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G E N E T I C S

ERG and c-MYC regulate a critical gene network in 
BCR::ABL1-driven B cell acute lymphoblastic leukemia
Kira Behrens1,2, Natalie Brajanovski3, Zhen Xu1,2, Elizabeth M. Viney1, Ladina DiRago4,  
Soroor Hediyeh-Zadeh2,5, Melissa J. Davis2,5,6,7,8, Richard B. Pearson3,9,10,11,  
Elaine Sanij3,9,10,11,12,13, Warren S. Alexander1,2, Ashley P. Ng2,4*

Philadelphia chromosome–positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 
fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling 
identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC 
required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC–dependent gene expression 
and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that 
controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, 
including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of 
BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription 
initiation by POL I. Our results reveal an essential ERG- and c-MYC–dependent transcriptional network involved in 
regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified 
vulnerabilities and therapeutic targets may emerge.

INTRODUCTION
Acute lymphoblastic leukemia (ALL) is a highly aggressive cancer. 
Numerous genetic subtypes of ALL have been identified, including 
Philadelphia chromosome–positive B cell ALL (Ph+B-ALL) that 
comprises ~25 to 30% of all adult ALL. Ph+B-ALL is characterized by 
the t(9;22) chromosomal translocation that generates the BCR::ABL1 
fusion gene resulting in abnormal tyrosine kinase signaling in B lym-
phoid progenitors that drives leukemia development. Ph+B-ALL 
remains a poor-prognosis cancer (1–3) despite the improved outcomes 
achieved by targeting the driver BCR::ABL1 fusion protein with 
tyrosine kinase inhibitors (TKIs) (4). More than 50 to 60% of patients 
relapse (5–7), including those receiving newer immunotherapeutic 
approaches. A better understanding of disease pathogenesis would 
assist rational development of new targeted therapeutic approaches.

While additional genomic lesions in BCR::ABL1 B-ALL have 
been identified, these are largely loss-of-function alleles, including 
the B cell transcription factor genes IKZF1 (IKAROS), PAX5, and 
EBF1, that are clinically associated with poorer disease outcomes 
(8–11). Loss of these factors in preclinical models has been associated 
with accelerated leukemia expansion that is proposed to occur via 
loss of their metabolic gatekeeper function (12), suggesting that these 
genes and members of their gene regulatory networks are unlikely 

to represent viable molecular candidates as direct therapeutic tar-
geting of loss-of-function alterations is problematic.

We sought to specifically identify gain of function and thus poten-
tially targetable alterations that contribute to Ph+B-ALL pathogenesis, 
including those that may not be identified through diagnostic genomic 
assays. To do this, we used a murine model of BCR::ABL1 B-ALL to 
identify transcription factors and gene regulatory networks required 
for leukemia initiation and progression. Transcriptional profiling 
revealed up-regulation of ERG and c-MYC in murine and human 
BCR::ABL1 B-ALL, and, in murine and human models, ERG and 
c-MYC were required for BCR::ABL1 B-ALL. Profiling of ERG- and 
c-MYC–dependent gene expression and analysis of chromatin immu-
noprecipitation sequencing (ChIP-seq) data established that ERG 
and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL 
directly controlling expression of genes enriched for involvement in 
several cellular processes. Prominent was control of ribosome bio-
genesis, including direct regulation of RNA polymerase I (POL I) 
subunits, the role of which was validated by inhibition of BCR::ABL1 
cells and other genomic subtypes by POL I inhibitors.

RESULTS
ERG, c-MYC, and downstream gene targets are highly 
expressed in Ph+B-ALL
We initially determined the transcriptional changes associated 
with leukemic transformation in BCR::ABL1 B-ALL in the P190 
transgenic mouse model that expresses a human BCR::ABL1 trans-
gene under the control of the metallothionein promoter (13). This 
transgenic mouse develops a highly penetrant acute pre-B cell 
(precursor B cell) lymphoblastic leukemia that closely phenocopies 
human disease. The murine model is characterized by expansion of 
pre-B cells in the bone marrow, typically between 5 and 8 weeks of 
age, and a B-lineage differentiation block resulting in a deficiency 
of maturing immunoglobulin M (IgM)+IgD+ B cells (Fig. 1A).

Pre-B cells from leukemia-bearing P190 mice were isolated, and 
genome-wide gene expression profiling was undertaken by bulk 
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RNA sequencing (RNA-seq) comparing leukemic cells to control 
(non-transformed) C57BL/6 pre-B cells. This analysis identified sig-
nificant transcriptional deregulation of 9258 genes in P190 pre-B 
leukemic cells (4720 up and 4538 down; table  S1). This included 
down-regulation of genes implicated in B-lineage differentiation, 
such as Ikzf1 (14, 15), Ikzf3 (Aiolos) (16), Pax5 (17, 18), Tcf3(E2A) 
(19, 20), and Irf4 and Irf8 (21) (fig. S1A) that may contribute to the 
differentiation block observed in P190 leukemic mice. Of note, loss-
of-function alleles of several of these down-regulated genes have 
been identified in human ALL validating the use of this model (8, 9).

Comparison of transcriptional changes in murine P190 leukemic 
pre-B cells to publicly available gene expression data from human 
BCR::ABL1 B-ALL (GSE5314) (22) revealed significant correlation 
with transcriptional changes in human B-ALL (Fig. 1, B and C).

Examination of transcription factors from the Kyoto Encyclopedia 
of Genes and Genomes deregulated in cancer gene set (ko05202) 
identified up-regulation of several oncogenic transcription factors 
involved in B cell differentiation, including the E26 Transformation-
Specific (ETS) family transcription factor ERG (23), the β helix–
loop–helix transcription factor c-​MYC (24) and its cooperative 
transcriptional partner MAX (25) in both murine and human 
BCR::ABL1 B-ALL (Fig. 1C). Increased protein levels of ERG and 
MYC were observed in P190 B-ALL cell lines compared to control 
pre-B cells (Fig. 1D).

Consistent with regulation by ERG and c-MYC of gene networks 
required for BCR::ABL1 B-ALL leukemogenesis, significant enrich-
ment for the ETS, c-MYC, and MAX binding motifs was found in 
genes up-regulated in murine and human BCR::ABL1 B-ALL (Fig. 1E). 
Gene Ontology (GO) analysis of up-regulated genes in murine and 
human BCR::ABL1 B-ALL showed that the most significantly enriched 
gene sets were associated with ribosome biogenesis, as well as processes 
such as amide biosynthesis and nucleotide, tRNA, and amino acid 
metabolism (Fig. 1F and table S1). Up-regulation of ribosome bio-
genesis in BCR::ABL1 leukemia was confirmed by significantly 
increased transcription of the POL I–dependent 47S/45S precursor 
ribosomal RNA (rRNA) internal transcribed spacer in P190 leukemia 
cells compared to wild-type pre-B cells (fig. S1B).

ERG and c-MYC are critical for Ph+B-ALL development
To explore the functional significance of ERG and c-MYC in Ph+B-
ALL, we first examined whether co-occurrence of BCR::ABL1 and 
ABL1 class fusions occurred with genomic variants of ERG and c-MYC 
in a cohort of human ALL (St. Jude, PeCan, accessed 21 January 2022) 
(26). While loss-of-function variants and copy number loss of ERG 
and, to a smaller extent, c-MYC were identified in this cohort of B-ALL, 
these did not co-occur with BCR::ABL1 or ABL1 class fusions 
(fig. S1C). Examination of CRISPR-Cas9–based gene dependency 
screening by the Cancer Dependency Map initiative (27) demonstrated 
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that, while gene dependency for ERG and c-​MYC could be variably 
identified for several genomic subtypes in B-ALL cell lines, no 
BCR::ABL1 class cell lines had been assessed (fig. S1D).

To directly address the requirement for ERG and c-MYC in 
BCR::ABL1 B-ALL, we generated P190 mice in which the Erg or c-
Myc genes were deleted from the Common lymphoid progenitor 
(CLP) stage of lymphopoiesis using a Rag1-Cre conditional knock-
out approach (28). Deletion of a single allele of Erg (P190T/+;Rag1
CreT/+;Erg∆/+) was sufficient to prevent the development of P190 B-
ALL in this model. Deletion of one c-Myc allele (P190T/+;Rag1CreT/+; 
c-MycΔ/+) also significantly delayed leukemia development, and this 
delay was more pronounced in the absence of both c-Myc alleles 
(P190T/+;Rag1CreT/+;c-MycΔ/Δ) (Fig. 2A). At 5 weeks of age, pre-B 
cell numbers in P190 bone marrow were similar to wild-type mice, 
whereas, at 8 weeks of age, before overt symptoms of P190 disease, a 
significant proportion of P190 mice had developed an abnormal 
accumulation of pre-B cells (fig.  S1E). In contrast, in P190 mice 
lacking one copy of Erg or c-Myc, no expansion of pre-B cells was 
seen, with pre-B cell numbers in 8-week-old P190T/+;Rag1CreT/+;ErgΔ/+ 
and P190T/+;Rag1CreT/+;c-MycΔ/+ mice comparable to those seen in 
C57BL/6 controls (Fig. 2B). To determine the impact of loss of Erg or 
c-Myc alleles on clonal expansion during BCR::ABL1 leukemogenesis, 
immunoglobulin heavy-chain (Igh) gene clonotyping analysis was 
performed on bulk RNA-seq data obtained from primary pre-B 
cells. In P190 mice, leukaemogenesis was associated with dominant 
clones arising at 5 and 8 weeks of age, with one clone often becoming 
dominant in mice developing overt leukemia (Fig. 2C). In contrast, 
quantitative analysis of the 10 most frequent Igh clones revealed no 
significant dominant clonal expansion in P190 T/+;Rag1CreT/+;ErgΔ/+ 
mice at 8 weeks of age. Similarly, dominant clonal expansion was not 
observed in P190T/+;Rag1CreT/+;c-MycΔ/+ mice. Together, these data 

demonstrate high expression of ERG and c-MYC in BCR::ABL1 B-ALL 
compared to non-transformed pre-B cells and that these transcription 
factors are necessary for pre-B cell clonal expansion and subsequent 
leukemia development.

ERG and c-MYC contribute to BCR::ABL1 B-ALL maintenance
We next assessed the role of ERG and c-MYC in sustaining estab-
lished BCR::ABL1 leukemia. We derived multiple independent 
cell lines from leukemic P190 mice carrying either floxed Erg 
(Ergfl/fl) or c-Myc (c-Mycfl/fl) alleles in addition to the CreERT2 
transgene (29) to allow 4-hydroxy-tamoxifen (4-OHT)–dependent 
deletion of the floxed alleles (Fig. 3A, top). Upon 4-OHT treatment, 
reduced expression of ERG or c-​MYC was observed in the respective 
cell lines, in which Erg or c-Myc was conditionally deleted (Fig. 3B). 
Dose-responsive inhibition of these ERG and c-MYC–deficient leu-
kemic cell lines was observed, an effect not seen in in P190T/+;CreERT/+ 
control leukemia cells (Fig. 3C).

We next investigated the requirement for ERG and c-MYC 
in BCR::ABL1 leukemia maintenance in vivo. Individual P190T/+; 
CreERT/+;Ergfl/fl and P190T/+;CreERT/+;c-Mycfl/fl leukemia cell lines 
were pretreated with either 4-OHT (pre4-OHT) resulting in signifi-
cant loss of Erg or c-Myc expression (Fig. 3D) or vehicle control and 
then transplanted into irradiation-conditioned recipients. Mice that 
received vehicle-treated cells were then either given tamoxifen (TAM) 
at day 8 or left untreated (control group) (Fig. 3A, bottom). In recipients 
of cells that are ERG- or MYC-deficient, by either 4-OHT pretreatment 
or in vivo TAM administration, the time to ethical endpoint due to 
leukemia was prolonged relative to control mice (Fig. 3E). Splenomegaly 
was observed to be significantly reduced in cohorts that received 
c-MYC–deficient cells (Fig. 3F), while the proportion of donor cells in 
bone marrow was observed to be consistently high in all groups 
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(Fig. 3G). Notably, leukemia that developed in mice transplanted with 
P190T/+;CreERT/+;Ergfl/fl and P190T/+;CreERT/+;c-Mycfl/fl cell lines following 
4-OHT treatment or TAM treatment in vivo demonstrated incomplete 
and variable reduction in ERG or c-MYC expression in the diseased 
bone marrow cells (fig. S2A), suggesting in vivo expansion of leukemia 
cells that had escaped efficient Cre-mediated gene recombination 
had occurred.

To confirm and extend our observations to human BCR::ABL1 
B-ALL cells, guide RNAs directed against human ERG or c-​MYC 
were expressed via a doxycycline (Dox)–inducible lentiviral vector 
co-expressing green fluorescent protein, resulting in reduced ERG 
or c-MYC protein levels in respective Cas9-expressing human 
BV173 cells (Fig. 4A). Reduction of ERG or c-MYC expression by 
two independent guide RNAs for each gene resulted in a distinct 
competitive proliferative disadvantage in BV173 cells compared to 
empty vector controls (Fig. 4B). Similar results were obtained in a 
second BCR::ABL1 B-ALL human cell line, SupB15 (fig. S2, B and 
C). Last, reduction of ERG or c-MYC either before transplantation 
(preDox) or treatment with Dox in vivo resulted in delayed BV173 
tumor growth in transplanted mice compared to untreated controls 
or mice transplanted with empty vector expressing BV173 cells 
(control) (Fig. 4C).

In addition to BCR::ABL1 B-ALL, prominent ERG and c-MYC 
expression is also found in other B-ALL subtypes (fig. S3A) and pre-
B-ALL human cell lines, including Nalm6 and RS4:11 (fig.  S3B), 
where binding of ERG and c-MYC to the POLR1B promoter can be 
observed (fig. S3C). As observed in BCR::ABL1 B-ALL cell lines, genetic 
reduction of ERG or c-MYC expression in Nalm6 and RS4:11 cells 
resulted in a competitive proliferative disadvantage compared to 
empty vector controls (fig. S3, D to G).

Identification of a gene network regulated by ERG and 
c-MYC in BCR::ABL1 B-ALL
To define the gene networks regulated by ERG and c-MYC that 
facilitate leukaemogenesis, we first examined the gene expression 
changes upon deletion of either Erg or c-Myc in established P190T/+; 
CreERT2T/+;Ergfl/fl and P190T/+;CreERT2T/+;c-Mycfl/fl cell lines (table S2). 
Notably, there was overlap of differentially expressed genes upon Erg 
or c-Myc deletion in genetically independent cell lines. Of particular 
interest were genes down-regulated with both Erg or c-Myc deletion 
(Fig.  5A), as these genes may form part of a transcriptional gene 
network regulated by ERG and c-MYC, mediating the functional 
roles for these transcription factors in BCR::ABL1 B-ALL during 
leukaemogenesis and in leukemia maintenance.
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(250 ng/ml) for 96 hours. Actin loading control. (C) Cell titer glow assay of three independent P190T/+;CreERT/+;Ergfl/fl (red) and P190T/+;CreERT/+;c-Mycfl/fl (blue) cell lines 
compared to P190T/+;CreERT/+ (gray) control lines treated with the indicated concentrations of 4-OHT. Shown are the means of three independent experiments performed 
in triplicates. (D) Western blot analysis of Erg (left) or c-Myc (right) in samples of 4-OHT–pretreated or vehicle-treated P190T/+;CreERT/+;Ergfl/fl or P190T/+;CreERT/+;c-Mycfl/fl 
cells analyzed immediately before transplantation (day 0). Actin serves as loading control. (E) Kaplan-Meier curves of mice transplanted with untreated cells [solid line, 
n = 9 (red) and n = 7 (blue)], 4-OHT–pretreated cells [dashed line, n = 7 (red) and n = 7 (blue)] and in vivo TAM-treated mice [dotted line, n = 5 (red) and n = 6 (blue)]. Both 
P190 T/+;CreERT/+;Ergfl/fl (red) and P190T/+;CreER T/+;c-Myc fl/fl (blue) cells were assessed. Data from two independent experiments. P values were calculated by Gehan-
Breslow-Wilcoxon test. *P ≤ 0.05; ***P ≤ 0.001. (F) Spleen weights and (G) percentage donor-derived bone marrow cells as measured by CD45.2 expression from leukemic 
mice [see (E)]. Each dot represents a mouse (n = 4 to 9). Error bars represent SD. P values were calculated by Dunnett’s multiple comparisons corrected one-way ANOVA. 
****P ≤ 0.0001. Ctr, control.
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To define genes directly bound and transcriptionally regulated 
by ERG and c-MYC, publicly available pro-B cell ChIP-seq datasets 
for ERG (GSM3895108) and c-MYC (GSM1234475) were examined. 
An initial genome-wide motif analysis of the ERG ChIP-seq dataset 
identified enriched representation of the ERG motif at ERG binding 
sites as expected (Fig. 5B). In addition, enrichment of the β helix–
loop–helix binding motif recognized by c-MYC (30) and the YY1 
cohesin motif were also identified within 50 base pairs (bp) of ERG 
binding sites. For the complimentary analysis for c-MYC binding, 
the most highly enriched motifs within 50 bp of c-MYC–bound loci 
were not only motifs for the c-MYC binding partner MAX (31) as 
well as c-MYC, as expected, but also the ERG motif. We next focused 
on analysis of genome wide ERG and c-MYC binding to regions 
within 5 kb of a transcriptional start site (TSS). This analysis demon-
strated overlap of ERG and c-MYC binding to a subset of genomic 
loci (Fig. 5C) and suggested that c-MYC and ERG co-localization at 
specific genomic loci may result in co-regulation of specific genes as 
part of a transcriptional network. Notably, no direct interaction 
between ERG and c-MYC was identified by co-immunoprecipitation 
(fig. S4A).

To explore this hypothesis further in BCR::ABL1 B-ALL, differen-
tially expressed genes that were found to be down-regulated upon 
both Erg and c-Myc deletion (Fig. 5A) were compared to genomic 
loci bound by ERG and c-MYC to define target genes of the transcrip-
tional network directly co-regulated by c-MYC and ERG (table S3). 
GO analysis was then undertaken to define the biological functions 
of these genes. This identified that the network was significantly 

enriched for genes involved in ribosome biogenesis as well as for 
genes involved in several metabolic processes (Fig. 5D). These findings 
were congruent with the GO analysis of up-regulated genes in 
human and murine BCR::ABL1 B-ALL (Fig. 1F), thereby establishing 
the key roles for c-MYC and ERG in regulating these leukemia-
associated changes. These data also identified direct regulation by 
ERG and c-MYC of genes involved in ribosome biogenesis such as 
the nucleolar proteins nucleophosmin (Npm1) (32) and fibrillarin 
(Fbl) (33) and subunits of the POL I complex (Polr1b and Polr1c) 
responsible for transcribing rRNA genes within the nucleoli (34) 
(Fig. 5E and table S3). This was in contrast to examples of genes 
specifically regulated by ERG or c-MYC (fig. S4B).

As molecular validation of this analysis, we targeted POL I to 
disrupt ribosome biogenesis in BCR::ABL1 B-ALL using the first-
in-class small-molecule inhibitor of POL I transcription, CX-5461 
(Pidnarulex). POL I transcription occurs in the nucleoli and produces 
the precursor rRNA (pre-rRNA) containing the sequences of the 
18S, 5.8S, and 28S mature rRNA components of the ribosome (35, 
36). We confirmed on-target CX-5461–mediated inhibition of POL I 
transcription by measuring 47S/45S pre-rRNA levels in BCR::ABL1 
B-ALL cell lines (Fig. 6A). As inhibition of POL I transcription results 
in nucleolar disruption and the induction of nucleolar stress response, 
we assessed the effect of CX-5461 on nucleolar integrity using immu-
nofluorescence staining for the nucleolar protein fibrillarin (FBL), a 
small nucleolar ribonucleoprotein that directs the methylation and 
processing of pre-rRNAs (37–39). In murine and human BCR::ABL1 
B-ALL cell lines, CX-5461 treatment resulted in reduced FBL staining 
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Fig. 5. An Erg and c-Myc co-regulated transcriptional network in BCR::ABL1 B-ALL. (A) Venn diagram of transcriptional changes due to deletion of Erg (P190T/+;CreE
RT/+;ErgΔ/Δ versus P190T/+;CreERT/+;Ergfl/fl) or c-Myc (P190T/+;CreERT/+;c-MycΔ/Δ versus P190T/+;CreERT/+;c-Mycfl/fl) in two independent cell lines per genotype, showing overlap 
of genes regulated by Erg and/or c-Myc (see also table S2). (B) Hypergeometric Optimization of Motif EnRichment (HOMER) transcription factor motif analysis of 
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that was localized in smaller punctate nucleolar domains as well as 
diffusely in the nucleoplasm, indicating significant nucleolar disrup-
tion (fig. S5, A and B). Consistent with the established action of CX-
5461 in activating the nucleolar stress response (39, 40), CX-5461 
treatment was associated with up-regulation of the tumor suppressor 
TP53 (fig. S5C). CX-5461 treatment of murine and human BCR::ABL1 
leukemia cells caused dose-dependent growth inhibition at nanomolar 
drug concentrations (Fig. 6B), which has previously been shown to 
be due to induction of apoptosis in TP53 replete leukemia cells (37). 
Sensitivity to inhibition of POL I transcription was confirmed with 
two other POL I inhibitors, actinomycin D (41) and BMH-21 (42) 
(Fig. 6C). CX-5461 also demonstrated activity across other B-ALL 
genomic subtypes with dose-dependent growth inhibition of the 
DUX4::IGH (Nalm6) and KMT2A::AF4 (RS4:11) B-ALL cell lines 
(fig.  S5D), an observation that could also be extended with other 
POL I inhibitors (Fig. 6C).

DISCUSSION
Ph+B-ALL remains a poor-prognosis genetic subtype of leukemia. 
The defining t(9;22) translocation generates the oncogenic BCR::ABL1 

fusion protein that is the molecular driver of this leukemia and the 
primary target for small-molecule kinase inhibitors. However, 
despite the advent of TKI therapy combined with conventional 
intensive chemotherapy (4), leukemia relapse often occurs from 
preexisting clones carrying mutations in the tyrosine-kinase domain 
of the BCR::ABL1 fusion gene (43) that render targeted kinase inhi-
bition ineffective. There is a need to develop more effective thera-
peutic strategies to treat this disease, including identification of 
molecular targets other than BCR::ABL1 that can bypass resistance 
to TKI inhibitors and other potential mechanisms of chemotherapy 
resistance.

Transcriptional profiling of human and murine BCR::ABL1 B-ALL 
identified members of two sequence-specific transcription factor 
families whose expression was high in Ph+B-ALL: ERG, a member 
of the ETS family, and the β helix–loop–helix family member c-MYC 
and its heterologous binding partner MAX (44). Notably, both 
ERG and c-MYC have also been shown to have critical roles in B cell 
development (23, 24). Our data demonstrate that ERG and c-MYC 
are required in BCR::ABL1 B-ALL initiation and leukemia cell 
expansion: Genetic deletion of Erg or c-Myc in the murine P190 
transgenic model prevented or delayed disease onset. Moreover, in 
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murine and human BCR::ABL1 B-ALL cell lines, reduction of 
ERG or c-MYC levels constrained leukemia cell expansion and 
delayed leukemia development in transplanted mice. Examination 
of publicly available gene expression data suggests that ERG and 
c-MYC are co-expressed in other B-ALL subtypes in addition to 
BCR::ABL1 B-ALL. Our observation that genetic reduction of 
ERG or c-MYC resulted in proliferative disadvantage in two other 
pre-B-ALL genomic subtypes provides preliminary evidence that our 
observations may extend more broadly to other forms of B-ALL, an 
observation that was also noted with variable gene dependency 
for ERG and c-​MYC in B-ALL cell lines of different genomic subtypes 
in the Cancer Dependency Map initiative (27).

Genome-wide analysis of ERG- and c-MYC–dependent tran-
scriptional changes in human and mouse BCR::ABL1 B-ALL cell 
lines, combined with analysis of ChIP-seq datasets, defined a 
cooperative ERG- and c-MYC–dependent transcriptional network 
that included direct binding and transcriptional regulation of 
genes involved in metabolic pathways and ribosome biogenesis. 
Enrichment of genes involved in ribosome biogenesis, including 
components of the POL 1 transcription complex, allowed a mo-
lecular validation of the network via inhibition of POL 1 transcrip-
tion using CX-5461, actinomycin D, and BHM-21, each of which 
caused dose-dependent growth inhibition of BCR::ABL1 B-ALL 
cell lines at nanomolar drug concentrations. CX-5461 has previously 
been shown to selectively induce apoptosis in c-MYC driven leukemia 
cells (37). While an oncogenic role for c-MYC has been proposed 
via transcriptional amplification (45, 46), prior evidence for c-MYC 
as a master regulator of ribosome biogenesis (47, 48) and the 
observation that c-MYC–driven cancers are associated with hyper-
activated POL I transcription (35, 36) are particularly supported 
by our data, which now extends a similar role for c-MYC to BCR::ABL1 
B-ALL. While, in hematological disease, ERG has established 
oncogenic roles in myeloid malignancy (49–53) and T cell ALL (54, 
55), our finding of its cooperative role with c-MYC was unexpected 
and provides an important insight into the contribution of these 
two transcription factors in the biology of BCR::ABL1 B-ALL. The 
transcriptional regulation by ERG and c-MYC of genes involved 
with metabolic pathways and ribosome biogenesis (56) may have 
broader implications for other malignancies, in which ERG is de-
regulated.

In summary, we have established essential roles for c-MYC and 
ERG in BCR::ABL1-driven B-ALL and defined an ERG- and 
c-MYC–dependent transcriptional network involved in regulation 
of metabolic processes and ribosome biogenesis in this disease. 
Together, our results validate an approach for defining essential 
transcriptional regulatory networks to elucidate important bio-
logical pathways in oncogenesis, among which previously uniden-
tified vulnerabilities and therapeutic targets may emerge.

MATERIALS AND METHODS
Mice
Unless otherwise described, mice were generated on a C57BL/6 
background. Mice with a conditional Erg knockout allele (Ergfl) were 
generated as previously described (23). Mice carrying a conditional 
c-​Myc knockout allele (24) (Mycfl) were obtained from the Jackson 
Laboratory (Myctm2Fwa). These mice were interbred with either 
Rag1Cre mice (28), in which Cre recombinase is expressed during 
lymphopoiesis from the CLP stage (57) or CreERT2 mice (29), in 

which the expression of the Cre recombinase can be initiated by 
TAM treatment to generate Rag1CreT/+;Ergfl/fl, Rag1CreT/+;Mycfl/fl, 
CreERT2T/+;Ergfl/fl, CreERT2T/+;Mycfl/fl, and wild-type control litter-
mates. Subsequently these were crossed to P190 transgenic mice (13). 
Mice were co-housed in a barrier facility and analyzed from 6 to 
18 weeks of age. Male and female mice were used. The primers used 
for genotyping are provided in table S4. NOD.Cg-​PrkdcscidIL2rgtm1Wjl/
Szj (NSG) female mice were obtained from the Jackson Laboratory 
and co-housed in individually ventilated cages in a specific pathogen–
free facility. Experimental procedures were approved by The Walter 
and Eliza Hall Institute of Medical Research Animal Ethics Committee.

Cell culture and viral transduction
Human BV173 cells were maintained in RPMI 1640 supplemented 
with 10% fetal calf serum (FCS; Gibco, Invitrogen). SupB15 cells 
were cultured in Iscove's modified Dulbecco's medium (IMDM) 
supplemented with 20% FCS. Murine P190 leukemia cell lines 
were generated as described previously (23) and maintained in 
IMDM supplemented with 10% FCS, 50 μM β-mercaptoethanol, 
and murine interleukin-7 (10 ng/ml). Lentiviral transduction of 
human cell lines with VSVg-pseudotyped viruses to enable expres-
sion of Cas9- or gene-specific single-guide RNAs (table  S4) was 
performed as described (58).

In vitro cell assays
To measure adenosine 5′-triphosphate levels after 4-OHT, CX5461, 
actinomycin D, or BMH-21 treatment, 2500 cells were seeded per 
well in triplicates in the indicated drug concentrations and analyzed 
after 48 to 96 hours of culture as indicated by the CellTiter-Glo 
Luminescence Assay (Promega). For in vitro competition cultures, 
cells transduced with a Dox-inducible fluorescently labeled short 
hairpin RNA/guide RNA vector were co-cultured with uninfected 
parental cells, split into two aliquots and treated with Dox (100 ng/
ml) or dimethyl sulfoxide (DMSO). The relative frequency of trans-
duced and non-transduced cells was measured over time by flow 
cytometry.

Flow cytometry
For flow cytometric analysis, single-cell suspensions were prepared in 
balanced salt solution (0.15 M NaCl, 4 mM KCl, 2 mM CaCl2, 1 mM 
MgSO4, 1 mM KH2PO4, 0.8 mM K2HPO4, and 15 nM Hepes supple-
mented with 2% bovine calf serum). Cells were washed, stained with 
fluorophore-conjugated antibodies (see table  S5), and analyzed or 
sorted on a BD LSRFortessa or BD FACSAria III, respectively. Dead 
cells were excluded by staining with FluoroGold (AAT Bioquest), and 
data analysis was performed using FlowJo 10.4 (Becton Dickinson). 
To determine total cell numbers, an aliquot of the single-cell suspen-
sion was mixed with a defined number of allophycocyanin (APC+) 
beads. The ratio of cells/bead was used to determine the total cell 
count per femur.

B-ALL transplantation studies
For B-ALL transplantation studies, cell lines derived from leukemic 
P190T/+;CreERT/+;Ergfl/fl and P190T/+;CreERT/+;c-Mycfl/fl mice were 
transplanted into sublethally irradiated (4.5gray) C57BL/6-Ly.1/
Ly5.2 mice by intravenous injection of 1 × 106 cells. R26-CreERT2 
(CRE-ER) activity was either induced in vitro by addition of 4-OHT 
for 5 days before transplantation (pre4-OHT; 100 nM 4-OHT) or in 
vivo by administering TAM via oral gavage to mice on day 3 to 6 after 
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transplantation (TAM; 0.6 mg/g body weight/day). For xenograft assays, 
1 × 106 Cas9+ sguide+ BV173 cells were intravenously transplanted 
into NOD-Scid IL2r/J mice. Sguide expression was induced in vivo 
at day 7 by administration of Dox via standard food pellets (Specialty 
Feeds, 600 mg/kg). Pretreated cells had, in addition, been treated with 
Dox for 5 days in vitro before transplantation (PreDox; 100 ng/ml).

Immunoblots and co-immunoprecipitation
For Western blotting, cells were lysed in KALB lysis buffer [1% 
Triton X-100, 150 mM NaCl, 50 mM tris-HCl (pH 7.4), 1 mM 
EDTA, 1 mM phenylmethylsulfonyl fluoride, 2 mM Na3VO4, 10 mM 
NaF, and complete protease inhibitors (Roche)]. Proteins were 
separated in 4 to 12% Bis-Tris NuPAGE protein gels (Invitrogen) 
under reducing conditions, transferred onto a Immobilon-P mem-
brane (Millipore), and immunoblotted with primary antibodies 
(see table S5), followed by incubation with secondary horseradish 
peroxidase–conjugated antibodies and visualization by enhanced 
chemiluminescence. For co-immunoprecipitations, cells were lysed 
as described above. Cell lysates were incubated with 0.25 μg of 
specific antibody or IgG control for 2 hours, Protein A slurry was 
added, and the mix was incubated for >3 hours before Protein A 
beads were washed three times in KALB lysis buffer and protein 
was eluted and then analyzed by Western blot.

Real-time PCR analysis
rRNA transcription by POL I in mouse and human BCR::ABL1 leu-
kemia cells was assessed at the 47S/45S rRNA ITS and 47S/45S 
rRNA 5′ETS genes relative to β2m and VIM genes, respectively (see 
table  S4). RNA was reverse-transcribed to cDNA using random 
hexamer primers (Promega, Madison, USA) and Superscript III reverse 
transcriptase (Invitrogen) according to the manufacturer’s instruc-
tions. Quantitative polymerase chain reaction (PCR) was performed 
using SYBR green reagents (Applied Biosystems, USA) on the ViiA 
7 real-time PCR system (Thermo Fisher Scientific, USA), and relative 
expression of rRNA genes after treatment with CX-5461 compared 
to housekeeping genes was expressed relative to DMSO-treated 
cells using the 2−ΔΔCT method (59).

RNA sequencing
Total RNA was extracted using the RNeasy Plus minikit (Qiagen) 
from murine BCR::ABL1 B-ALL cell lines and B220+ selected pre-B 
cells. RNA (500 ng) was used to generate cDNA libraries using 
TrueSeq Stranded mRNA kits (Illumina). Sequencing was performed 
on a Hi-Seq2500 or NovaSeq sequencing system (Illumina) to generate 
100 bp single-end reads. Pseudo-biological replicates were sequenced 
for each BCR::ABL1 B-ALL cell line. Reads were aligned to the 
GRCm38/mm10 build of the Mus musculus genome using Rsubread 
align function, and read counts were summarized at the gene level 
(60). Genes were filtered as non-expressed if they were assigned 
0.5 counts per million mapped reads (CPM) in fewer than two 
libraries. Counts were transformed to log2-CPM and the mean-
variance relationship estimated using the voom function in limma 
(61). Library sizes were trimmed mean on M-values (TMM)–
normalized, and differential expression was assessed using quasi-
likelihood F tests (62). Genes were called differentially expressed if 
they achieved a false discovery rate of 0.05. For plotting purposes, 
counts were converted to reads per kilobase of transcript per million 
mapped reads (RPKM) using the rpkm function in limma. These 
data have been deposited in Gene Expression Omnibus database 

(accession number GSE213791). For clonotype analysis, fastq files 
from pre-B cells from individual mice or pooled from n = 3 mice 
for samples taken at 5 weeks and primary leukemia were analyzed 
using the MiXCR software package (3.0.6) (63). The frequency of 
the 10 most prevalent clonotypes was normalized to frequency 
per mouse.

ChIP-seq analysis
Publicly available FASTQ files for ERG (GSM3895108), c-MYC 
(GSM1234475), H3K4me3 (GSM2255547), and H3K27Ac (GSM2255552) 
ChIP-seq experiments were aligned to the mm10 mouse reference 
genome (GRCm38, December 2011) using Rsubread (64). Peak 
calling was performed using MACS2 (65) against input FASTQ files.

Gene network analysis
All ERG and c-MYC ChIP-seq peaks mapping to differentially expressed 
genes in both P190T/+;CreERT2T/+;ErgΔ/Δ and P190T/+;CreERT2T/+; 
c-MycΔ/Δ cell lines within 10 kb of the TSS were identified. Peaks in-
side the gene body were annotated as “proximal targets,” peaks over-
lapping the TSS were labeled as promoter regulated targets, peaks less 
than 3 kb upstream or downstream of the TSS were labeled as putative 
promoter regulated targets, and peaks more than 3 kb upstream or 
downstream TSS were labeled as putative distal targets (see table S3). 
GO annotation of differentially expressed genes was performed and 
underwent expert manual curation. The network was constructed using 
igraph CRAN package (66) and exported to Cytoscape (67) for custom-
ization using RCy3 (68) R/Bioconductor package.

Visualization of RNA-seq, ChIP-seq, and ATAC-seq data
RNA-seq and ChIP-seq files were converted to BigWig files using 
deepTools (version 2) (69) and uploaded to Cyverse (www.cyverse.
org) for visualization in UCSC Genome Browser (70) (genome.ucsc.
edu) or Integrative Genomics Viewer (71).

Immunofluorescence analysis
Suspension cells were fixed in a 4% paraformaldehyde solution for 
10 min and then cytospun onto pre-charged Super Frost Plus Slides 
(Menzel Gläser) using a double cytology funnel. Slides were permea-
bilized for 10 min in ice-cold phosphate-buffered saline (PBS; 0.1 M, 
pH 7.4) containing 0.3% Triton X-100. Following permeabilization, 
cells were washed three times with PBS (5 min each with gentle 
rocking on a lab shaker) and blocked in PBS consisting of 5% goat 
serum and 0.3% Triton X-100 for 30 min at room temperature. Next, 
slides were incubated with primary antibodies (see table S5) in 1% 
bovine serum albumin (BSA)/PBS for 1 hour at 37°C in a humidified 
chamber. Following staining, slides were washed three times with 
PBS (5 min each with gentle rocking) and then subsequently incubated 
with secondary antibodies (see table S5). Secondary antibodies were 
diluted 1:600 in 1% BSA/PBS, and slides were stained for 1 hour at 
37°C. Last, cells were washed in PBS and counterstained for 10 min 
with 4,6-diamidino-2-phenylindole (1 μg/ml; Sigma-Aldrich) before 
being mounted with glass coverslips using VECTASHIELD Anti-
fade Mounting Medium (Vector Laboratories).

Fluorescent confocal images were acquired using a Nikon C2 laser 
scanning confocal microscope system (Nikon, Melville, NY) equipped 
with a 60× oil immersion objective and NIS-Elements software 
(Nikon, Melville, NY) for acquisition of the images. A maximal in-
tensity projection of a Z-stack was than generated using the software 
program ImageJ (1.47v, National Institutes of Health). Images were 

http://www.cyverse.org
http://www.cyverse.org
http://genome.ucsc.edu
http://genome.ucsc.edu
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analyzed using CellProfiler version 3.1.9 (Broad Institute) using the 
same manually set parameters and thresholds. For statistical analysis, 
mean signal intensity data values were normalized to the median of 
each respective vehicle control and the data plotted using GraphPad 
Prism software (version 7) performing a two-sided unpaired Mann-
Whitney test where appropriate.

Statistical analysis
Statistical significance was analyzed using one-way analysis of variance 
(ANOVA) with Dunnett’s correction for multiple comparison, t test, 
and Gehan-Breslow-Wilcoxon test or as indicated in the figure legends 
(GraphPad Prism software version 8). *P < 0.05; **P < 0.005; 
***P < 0.001; ****P < 0.0001. Data are presented as means ± SD.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5
Legends for tables S1 to S3
Tables S4 and S5
Legend for data S1

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S3
Data S1
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