evaluate the accuracy of proposed bidirectional methods when simu-

lated data have a bidirectional causal relationship and instrumental variables are weak.

Measures of Performance: We evaluated the bias in estimation for a range of positive and

negative values of γ12 from -1.9 to 1.9 for simulation scenario 1 and a range of positive and

negative values of γ12 and γ21 from -1.9 to 1.9 for simulation scenarios 2 and 3. The mean value

of F-statistics of regressing each X1 on Y1 over 1000 replicates was used to assess the strength

of X1 as an IV for γ12 estimation. Similarly, the mean value of F-statistics of regressing each X2

on Y2 over 1000 replicates was used to assess the strength of X2 as an IV for γ21 estimation. The

proposed methods’ performances were evaluated using the following metrics: 1) We deter-

mined the median value of estimated γ12 and γ21 from 1000 replicates. 2) We calculated the

median absolute bias (MAB)¼ Medianðjĝ12 � g12jÞ and Medianðjĝ21 � g21jÞ: In each replicate,

we calculated the absolute value of the difference between estimated γ12 or γ21 and their corre-

sponding true value as absolute bias. The MAB is the median value of the 1000 absolute biases

from 1000 replicates. 3) We calculated the relative median absolute bias (RMAB)

¼
MABg12

jg12 j
and MABg21

jg21 j
. When the simulated data are from the UMR model, the true γ21 is 0, and

the RMAB of estimated γ21 is not defined. We used the R programming language for all simu-

lations and analyses. The mr_ivw function from the R package MendelianRandomization, ver-

sion 0.6.0, with default settings [40] was used for Ratio and BiRatio methods. The LIML

function from the R package ivmodel, version 1.81, with default settings [41] was used for both

LIML and BiLIML methods. We have created a BiMR statistical package in R, which contains

the simulation code and functions to estimate the bidirectional causal effects. The package can

be installed from github: https://github.com/JinhaoZou/BiMR.

Results

Simulations

Simulation scenario 1: In this scenario, 1000 replicates of the data from 1000 individuals were

simulated using the UMR model (Fig 1) with γ12 values from -1.9 to 1.9. The causal effects

were estimated using the four methods (ratio, BiRatio, LIML, and BiLIML). In Table 1, we

present the results in four sections using different numbers and strengths of IVs: 1 strong IV,

20 strong IVs, 20 weak IVs, and 100 weak IVs. For each section, the first column represents

the true simulated values of γ12, the second column reports the F-statistics quantifying the

strengths of IVs, and the subsequent columns represent the measures of performance (median,

MAB, and RMAB) for the four methods. When strong IVs were used, all four methods pro-

vided accurate estimations. For example, when 1 or 20 strong IVs were used, the estimated

MAB for the four methods ranged from 0.00 to 0.04, and the estimated RMAB for the four
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methods ranged from 0% to 2%. The LIML and BiLIML methods provided more accurate esti-

mations than the ratio and BiRatio methods when weak IVs were used. For example, when 100

weak IVs were used, the estimated MAB and RMAB for the ratio and BiRatio methods ranged

Table 1. Simulation scenario 1: The unidirectional Mendelian randomization model is used. Parameter estimates are based on 1000 replicates.

F-stat Ratio BiRatio LIML BiLML

Median MAB RMAB Median MAB RMAB Median MAB RMAB Median MAB RMAB

Strong IV (1)†

γ12 = −1.9

γ21 = 0

6231.40 -1.90 0.02 1% -1.90 0.01 1% -1.90 0.02 1% -1.90 0.01 1%

262.56 0.00 0.02 - 0.00 0.01 - 0.00 0.02 - 0.00 0.01 -

γ12 = −0.9

γ21 = 0

6238.96 -0.90 0.02 2% -0.9 0.01 1% -0.90 0.02 2% -0.90 0.01 1%

1174.58 0.00 0.02 - 0.00 0.01 - 0.00 0.02 - 0.00 0.01 -

γ12 = 0.9

γ21 = 0

6226.88 0.90 0.02 2% 0.90 0.01 1% 0.90 0.02 2% 0.90 0.01 1%

741.36 0.00 0.02 - 0.00 0.01 - 0.00 0.02 - 0.00 0.01 -

γ12 = 1.9

γ21 =0

6224.88 1.90 0.02 1% 1.90 0.01 1% 1.90 0.02 1% 1.90 0.01 1%

206.55 0.00 0.02 - 0.00 0.01 - 0.00 0.02 - 0.00 0.01 -

Strong IVs (20)†

γ12 = −1.9

γ21 = 0

53.35 -1.90 0.02 1% -1.90 0.00 0% -1.90 0.02 1% -1.90 0.00 0%

11.80 -0.03 0.04 - 0.00 0.00 - 0.00 0.02 - 0.00 0.00 -

γ12 = −0.9

γ21 = 0

53.78 -0.90 0.02 2% -0.90 0.00 0% -0.90 0.02 2% -0.90 0.00 0%

29.74 -0.02 0.02 - 0.00 0.00 - 0.00 0.02 - 0.00 0.00 -

γ12 = 0.9

γ21 = 0

53.56 0.90 0.02 2% 0.90 0.00 0% 0.90 0.02 2% 0.90 0.00 0%

28.84 0.02 0.02 - 0.00 0.00 - 0.00 0.02 - 0.00 0.00 -

γ12 = 1.9

γ21 = 0

53.99 1.90 0.02 1% 1.90 0.00 0% 1.90 0.02 1% 1.90 0.00 0%

12.18 0.03 0.03 - 0.00 0.00 - 0.00 0.02 - 0.00 0.00 -

Weak IVs (20)†

γ12 = −1.9

γ21 = 0

3.28 -1.67 0.23 12% -1.66 0.24 13% -1.91 0.10 5% -1.91 0.10 5%

2.54 -0.28 0.28 - -0.27 0.27 - 0.00 0.10 - 0.01 0.10 -

γ12 = −0.9

γ21 = 0

3.58 -0.65 0.25 28% -0.65 0.25 28% -0.88 0.10 11% -0.89 0.10 11%

7.98 -0.02 0.09 - -0.01 0.09 - 0.01 0.10 - 0.01 0.10 -

γ12 = 0.9

γ21 = 0

3.12 1.14 0.24 27% 1.15 0.25 28% 0.90 0.10 11% 0.91 0.10 11%

1.68 0.30 0.30 - 0.30 0.30 - -0.01 0.11 - -0.01 0.11 -

γ12 = 1.9

γ21 = 0

3.50 2.14 0.24 13% 2.15 0.25 13% 1.90 0.10 5% 1.91 0.10 5%

1.38 0.27 0.27 - 0.26 0.26 - 0.01 0.09 - 0.01 0.09 -

Weak IVs (100)†

γ12 = −1.9

γ21 = 0

7.23 -1.84 0.06 3% -1.84 0.06 3% -1.90 0.03 2% -1.90 0.02 1%

2.77 -0.19 0.19 - -0.08 0.08 - 0.00 0.03 - 0.00 0.02 -

γ12 = −0.9

γ21 = 0

7.15 -0.84 0.06 7% -0.84 0.06 7% -0.90 0.03 3% -0.90 0.02 2%

5.86 -0.09 0.09 - 0.00 0.02 - 0.00 0.03 - 0.00 0.02 -

γ12 = 0.9

γ21 = 0

6.88 0.96 0.06 7% 0.96 0.06 7% 0.90 0.03 3% 0.90 0.02 2%

3.65 0.17 0.17 - 0.11 0.11 - 0.00 0.03 - 0.00 0.02 -

γ12 = 1.9

γ21 = 0

7.18 1.96 0.06 3% 1.96 0.06 3% 1.90 0.03 2% 1.90 0.02 1%

2.07 0.21 0.21 - 0.13 0.13 - 0.00 0.03 - 0.00 0.02 -

BiRatio = bidirectional ratio method; BiLIML = limited information maximum likelihood method; IVs = instrumental variables; LIML = limited information maximum

likelihood method. Median is the median value of estimated causal effect among 1000 replicates. MAB is the median of absolute bias of each estimation among 1000

replicates. RMAB is the relative median of absolute bias of each estimation among 1000 replicates.

†shows the number of instrumental variables used for generating dataset.

https://doi.org/10.1371/journal.pone.0293510.t001

PLOS ONE Estimating bidirectional causal effects using Mendelian randomization

PLOS ONE | https://doi.org/10.1371/journal.pone.0293510 March 8, 2024 9 / 19

https://doi.org/10.1371/journal.pone.0293510.t001
https://doi.org/10.1371/journal.pone.0293510


from 0.02 to 0.21 and 3% to 7%, respectively, while the estimated MAB and RMAB for LIML

and BiLIML methods ranged from 0.02 to 0.03, and 1% and 3%, respectively.

Simulation scenario 2: For this scenario, 1000 replicates of the data from 1000 individuals

were simulated using the BMR model (Fig 2) with strong IVs ranging from 1 to 20. The

expected values of γ12 and γ21 values were set ranging from -1.9 to 1.9. The causal effects were

estimated using the four methods (ratio, BiRatio, LIML, and BiLIML). In Table 2 and Fig 3,

the results are presented in four sections using different numbers of strong IVs: 1, 5, 10, and

20. Similar to Table 1, for each section, the first column represents the true simulated values of

γ12 and γ12, the second column reports the F-statistics quantifying the strengths of IVs, and the

subsequent columns represent the measures of performance (median, MAB, and RMAB) for

the four methods. When strong IV was used, and the true γ12 and γ21 had opposite directions,

the BiRatio and BiLIML methods provided more accurate estimations than the ratio and

LIML methods (Table 2 and Fig 3). For example, when γ12 = -1.9 and γ21 = 0.5, the estimated

RMAB for γ12 and γ21 estimation using the ratio and LIML methods were 3% and 8%, respec-

tively, while the estimated RMAB for γ12 and γ21 estimation using the BiRatio and BiLIML

methods were 1% and 4%, respectively. When multiple strong IVs were used, and the true γ12

and γ21 values had opposite signs, the BiRatio and BiLIML methods provided more accurate

estimations compared to the naïve application of the standard ratio and LIML methods

(Fig 3). For example, when 20 strong IVs were used, the estimated MAB and RMAB for the

BiRatio and BiLIML methods were 0 and 0%, respectively, while the MAB and RMAB for the

standard ratio and LIML ranged from 0.04 to 0.07 and 2% to 14%, respectively (Table 2).

Simulation scenario 3: Because the BiRatio and BiLML methods performed identically

when strong IVs were used, to evaluate the performance of these two methods when only weak

IVs are available, we simulated 1000 replicates of the data with 1000 individuals using the

BMR model with weak IVs ranging from 1 to 100 (Table 3 and Fig 4). The expected value of

γ12 and γ21 values were set, ranging from -1.9 to 1.9. In Table 3, we present the results in five

sections using the different numbers of weak IVs: 1, 5, 10, 20, and 100. When multiple weak

IVs were used, BiLIML provided more accurate estimations than the BiRatio method (Table 3

and Fig 4). For example, when 100 weak IVs were used and the directions of γ12 and γ21 are

opposite, the estimated MAB for the BiRatio method ranged from 0.03 to 0.20, while the esti-

mated MAB for the BiLIML method ranged from 0.03 to 0.04. Also, the estimated RMAB for

the BiRatio method ranged from 3% to 30%, while the estimated RMAB for the BiLIML

method ranged from 3% to 8% (Table 3).

Bidirectional causal relationship between BMI and FG: MESA cohort

We applied the four methods (ratio, BiRatio, LIML, BiLIML) to investigate a possible bidirec-

tional causal relationship between BMI and FG using the data from the MESA cohort, which

contains 47871 SNPs and 5764 individuals. We excluded 13 individuals due to missing data

for BMI and FG. We also excluded 300 outlier individuals whose BMI was greater than 45 and

whose FG was greater than 160. To reduce the confounding effects of race/ethnicity on SNPs,

exposures, and outcomes, we separated the 5451 individuals into four racial/ethnic groups:

group 1 with 2235 White/Caucasian individuals, group 2 with 669 Chinese American individ-

uals, group 3 with 1358 African American individuals, and group 4 with 1189 Hispanic indi-

viduals. We excluded 40, 41, 46, and 11 individuals from these four groups, respectively, due to

the close family relationships between individuals (kinship coefficients > 0.1) [42]. Also, SNPs

with minor allele frequency less than 0.05, located within non-autosomes and having linkage

disequilibrium (LD) over 0.1, were removed from each group separately. Thus, the study sam-

ples included 2195 individuals with 31039 SNPs, 628 individuals with 28214 SNPs, 1312

PLOS ONE Estimating bidirectional causal effects using Mendelian randomization

PLOS ONE | https://doi.org/10.1371/journal.pone.0293510 March 8, 2024 10 / 19

https://doi.org/10.1371/journal.pone.0293510


individuals with 36931 SNPs, and 1081 individuals with 32729 SNPs for groups 1, 2, 3, and 4,

respectively.

In each group, we performed genetic association to investigate relationships between BMI

and FG, adjusting for sex, age, and the first 10 principal components (PCs). The top 20 SNPs

Table 2. Simulation scenario 2 with strong instrumental variables (IVs): The bidirectional Mendelian randomization model is used. Parameter estimates are based

on 1000 replicates.

F-stat Ratio BiRatio LIML BiLIML

Median MAB RMAB Median MAB RMAB Median MAB RMAB Median MAB RMAB

Strong IV (1)†

γ12 = −1.9

γ21 = −0.5

3179.44 -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0%

262.58 -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0%

γ12 = −1.9

γ21 = 0.5

1699.74 -1.90 0.05 3% -1.90 0.02 1% -1.90 0.05 3% -1.90 0.02 1%

262.47 0.50 0.04 8% 0.50 0.02 4% 0.50 0.04 8% 0.50 0.02 4%

γ12 = −0.9

γ21 = 0.9

744.14 -0.90 0.04 4% -0.90 0.02 2% -0.90 0.04 4% -0.90 0.02 2%

1169.82 0.90 0.04 4% 0.90 0.01 1% 0.90 0.04 4% 0.90 0.01 1%

γ12 = 0.9

γ21 = −0.9

1168.08 0.90 0.04 4% 0.90 0.02 2% 0.90 0.04 4% 0.90 0.02 2%

746.06 -0.90 0.04 4% -0.90 0.02 2% -0.90 0.04 4% -0.90 0.02 2%

Strong IVs (5)†

γ12 = −1.9

γ21 = −0.5

191.45 -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0%

46.25 -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0%

γ12 = −1.9

γ21 = 0.5

190.21 -1.89 0.04 2% -1.90 0.00 0% -1.90 0.04 2% -1.90 0.00 0%

46.08 0.49 0.04 8% 0.50 0.00 0% 0.50 0.04 8% 0.50 0.00 0%

γ12 = −0.9

γ21 = 0.9

123.57 -0.89 0.04 4% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

126.36 0.90 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

γ12 = 0.9

γ21 = −0.9

126.48 0.90 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

123.19 -0.89 0.04 4% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

Strong IVs (10)†

γ12 = −1.9

γ21 = −0.5

87.98 -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0%

22.85 -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0%

γ12 = −1.9

γ21 = 0.5

87.86 -1.89 0.04 2% -1.90 0.00 0% -1.90 0.04 2% -1.90 0.00 0%

23.32 0.47 0.05 10% 0.50 0.00 0% 0.50 0.04 8% 0.50 0.00 0%

γ12 = −0.9

γ21 = 0.9

59.24 -0.89 0.04 4% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

59.53 0.89 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

γ12 = 0.9

γ21 = −0.9

59.18 0.89 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

59.16 -0.88 0.04 4% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

Strong IVs (20)†

γ12 = −1.9

γ21 = −0.5

42.33 -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0% -1.90 0.00 0%

12.18 -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0% -0.50 0.00 0%

γ12 = −1.9

γ21 = 0.5

42.54 -1.88 0.04 2% -1.90 0.00 0% -1.90 0.04 2% -1.90 0.00 0%

12.18 0.43 0.07 14% 0.50 0.00 0% 0.50 0.04 8% 0.50 0.00 0%

γ12 = −0.9

γ21 = 0.9

29.05 -0.87 0.05 6% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

29.12 0.87 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

γ12 = 0.9 29.46 0.87 0.04 4% 0.90 0.00 0% 0.90 0.04 4% 0.90 0.00 0%

γ21 = −0.9 29.35 -0.86 0.05 6% -0.90 0.00 0% -0.90 0.04 4% -0.90 0.00 0%

BiRatio = bidirectional ratio method; BiLIML = limited information maximum likelihood method; IVs = instrumental variables; LIML = limited information maximum

likelihood method. Median is the median value of estimated causal effect among 1000 replicates. MAB is the median of absolute bias of each estimation among 1000

replicates. RMAB is the relative median of absolute bias of each estimation among 1000 replicates.

†shows the number of instrumental variables used for generating dataset.

https://doi.org/10.1371/journal.pone.0293510.t002
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associated only with BMI and not directly associated with FG given BMI, sex, age, and first 10

PC were selected as IVs for BMI. Similarly, the top 20 SNPs associated only with FG and not

directly associated with BMI were selected as IVs for FG. Analyses of the data using the

BiLIML method showed bidirectional causal relationships between BMI and FG in all four

racial/ethnic groups (Table 4). For example, in group 1, the causal effect estimated by BiLIML

of BMI on FG was 0.7003 (95%CI: 0.3517–1.0489; p = 8.43×10−5), which means that a BMI

increase of 1 kg/m2 can result in an FG increase of 0.7003 mg/dL. In the same group, the causal

effect estimated by BiLIML of FG on BMI was 0.1041 (95% CI: 0.0441–0.1640; p = 6.79×10−4),

which indicates that an FG increase of 1 mg/dL can result in a BMI increase of 0.1041 kg/m2.

Discussion

The Mendelian randomization model is widely used to estimate the causal effects of exposures

on outcomes in observational studies. In general, the MR methods are used for the estimation

of unidirectional causal effects; however, many phenotypes may have bidirectional causal rela-

tionships. Typically, bidirectional causal effects have been estimated using two unidirectional

MR models, one for each causal direction [32,43,44]. However, such an approach ignores the

bidirectional feedback loop between two phenotypes, leading to biased effect estimation.

Therefore, in this manuscript, we proposed two novel approaches to estimate bidirectional

causal effects using MR: BiRatio and BiLIML, extended versions of the standard ratio and

LIML methods, respectively. We compared the performance of the two proposed methods

with the naive application of UMR methods through extensive simulations involving varying

numbers of strong and weak IVs. We used three measures to evaluate the accuracy of the pro-

posed methods: median, MAB, and RMAB. Our simulation results showed that both the pro-

posed BiRatio and BiLIML methods provided accurate estimations of causal effects even when

the true causal relationship was unidirectional. Importantly, when the true causal relationship

was bidirectional and strong IVs were used, both the proposed methods provided accurate

causal effect estimates compared to the naïve application of ratio and LIML methods. The

poor performance of the naïve application of ratio and LIML methods was more pronounced

when the true bidirectional causal effects were in the opposite direction (opposite signs). Fur-

thermore, when weak IVs were used, the BiLIML method performed better than the BiRatio

method. Therefore, we recommend using the BiLIML method as the primary method for bidi-

rectional causal effect estimation.

Fig 3. Median of absolute bias (MAB) of bidirectional causal effect estimations for simulation scenario 2: Simulation

using the bidirectional Mendelian randomization model and strong instrumental variables (IVs). Parameter estimations

are based on 1000 simulation replicates. A: MAB of estimations using one strong IV. B: MAB of estimations using 20 strong

IVs. The color bar shows the range of MAB. BiRatio = bidirectional ratio method; BiLIML = limited information maximum

likelihood method; LIML = limited information maximum likelihood method.

https://doi.org/10.1371/journal.pone.0293510.g003
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Table 3. Simulation scenario 3 with weak instrumental variables: The simulation model is the bidirectional Mendelian randomization model. Parameter estimates

are based on 1000 replicates.

F-stat BiRatio BiLIML

Median MAB RMAB Median MAB RMAB

Weak IV (1)†

γ12 = −1.9

γ21 = −0.5

7.10 -1.90 0.02 1% -1.90 0.02 1%

2.85 -0.51 0.02 4% -0.51 0.02 4%

γ12 = −1.9

γ21 = 0.5

2.19 -1.59 0.71 37% -1.59 0.71 37%

2.70 0.24 0.72 144% 0.24 0.72 144%

γ12 = −0.9

γ21 = 0.9

1.71 -0.54 0.56 62% -0.54 0.56 62%

9.98 0.89 0.72 80% 0.89 0.72 80%

γ12 = 0.9

γ21 = −0.9

10.12 0.91 0.76 84% 0.91 0.76 84%

1.70 -0.53 0.58 64% -0.53 0.58 64%

Weak IVs (5)†

γ12 = −1.9

γ21 = −0.5

7.08 -1.89 0.01 1% -1.90 0.01 1%

2.68 -0.51 0.01 2% -0.50 0.01 2%

γ12 = −1.9

γ21 = 0.5

2.26 -1.35 0.55 29% -1.91 0.36 19%

2.69 0.01 0.51 102% 0.47 0.38 76%

γ12 = −0.9

γ21 = 0.9

1.71 -0.39 0.51 57% -0.85 0.34 38%

8.97 0.88 0.33 37% 0.89 0.36 40%

γ12 = 0.9

γ21 = −0.9

9.44 0.89 0.33 37% 0.93 0.36 40%

1.79 -0.38 0.52 58% -0.90 0.35 39%

Weak IVs (10)†

γ12 = −1.9

γ21 = −0.5

6.70 -1.89 0.01 1% -1.90 0.01 1%

2.71 -0.51 0.01 2% -0.50 0.01 2%

γ12 = −1.9

γ21 = 0.5

2.15 -1.33 0.57 30% -1.89 0.28 15%

2.58 -0.01 0.51 102% 0.53 0.29 58%

γ12 = −0.9

γ21 = 0.9

1.79 -0.36 0.54 60% -0.90 0.25 28%

8.97 0.87 0.23 26% 0.91 0.25 28%

γ12 = 0.9

γ21 = −0.9

8.78 0.86 0.24 27% 0.89 0.25 28%

1.76 -0.37 0.53 59% -0.88 0.24 27%

Weak IVs (20)†

γ12 = −1.9

γ21 = −0.5

6.47 -1.89 0.01 1% -1.90 0.00 0%

2.63 -0.51 0.01 2% -0.50 0.01 2%

γ12 = −1.9

γ21 = 0.5

2.22 -1.32 0.58 31% -1.89 0.20 11%

2.53 -0.04 0.54 108% 0.50 0.20 40%

γ12 = −0.9

γ21 = 0.9

1.68 -0.35 0.55 61% -0.91 0.18 20%

8.06 0.86 0.17 19% 0.89 0.19 21%

γ12 = 0.9

γ21 = −0.9

7.92 0.88 0.16 18% 0.91 0.18 20%

1.58 -0.36 0.54 60% -0.92 0.19 21%

Week IVs (100)†

γ12 = −1.9

γ21 = −0.5

7.60 -1.90 0.00 0% -1.90 0.00 0%

2.67 -0.50 0.00 0% -0.50 0.00 0%

γ12 = −1.9

γ21 = 0.5

4.99 -1.72 0.18 9% -1.90 0.04 2%

2.75 0.35 0.15 30% 0.50 0.04 8%

γ12 = −0.9

γ21 = 0.9

3.39 -0.70 0.20 22% -0.90 0.03 3%

6.31 0.90 0.03 3% 0.90 0.03 3%

(Continued)
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Because of the interdependence of obesity and diabetes, we hypothesized that there is a bidi-

rectional relationship between obesity and diabetes. We applied the proposed methods to

investigate the potential bidirectional relationship using the data from the Multi-Ethnic Study

of Atherosclerosis cohort. We used body mass index (BMI) and fasting glucose (FG) as mea-

sures of obesity and type 2 diabetes, respectively. Because of the underlying biological differ-

ences among White/Caucasian, Chinese Americans, African Americans, and Hispanics, we

performed separate analyses to investigate the causal relationships in these racial/ethnic sub-

populations. The BiLIML method identified novel statistically significant bidirectional causal

effects between BMI and FG in all the subpopulations. However, further studies are needed to

understand the biological and functional mechanisms underlying the identified bidirectional

relationship.

Our proposed BiRatio and BiLIML methods require similar assumptions and are subject to

similar limitations as the standard MR-based ratio and LIML methods for valid causal infer-

ence. Besides the weak instrumental bias, the issue of selecting valid IVs is a common concern

Table 3. (Continued)

F-stat BiRatio BiLIML

Median MAB RMAB Median MAB RMAB

γ12 = 0.9

γ21 = −0.9

5.97 0.89 0.04 4% 0.90 0.03 3%

3.51 -0.70 0.20 22% -0.90 0.03 3%

BiRatio = bidirectional ratio method; BiLIML = limited information maximum likelihood method; IVs = instrumental variables. Median is the median value of

estimated causal effect among 1000 replicates. MAB is the median of absolute bias of each estimation among 1000 replicates. RMAB is the relative median of absolute

bias of each estimation among 1000 replicates.

†shows the number of instrumental variables used for generating dataset.

https://doi.org/10.1371/journal.pone.0293510.t003

Fig 4. Median of absolute bias (MAB) of bidirectional causal effect estimations for simulation scenario 3:

Simulation using the bidirectional Mendelian randomization model and weak instrumental variables (IVs).

Parameter estimations are based on 1000 simulation replicates. A: MAB of estimations using 20 weak IVs. B: MAB of

estimations using 100 weak IVs. The color bar for each figure shows the range of the MAB. BiRatio = bidirectional

ratio method; BiLIML = limited information maximum likelihood method.

https://doi.org/10.1371/journal.pone.0293510.g004
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for MR-based methods because of the possible horizontal pleiotropy of IVs, underlying popu-

lation stratification, and the winner’s curse. In our simulations, we generated the SNPs inde-

pendently and simulated the data following the three assumptions of MR. However, selected

SNPs as IVs may have horizontal pleiotropy in MR studies, where the IVs have an association

with multiple traits independent of exposure [10]. Such associations might lead to a violation

of the MR assumptions due to the existence of causal effects from selected SNPs on confound-

ers or outcomes independent of exposure. Also, when the IVs are selected based on associa-

tions derived from a heterogeneous population, the instrumental variable SNPs may be

erroneously selected due to underlying population stratification instead of their true associa-

tion with the exposure. In addition, when the same sample is used for identifying IVs and

using them for MR studies, the estimated SNP-exposure association may be biased upwards,

an effect known as the “winner’s curse” in the literature [10,17,45]. It is suggested that selecting

genetic variants as IVs based on their biological functions can reduce bias due to population

Table 4. The bidirectional causal effects estimation between body mass index and fasting glucose.

Causal effect of BMI on FG Causal effect of FG on BMI

Race Method Variance of BMI

explained

F-

statistic

Estimation (95%

CI)

P-value Variance of FG

explained

F-

statistic

Estimation (95%

CI)

P-value

White/Caucasian (2195

individuals)

Ratio 10.40% 13.30 0.7327 (0.3419–

1.1236)

2.38*10−4 6.29% 14.00 0.1019 (0.0210–

0.1827)

1.35*10−2

BiRatio 10.40% 13.30 0.6982 (0.3141–

1.0822)

3.66*10−4 6.29% 14.00 0.1036 (0.0261–

0.1810)

8.77*10−3

LIML 10.40% 13.30 0.7385 (0.3842–

1.0927)

4.51*10−5 6.29% 14.00 0.1159 (0.0538–

0.1780)

2.60*10−4

BiLIML 10.40% 13.30 0.7003 (0.3517–

1.0489)

8.43*10−5 6.29% 14.00 0.1041 (0.0441–

0.1640)

6.79*10−4

Chinese American (628

individuals)

Ratio 23.55% 12.48 0.8004 (-0.1558–

1.7565)

1.01*10−1 24.94% 12.29 0.0669 (0.0188–

0.1150)

6.45*10−3

BiRatio 23.55% 12.48 1.0045 (0.0522–

1.9567)

3.87*10−2 24.94% 12.29 0.0742 (0.0263–

0.1222)

2.41*10−3

LIML 23.55% 12.48 0.9257 (0.1456–

1.7058)

2.01*10−2 24.94% 12.29 0.0675 (0.0301–

0.1049)

4.24*10−4

BiLIML 23.55% 12.48 0.9344 (0.2016–

1.6671)

1.26*10−2 24.94% 12.29 0.0746 (0.0384–

0.1109)

6.08*10−6

Black/African American

(1312 individuals)

Ratio 15.00% 13.38 0.6913 (0.1680–

1.2146)

9.62*10−3 15.50% 13.45 0.0394 (-0.0196–

0.0984)

1.90*10−1

BiRatio 15.00% 13.38 0.8823 (0.3648–

1.3999)

8.34*10−4 15.50% 13.45 0.0482 (-0.0077–

0.1041)

9.09*10−2

LIML 15.00% 13.38 0.8519 (0.3991–

1.3046)

2.33*10−4 15.50% 13.45 0.0374 (-0.0136–

0.0883)

1.50*10−1

BiLIML 15.00% 13.38 1.0063 (0.5451–

1.4675)

2.03*10−5 15.50% 13.45 0.0494 (0.0015–

0.0973)

4.32*10−2

Hispanic

(1081 individuals)

Ratio 17.24% 14.97 0.7796 (0.0321–

1.5271)

4.09*10−2 12.21% 13.21 0.0992 (0.0386–

0.1599)

1.33*10−3

BiRatio 17.24% 14.97 0.5772 (-0.1413–

1.2956)

1.15*10−1 12.21% 13.21 0.0605 (0.0001–

0.1209)

4.98*10−2

LIML 17.24% 14.97 0.8433 (0.3110–

1.3756)

1.93*10−3 12.21% 13.21 0.0966 (0.0454–

0.1479)

2.28*10−4

BiLIML 17.24% 14.97 0.7094 (0.2014–

1.2174)

6.24*10−3 12.21% 13.21 0.0730 (0.0226–

0.1233)

4.56*10−3

BiRatio = bidirectional ratio method; BiLIML = limited information maximum likelihood method; BMI = body mass index; FG = fasting glucose; LIML = limited

information maximum likelihood method.

https://doi.org/10.1371/journal.pone.0293510.t004
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stratification and the winner’s curse [10,19]. Most importantly, for MR-based methods, sensi-

tivity analyses are essential [19].

Furthermore, our proposed methods are valid for continuous outcomes and one-sample

datasets. Further research in bidirectional causal estimation using binary outcomes, summary

statistics, and two-sample datasets is needed. Also, our model was designed to provide causal

inference using cross-sectional data. Therefore, further extensions when the exposure or out-

come variables are time-varying are of importance for future research.

In summary, we proposed two methods for bidirectional causal effect estimation that were

shown to be accurate when the underlying model is unidirectional or bidirectional. Further-

more, applying the proposed methods to the MESA data provided preliminary evidence for

the bidirectional causal effects between BMI and FG.

Supporting information

S1 Fig. Bidirectional Mendelian randomization model with transitional steps in the feed-

back loop. X1 denotes the instrumental variables (IVs) for Y1 and X2 denotes the IVs for Y2.

The ε1.1, ε1.2, . . ., ε2.1, ε2.2,. . . are errors due to unobserved confounders at each transitional

step. Of note, these transitional steps are not observed and only Y1 and Y2 are measured. The

δ1 and δ2 are errors associated with Y1 and Y2, respectively, which includes both errors due to

unobserved confounders as well as measurement errors.

(TIF)

S1 Appendix. Derivation for bidirectional Mendelian randomization model.

(PDF)
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37. Nielsen MB, Çolak Y, Benn M, Nordestgaard BG. Causal relationship between plasma adiponectin and

body mass index: one- and two-sample bidirectional mendelian randomization analyses in 460 397 indi-

viduals. Clin Chem. 2020; 66: 1548–1557. https://doi.org/10.1093/clinchem/hvaa227 PMID: 33106853

38. Wei Y, Sun L, Liu C, Li L. Causal association between iron deficiency anemia and chronic obstructive

pulmonary disease: A bidirectional two-sample Mendelian randomization study. Heart Lung. 2023; 58:

217–222. https://doi.org/10.1016/j.hrtlng.2023.01.003 PMID: 36623443

39. Russell Davidson, MacKinnon JG. Capter 18: Simultaneous equation models. Estimation and inference

in econometrics. Oxford University Press; 1993.

40. Yavorska OO, Burgess S. MendelianRandomization: an R package for performing Mendelian randomi-

zation analyses using summarized data. Int J Epidemiol. 2017; 46: 1734–1739. https://doi.org/10.1093/

ije/dyx034 PMID: 28398548

41. Kang H, Jiang Y, Zhao Q, Small DS. ivmodel: An R package for inference and sensitivity analysis of

instrumental variables models with one endogenous variable. Obs Stud. 2021; 7: 1–24.

42. Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in

genome-wide association studies. Bioinformatics. 2010; 26: 2867–2873. https://doi.org/10.1093/

bioinformatics/btq559 PMID: 20926424

PLOS ONE Estimating bidirectional causal effects using Mendelian randomization

PLOS ONE | https://doi.org/10.1371/journal.pone.0293510 March 8, 2024 18 / 19

https://doi.org/10.1002/sim.6358
http://www.ncbi.nlm.nih.gov/pubmed/25382280
https://doi.org/10.2307/2171753
https://doi.org/10.1093/ije/dyq151
https://doi.org/10.1093/ije/dyq151
http://www.ncbi.nlm.nih.gov/pubmed/20813862
https://doi.org/10.1002/gepi.21998
http://www.ncbi.nlm.nih.gov/pubmed/27625185
https://doi.org/10.1093/ije/dyr036
https://doi.org/10.1093/ije/dyr036
http://www.ncbi.nlm.nih.gov/pubmed/21414999
https://doi.org/10.1198/073500108000000024
https://doi.org/10.1111/j.1742-1241.2007.01336.x
http://www.ncbi.nlm.nih.gov/pubmed/17493087
https://doi.org/10.3389/fnins.2020.00894
http://www.ncbi.nlm.nih.gov/pubmed/32982677
https://doi.org/10.1002/smi.1319
http://www.ncbi.nlm.nih.gov/pubmed/21359108
https://doi.org/10.1136/thoraxjnl-2019-213678
http://www.ncbi.nlm.nih.gov/pubmed/31611343
https://doi.org/10.1038/ijo.2010.137
http://www.ncbi.nlm.nih.gov/pubmed/20714329
https://doi.org/10.1038/s41467-021-26970-w
https://doi.org/10.1038/s41467-021-26970-w
http://www.ncbi.nlm.nih.gov/pubmed/34907193
https://doi.org/10.1111/ahg.12261
https://doi.org/10.1111/ahg.12261
http://www.ncbi.nlm.nih.gov/pubmed/29993118
https://doi.org/10.1016/S0140-6736%2809%2961457-4
https://doi.org/10.1016/S0140-6736%2809%2961457-4
http://www.ncbi.nlm.nih.gov/pubmed/19878986
https://doi.org/10.1016/j.metabol.2019.153961
http://www.ncbi.nlm.nih.gov/pubmed/31422054
https://doi.org/10.1093/clinchem/hvaa227
http://www.ncbi.nlm.nih.gov/pubmed/33106853
https://doi.org/10.1016/j.hrtlng.2023.01.003
http://www.ncbi.nlm.nih.gov/pubmed/36623443
https://doi.org/10.1093/ije/dyx034
https://doi.org/10.1093/ije/dyx034
http://www.ncbi.nlm.nih.gov/pubmed/28398548
https://doi.org/10.1093/bioinformatics/btq559
https://doi.org/10.1093/bioinformatics/btq559
http://www.ncbi.nlm.nih.gov/pubmed/20926424
https://doi.org/10.1371/journal.pone.0293510


43. Wootton RE, Lawn RB, Millard LAC, Davies NM, Taylor AE, MunafòMR, et al. Evaluation of the causal

effects between subjective wellbeing and cardiometabolic health: Mendelian randomisation study. Br

Med J. 2018; 362: k3788. https://doi.org/10.1136/bmj.k3788 PMID: 30254091

44. Welsh P, Polisecki E, Robertson M, Jahn S, Buckley BM, De Craen AJM, et al. Unraveling the direc-

tional link between adiposity and inflammation: a bidirectional mendelian randomization approach. Jour-

nal of Clinical Endocrinology and Metabolism. 2010; 95: 93–99. https://doi.org/10.1210/jc.2009-1064

PMID: 19906786
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